officiel vient d'être effacé, pour rediriger vers une page
"coming soon"
. Cela concerne toutes les pages ainsi que les fichiers utilisés, notamment les différents visuels.
Contacté par plusieurs membres de la communauté s'intéressant à ce formidable projet, le dirigeant de
Zero
a répondu que la calculatrice ne sortirait probablement pas pour la rentrée 2022 comme prévu initialement. Quel dommage, les petits américains n'auront donc pour la rentrée 2022 toujours pas d'alternative à l'achat à des prix à 3 chiffres de
TI-84 Plus CE
au matériel le plus limité toute concurrence confondue.
Aucune trace publique en ce sens, mais il nous semble très probable que
Zero
ait fini par recevoir un courrier de la part de
Texas Instruments
, et que ce dernier se soit visiblement montré suffisamment convaincant sur le caractère illégal en l'état du projet.
Alors, qu'est-ce qui a bien pu rater dans les plans de
Zero
?
Dans son premier
design
la calculatrice
Zero
disposait d'un aspect extrêmement proche de celui des
TI-84 Plus CE
, pouvant amener certains acheteurs à les confondre.
La chose a certes été corrigée depuis par un
redesign
prenant même le soin de passer les inscriptions alphabétiques clavier en rouge, s'éloignant certes de la
TI-84 Plus CE
mais tombant alors par malchance sur quelque chose ressemblant énormément à la
TI-82 Advanced Edition Python
distribuée en France :
Nous doutons toutefois que la
TI-82 Advanced Edition Python
distribuée dans une zone géographique totalement différente ait pu être un argument.
Le seul point sur lequel
Texas Instruments
a pu appuyer à notre avis, c'est le clavier.
D'un côté, la
Zero
utilise les mêmes inscriptions clavier que la
TI-84 Plus CE
. Nous ignorons si c'est un problème, dans le sens où ces inscriptions n'ont plus évolué depuis la
TI-83 Plus
sortie en
1999
il y a maintenant près de 23 ans.
Par contre, en dehors des touches fléchées, la
Zero
utilise la même disposition de touches clavier que la
TI-84 Plus CE
. Et le
redesign
des formes et tailles du boîtier ainsi que de ses touches pour la sortie de cette dernière a justement fait l'objet d'une protection.
Ces derniers points nous semblent bien faibles, dans le sens où les calculatrices scientifiques
, à notre connaissance le plus plus grand collectionneur de prototypes de calculatrices graphiques au monde.
Il faut dire que
Frédéric
dispose d'un talent tout particulier, son oeil de lynx lui permet de repérer le moindre petit détail déviant de la production de masse sur les photos des petites annonces en ligne, et c'est grâce à lui justement que nous avions pu te présenter le tout premier prototype de
avait réussi l'exploit de nous exhiber un modèle d'exposition
TI-84 Plus CE
.
Le carte électronique de cette calculatrice était dépourvue de tout composant électronique, ce qui laissait donc apparaître l'ensemble des connexions de puces ainsi que les pistes habituellement masquées par ces dernières. Une référence fort intéressante.
Bien évidemment non fonctionnel, ce modèle était donc destiné à être exposé lors de divers événements couverts par
Texas Instruments
, probablement dans une vitrine fermée empêchant toute manipulation.
Aujourd'hui,
Frédéric
récidive. Le voici muni de sa nouvelle
TI-84 Plus Silver Edition
, un prototype comme indiqué au dos par l'autocollant
"Prototype - Not for sale"
ainsi que par l'absence de numéro de série.
Une calculatrice à nouveau non fonctionnelle, découvrons un peu pourquoi en l'ouvrant.
Et effectivement, il n'y a aucun composant électronique ici non plus, c'est à nouveau un modèle d'exposition.
Mais bizarrement ici, la carte électronique semble être dans un état encore plus inachevé. Les connexions destinées à recevoir les composants électroniques sont certes présentes, mais la carte ne présente à la différence aucune piste.
La couleur non pas verte mais jaune transparent, suggérerait même qu'il lui manquerait une couche.
Nous ignorons cette fois-ci si il est normal qu'une carte ait pu être extraite de la chaîne d'assemblage dans un état aussi intermédiaire, ou si il s'agissait simplement d'un élément datant de l'époque de la conception des
TI-84 Plus
et réutilisé pour l'occasion plutôt que d'être détruit.
Dans tous les cas, c'est une nouvelle pièce inestimable dans l'histoire des appareils scolaires
active enfin le support générique des périphériques
USB
.
Sauf qu'en pratique aucun pilote n'est inclus et donc rien ne peut fonctionner en dehors des périphériques officiels
HP StreamSmart
(interfaces pour capteurs de mesures physiques)
. Cette dernière mise à jour développée dans l'urgence des examens juste avant la cession de la branche a de plus le défaut d'être hautement instable, plantant très facilement sur des opérations officielles avec une fréquence jamais vue jusqu'alors.
Rajoutons que
Hewlett Packard
s'est séparé définitivement de sa branche calculatrices pour la rentrée 2021, commettant l'erreur monumentale de vendre le tout à
avait également racheté la branche calculatrices de
Sharp
en 2015, et n'en a strictement rien fait depuis maintenant 7 ans, continuant à vendre les mêmes produits sans plus jamais investir dans la moindre évolution logicielle ou matérielle. Les calculatrices
Sharp
accumulant en conséquence un retard de plus en plus abyssal par rapport à la concurrence, forcément leur popularité s'est effondrée depuis et elles ont de plus en plus disparu des rayons de nos boutiques physiques ou virtuelles.
Moravia
ne semblant pas se donner davantage de mal ici, n'ayant notamment toujours pas fait l'effort depuis un an de nous sortir une mise à jour corrigeant l'instabilité, et n'ayant donc visiblement aucun scrupule à vendre à prix d'or un produit défectueux, nous doutons fortement qu'ils s'amusent à court ou même moyen terme à achever le support générique des périphériques
USB
ébauché chez
HP
juste avant la fin.
Les périphériques
USB
peuvent donc être connectés directement à ta calculatrice
, que tu pourras alors directement connecter à l'aide du câble fourni à l'achat et destiné à relier deux calculatrices entre elles.
Et voici maintenant enfin ta nouvelle station d'accueil
TI-Nspire
pour travailler en situation semi-nomade à la maison ou en classe !
Attention toutefois, en France la réglementation des examens interdit l'usage de tout module externe avec ta calculatrice, peu importe qu'il nécessite un câble ou soit directement enfichable.
Le but de cette interdiction était initialement d'empêcher l'échange de données entre candidats :
par connexion et échange de cartes mémoire
(c'était possible sur d'anciens modèles
Casio
et
HP
, capacité qui a totalement disparu dans le cadre du renouvellement de l'ensemble de la gamme pour le mode examen à l'approche de 2015)
par connexion de modules de communication sans fil
(des solutions infrarouge ont existé dans le temps, même si de nos jours cela se ferait plutôt en bluetooth ou WiFi)
Donc même si clavier et souris
USB
ne sont absolument pas les appareils de triche ciblés par cette interdiction, malheureusement ils tombent sous le coup de cette interdiction générique et ce confort d'utilisation te sera ainsi hélas interdit en examen.
. Lancée pour la rentrée 2003, cette gamme se caractérise par des modèles munis d'un écran tactile à stylet de
160×240
pixels ainsi que d'un moteur de calcul formel.
Se sont succédées les :
Classpad 300
(rentrée 2003)
Classpad 300+
(rentrée 2005)
qui rajoutait une connexion USB standard
Classpad 330
(rentrée 2007)
Classpad 330+
(rentrée 2012)
qui remplaçait le processeur
Renesas SH3
historique par un
SH4
, mais également hélas fermait l'écosystème en retirant la possibilité d'installer et lancer des applications tierces, limitation qui persiste à ce jour et nuit grandement à la popularité de cette gamme au sein de nos communautés de passionnés et développeurs
Depuis la gamme est passée à une nouvelle génération matérielle dite
Classpad II
, accélérant le processeur
SH4
à
117,96 MHz
tout en passant à un écran couleur en
320×528
pixels. Cette fois-ci, les modèles sont distints selon la zone de distribution :
la
fx-CP400
, modèle international sorti à la rentrée 2013
la
fx-CP400+E
qui remplace la
fx-CP400
en France à la rentrée 2016, lui rajoutant une diode examen conformément à la nouvelle réglementation
la
fx-CG500
pour l'Amérique du Nord à la rentrée 2017, déclinaison conçue pour être autorisée aux examens en retirant diverses choses interdites : dispositions non alphabétiques du clavier virtuel
(Qwerty, Qwertz, Azerty)
, mentions de la gamme
Classpad
car nommément interdite à cause de cela dans plusieurs réglementations d'examens
Mais
Casio
te permet également de retrouver l'intégralité des capacités de son logiciel de Mathématiques intégré
nous sort aujourd'hui pour la rentrée 2022 une mise à jour de l'ensemble de ces applications, la version
1.0.10
.
Datée du
20 avril 2022
, elle continue apparemment à utiliser le même logiciel de Mathématiques intégré
Classpad
en version
2.01.7000
, ce qui suggère donc déjà qu'il n'y a aucune nouveauté niveau capacités après pourtant près de 2 ans, et peut-être même qu'il n'y en aurait pas davantage pour calculatrices d'ici la rentrée 2022.
Les pages des applications indiquent la correction d'un bug mineur sans plus de précisions, que l'on peut par élimination supposer être spécifique à la gestion de l'appareil hôte ou de son système d'exploitation.
monochromes dès 2011, puis moi-même dès 2012 pour les
TI-Nspire CX
. C'est-à-dire qu'il s'agit d'une recompilation intégrale à partir du code source du jeu. Tu pouvais donc ici retrouver l'intégralité du jeu original ainsi que de ses extensions et évolutions compatibles
(
Ultimate Doom
,
Final Doom
,
Plutonia Experiment
,
TNT Evilution
,
Doom II
, ...)
Le code source de
nDoom
vient tout juste d'être repris cette année pour créer
apporte plusieurs évolutions significatives au moteur :
D'une part le moteur permet d'afficher l'ensemble des éléments en 3D. C'est-à-dire que les ennemis et items ne sont plus de simples
sprites
te présentant toujours la même face pour les items, ou un nombre limité de faces pour les ennemis.
D'autre part, tu peux désormais sauter et même dans certaines conditions voler. c'est-à-dire que la 3ème dimension passe d'une décoration à un véritable élément de jeu.
def _turtle_error(k): global _turtle_errors _turtle_errors |= 1 << k
# import turtle try: import turtle if not "forward" in dir(turtle): turtle = turtle.Turtle() except ImportError: #TI-83 Premium CE from ce_turtl import turtle _turtle_error(0) try: turtle.clear() except: turtle.reset()
# can turtle be patched ? _fix_turtle = True try: def _fixcolor(c): return c turtle._fixcolor = _fixcolor except: _fix_turtle = False
# test color() + pencolor() + fillcolor() if not "pencolor" in dir(turtle): pencolor = turtle.color _turtle_error(1) else: pencolor = turtle.pencolor if not "color" in dir(turtle): _turtle_error(2) if not "fillcolor" in dir(turtle): _turtle_error(12)
if not "clear" in dir(turtle): _turtle_error(13) if not "reset" in dir(turtle): _turtle_error(14) if not "heading" in dir(turtle): _turtle_error(11)
# test colormode() if not "colormode" in dir(turtle): _turtle_error(3)
# test color strings _colors_fix={ "blue":(0,0,1), "green":(0,1,0), "red":(1,0,0), "cyan":(0,1,1), "yellow":(1,1,0), "magenta":(1,0,1), "white":(1,1,1), "orange":(1,0.65,0), "purple":(0.66,0,0.66), "brown":(0.75,0.25,0.25), "pink":(1,0.75,0.8), "grey":(0.66,0.66,0.66), "black":(0,0,0), } for c in tuple(_colors_fix.keys()): try: pencolor(c) _colors_fix.pop(c) except: pass if len(_colors_fix): if _color_types & 1 << 3: _turtle_error(8)
# test circle(,) try: turtle.circle(0,0) except: _turtle_error(9)
#test towards try: turtle.towards except: _turtle_error(15)
# test for unfixable missing functions _missing_fct=["write","pensize","dot"] for f in tuple(_missing_fct): try: eval("turtle."+f) _missing_fct.remove(f) except: pass if len(_missing_fct): _turtle_error(16)
_missing_alias=[ ["backward","back","bk"], ["forward","fd"], ["right","rt"], ["left","lt"], ["position","pos"], ["goto","setpos","setposition"], ["setheading","seth"], ["pendown","pd","down"], ["penup","pu","up"], ["pensize","width"], ["showturtle","st"], ["hideturtle","ht"], ] for aliases in tuple(_missing_alias): validf = None for f in tuple(aliases): try: eval("turtle."+f) validf = f aliases.remove(f) break except: pass for f in tuple(aliases): try: eval("turtle."+f) aliases.remove(f) except: pass if not len(aliases): _missing_alias.remove(aliases) else: aliases.insert(0, validf) if len(_missing_alias): _turtle_error(17)
from ttl_chk import * from ttl_chk import _fix_turtle, _turtle_errors, _colors_fix, _missing_fct, _missing_alias
def turtle_diags(): print("Type: " + str(type(turtle))) print("Patchable: " + (_fix_turtle and "yes" or "no")) errors_msg = ( "No <import turtle>", "No pencolor()", "No color()", "No colormode()", "No color as list", "No color as tuple", "No color as args", "No color as string", "Missing colors strings: ", "No circle(,angle)", "Can't get position()", "No heading()", "No fill", "No clear()", "No reset()", "No towards()", "Other missing: ", "Missing aliases: ", ) errors = 0 for k in range(len(errors_msg)): if _turtle_errors & 1 << k: errors += 1 msg = "Err " + str(k) + ": " + errors_msg[k] if k == 8: msg += str(len(_colors_fix)) + " " + str(tuple(_colors_fix.keys())) if k == 16: msg += str(len(_missing_fct)) + " " + " ".join(_missing_fct) if k == 17: l = [] for v in _missing_alias: l.extend(v[1:]) msg += str(len(l)) + " " + " ".join(l) print(msg) print(str(errors) + " error" + ((errors > 1) and "s" or ""))
turtle_diags()
Voici ce que nous racontent les scripts sur les différentes solutions
Aucune erreur n'est détectée automatiquement autmatiquement par nos scripts avec
KhiCAS
, chose exceptionnelle si l'on compare aux solutions officielles, et signe d'un soin absolument minutieux !
Mais ça, c'est pour les problèmes détectables par des vérifications automatisées. Voyons maintenant d'éventuels écarts visuels sur quelques exemples de scripts.
Afin de pouvoir comparer équitablement avec les solutions officielles visiblement parfois bien moins conformes au standard
turtle
tout en conservant une unique version de chaque script utilisable sur l'ensemble des solutions, voici un script qu'il suffira d'importer à la place de chaque bibliothèque
turtle
et qui, lorsque celle-ci sera modifiable, corrigera la plupart des erreurs détectées :
_fix_color = _color_types & 0b11 != 0b11 or not "colormode" in dir(turtle)
# fix list/tuple color argument if _color_types & 0b11 == 0b10: def _fixcolorlist(c): return type(c) is list and tuple(c) or c turtle._fixcolorlist = _fixcolorlist if _color_types & 0b11 == 0b01: def _fixcolorlist(c): return type(c) is list and list(c) or c turtle._fixcolorlist = _fixcolorlist if not _color_types & 4: def _fixcolorargs(*argv): return len(argv) != 1 and argv or argv[0]
if _fix_color: turtle._color = turtle.color turtle._pencolor = turtle.pencolor turtle._fillcolor = turtle.fillcolor if _color_types & 0b11: def _color(*argv): n = len(argv) if not(n): return turtle._color() elif n==2: turtle._color(argv[0], argv[1]) else: turtle._color(n > 1 and argv or argv[0]) def _pencolor(*argv): if not(len(argv)): return turtle._pencolor() turtle._pencolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0])) def _fillcolor(*argv): if not(len(argv)): return turtle._fillcolor() turtle._fillcolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0])) else: def _color(*argv): n = len(argv) if not(n): return turtle._color() c = turtle._fixcolor(n == 3 and argv or argv[0]) turtle._color(c[0], c[1], c[2]) def _pencolor(*argv): if not(len(argv)): return turtle._pencolor() c = turtle._fixcolor(len(argv)>1 and argv or argv[0]) turtle._pencolor(c[0], c[1], c[2]) def _fillcolor(*argv): if not(len(argv)): return turtle._fillcolor() c = turtle._fixcolor(len(argv)>1 and argv or argv[0]) turtle._fillcolor(c[0], c[1], c[2]) turtle.color = _color turtle.pencolor = _pencolor turtle.fillcolor = _fillcolor
# fix colormode() if _turtle_errors & 8: # test color mode try: turtle.pencolor([255, 0, 0]) _color_mode = 255 except: _color_mode = 1.0 turtle._color_mode = _color_mode def _colormode(*argv): if not(len(argv)): return turtle._color_mode if int(argv[0]) in (1, 255): turtle._color_mode = int(argv[0]) == 255 and 255 or 1.0 turtle.colormode = _colormode if _color_mode == 255: turtle._fixcolorval = lambda c: int(turtle._color_mode) == 1 and type(c) in (list, tuple) and [int(c[k] * 255) for k in range(3)] or c else: turtle._fixcolorval = lambda c: turtle._color_mode == 255 and type(c) in (list, tuple) and [c[k] / 255 for k in range(3)] or c
# fix color strings if len(_colors_fix): def _fixcolorstring(c): if type(c) is str and c in _colors_fix: c = _colors_fix[c] if turtle.colormode() == 255: c = [int(c[k] * 255) for k in range(3)] return c turtle._fixcolorstring = _fixcolorstring
if len(_missing_fct): for f in _missing_fct: exec("turtle."+f+"=nop")
if len(_missing_alias): for aliases in _missing_alias: validf = aliases[0] for f in aliases[1:]: exec(validf and "turtle."+f+"=turtle."+validf or "turtle."+f+"=nop")
# fix clear() if _turtle_errors & 0x2000: turtle.clear = turtle.reset
# fix reset() if _turtle_errors & 0x4000: turtle.reset = turtle.clear
# fix towards() if _turtle_errors & 0x8000: from math import atan2, pi def _towards(x, y): x0, y0 = turtle.pos() return atan2(y - y0, x - x0) * 180 / pi turtle.towards = _towards
Maintenant que nous avons de quoi faire tourner une unique version de chaque script sur l'ensemble des machines, poursuivons donc l'exploration de l'ensemble des solutions
turtle
avec quelques exemples de script.
Nous allons en profiter pour nous en donner à cœur joie avec les formidables fonctions de remplissage rajoutées dans l'avant-dernière version de
C'est donc l'occasion de voir si il y avait d'autres problèmes qui n'ont pas pu être détectés automatiquement, et si ils sont toujours présents dans la dernière version.
Plusieurs des exemples qui vont suivre sont inspirés de publications de
def rpoly(c, n): for k in range(n): turtle.forward(c) turtle.left(360 / n)
def audi(r): ir = 2 * r // 13 turtle.penup() turtle.left(90) turtle.forward(r//2 - 2*ir) turtle.right(90) turtle.forward(-ir) turtle.pendown() turtle.pensize(3) for i in range(4): turtle.penup() turtle.forward(3 * ir) turtle.pendown() turtle.circle(2 * ir)
def mercedez_benz(r): ir = r // 2 turtle.penup() turtle.forward(ir) turtle.left(90) turtle.forward(ir) turtle.pendown() turtle.pensize(2) x, y = turtle.pos() turtle.setheading(210) for i in range(3): turtle.goto(x,y) turtle.forward(ir) turtle.left(120) turtle.setheading(0) turtle.circle(-ir)
def citroen(r): x,y=turtle.pos() turtle.setheading(0) turtle.color((255,0,0), (255,0,0)) turtle.begin_fill() rpoly(r, 4) turtle.end_fill() turtle.fillcolor((255,255,255)) for i in range(2): turtle.setheading(45) turtle.begin_fill() for k in range(2): turtle.forward(.71 * r) turtle.left(k and 172 or -90) for k in range(2): turtle.forward(5 * r / 6) turtle.left(106) turtle.end_fill() y += r / 3 turtle.penup() turtle.goto(x,y) turtle.pendown()
def mitsubichi(r): ir = r // 3 turtle.penup() turtle.left(90) turtle.forward(ir) turtle.right(90) turtle.forward(r // 2) turtle.pendown() for i in range(3): turtle.setheading(60 + 120*i) turtle.color((255,0,0), (255,0,0)) turtle.begin_fill() for k in range(4): turtle.forward(ir) turtle.left((k%2) and 120 or 60) turtle.end_fill()
def jeep(r): a=54 ir = r/0.47552825814758/4 #sin(radians(a))/cos(radians(a)) a=ir/0.85 d=0.93*ir turtle.penup() turtle.forward(r//2) turtle.right(90) turtle.forward(ir - r) turtle.pendown() x, y = turtle.pos() turtle.setheading(234) turtle.forward(ir) turtle.left(126) turtle.fillcolor((180,180,180)) turtle.begin_fill() rpoly(a, 5) turtle.end_fill() for i in range(5): col = i < 3 and (0,0,0) or (255,255,255) for j in range(2): turn = j and turtle.left or turtle.right turtle.goto(x,y) turtle.setheading(90 + 72*i) turtle.fillcolor(col) turtle.begin_fill() turtle.forward(d) turn(172) turtle.forward(0.85*d) turn(44) turtle.forward(0.2*d) turtle.end_fill() col = [255 - col[k] for k in range(3)]
turtle.speed(0) turtle.colormode(255)
r = 92 for iy in range(2): for ix in range(3): i = iy*3+ix if i < 5: y, x = (2*iy - 1) * r//2 - 48, (ix - 1)*r - 50 turtle.penup() turtle.goto(x, y) turtle.setheading(0) turtle.pensize(1) turtle.pencolor((0,0,0)) turtle.pendown() (mercedez_benz,jeep,mitsubichi,citroen,audi)[i](r)
Encore une fois si tu es dans le Sud de la France, tu n'a pas dû voir de neige depuis des années... Faison donc neiger dans ta calculatrice maintenant, faisons neiger des
c = [127, 255, 0] l = 80 for j in range(2): for i in range(3): n = j and 3 + i or 2 - i s = 5 - n turtle.penup() turtle.goto(i*117-157, j*95-25) turtle.pencolor(tuple(c)) turtle.pensize(s) turtle.setheading(0) turtle.pendown() flock(n, l) n += 1 rotate_list(c)
try: for i in range(-1, 2, 2): turtle.penup() turtle.goto(80*i - ((i > 0) and 40 or 50), 0) turtle.pendown() try: turtle.begin_fill() except: pass spiral((i > 0) and 9 or 30, (i > 0) and 90 or 36, (i > 0) and (1,2,3,4,5,6,7,8,9) or (1,2,3)) try: turtle.end_fill() except: pass except MemoryError as e: print(e)
for i in range(2): turtle.color(c[0], c[i]) for h in range(10*i,370,20): r=h * pi / 180 x=d*cos(r) y=d*sin(r) turtle.penup() turtle.goto(x,y) turtle.pendown() turtle.setheading(h) feuille(core,32)
C'est donc parti pour quelques exemples afin d'approfondir les améliorations de la nouvelle bibliothèque
turtle
pour
TI-83 Premium CE Edition Python
et compatibles, ainsi que les points forts et faibles par rapport aux autres modèles de calculatrices.
Précisons que les problèmes récurrents ne seront pas systématiquement réévoqués sur chaque exemple.
Un petit peu au Nord de Digne-les-bains en rive droite de la Bléone se trouve la dalle aux ammonites. Comme il est strictement interdit d'en prélever, voici de quoi en reproduire une sur ta calculatrice :
turtle.penup() turtle.goto(0, -20) turtle.pendown() turtle.right(90) for i in range(20): c = [exp(-.5 * ((i - k) / 12)**2) for k in (6, 18, 30)] cb = [v/2 for v in c] turtle.color(cb, c) try: turtle.begin_fill() except: pass turtle.circle(27 + i) try: turtle.end_fill() except: pass turtle.right(10)
? Et bien voici de quoi en afficher le plan dans ta calculatrice, tu n'auras plus qu'à l'imprimer en 3D, si tu arrives à comprendre où est le devant et l'arrière :
Voici maintenant une belle rosace rhombique pour décorer le bâtiment de ton choix.
Nous utilisons ici la méthode
.dot()
permettant de remplir un disque de diamètre donné, afin de générer de quoi avoir une couleur de fond d'écran sur nos calculatrices, suffit-il juste de lui spécifier un diamètre suffisamment grand :
turtle.speed(0) turtle.colormode(255) turtle.pencolor((0,0,255)) turtle.dot(320) turtle.pencolor((0,0,0)) turtle.pensize(2) col = ((255,0,0),(255,255,0),(0,255,0),(255,255,255),(255,0,255)) a=60
for i in range(10): c = col[i%5] turtle.color(c, c) turtle.begin_fill() for j in range(5): turtle.forward(a) turtle.right(72) turtle.end_fill() turtle.right(36)
for i in range(10): c = [v//3 for v in col[i%5]] turtle.pencolor(c) for j in range(5): turtle.forward(a) turtle.right(72) turtle.right(36)
for i in range(4): a=r*sin(alpha)*2 d=a/sqrt(2) turtle.pendown() for i in range(12): turtle.right(15) try: turtle.begin_fill() except: pass carre(d) try: turtle.end_fill() except: pass turtle.left(45) turtle.penup() turtle.forward(a) turtle.pendown() turtle.penup() turtle.left(75) turtle.forward(d) turtle.right(60) r=r*cos(alpha)-a/2
def sierp(n, l): if n == 0: for i in range (0, 3): turtle.forward(l) turtle.left(120) if n > 0: sierp(n - 1, l / 2) turtle.forward(l / 2) sierp(n - 1, l / 2) turtle.backward(l / 2) turtle.left(60) turtle.forward(l / 2) turtle.right(60) sierp(n - 1, l / 2) turtle.left(60) turtle.backward(l / 2) turtle.right(60)
try: # TI-83 Premium CE from ti_system import disp_clr disp_clr() except: pass from ttl_fix import *
def rpoly(c, n): a=360/n for k in range(n): turtle.forward(c) turtle.left(a)
def rosace(c, n1, a, n2): try: turtle.begin_fill() except: pass for i in range(n2): turtle.left(a) rpoly(c, n1) try: turtle.end_fill() except: pass
turtle.colormode(255) turtle.pencolor((0,0,0))
try: turtle.dot(320) except: pass turtle.color((255,255,255),(255,255,0)) turtle.speed(0) turtle.pensize(1) try: for i in range(-1, 2, 2): turtle.penup() turtle.goto(80*i, 0) turtle.pendown() rosace((i > 0) and 21 or 30, (i > 0) and 12 or 8, 30, 12) turtle.pensize(2) turtle.pencolor((0,0,255)) except MemoryError as e: print(e)
def spiral(a,b): turtle.pencolor((0,0,0)) try: turtle.dot(320) except: pass turtle.pencolor((255,255,0)) for i in range(189): for j in range(6): turtle.forward(i/a) turtle.left(23) turtle.left(b) try: turtle.dot(2) except: pass
officielles, et semble en conséquence bien mieux se comporter en pratique sur une majorité de nos exemples. nous semble offrir à ce jour la meilleure bibliothèque
Python turtle
toutes solutions confondues.
Les méthodes de remplissage, absentes des implémentations officielles de
Casio
et
NumWorks
t'ouvrent la porte à de formidables progrès.
Les progrès témoignent d'un soin minutieux apporté par
Bernard Parisse
, et vu que tout semble parfait maintenant il va nous falloir tenter d'inventer de nouveaux exemples piégeux...
def _turtle_error(k): global _turtle_errors _turtle_errors |= 1 << k
# import turtle try: import turtle if not "forward" in dir(turtle): turtle = turtle.Turtle() except ImportError: #TI-83 Premium CE from ce_turtl import turtle _turtle_error(0) try: turtle.clear() except: turtle.reset()
# can turtle be patched ? _fix_turtle = True try: def _fixcolor(c): return c turtle._fixcolor = _fixcolor except: _fix_turtle = False
# test color() + pencolor() + fillcolor() if not "pencolor" in dir(turtle): pencolor = turtle.color _turtle_error(1) else: pencolor = turtle.pencolor if not "color" in dir(turtle): _turtle_error(2) if not "fillcolor" in dir(turtle): _turtle_error(12)
if not "clear" in dir(turtle): _turtle_error(13) if not "reset" in dir(turtle): _turtle_error(14) if not "heading" in dir(turtle): _turtle_error(11)
# test colormode() if not "colormode" in dir(turtle): _turtle_error(3)
# test color strings _colors_fix={ "blue":(0,0,1), "green":(0,1,0), "red":(1,0,0), "cyan":(0,1,1), "yellow":(1,1,0), "magenta":(1,0,1), "white":(1,1,1), "orange":(1,0.65,0), "purple":(0.66,0,0.66), "brown":(0.75,0.25,0.25), "pink":(1,0.75,0.8), "grey":(0.66,0.66,0.66), "black":(0,0,0), } for c in tuple(_colors_fix.keys()): try: pencolor(c) _colors_fix.pop(c) except: pass if len(_colors_fix): if _color_types & 1 << 3: _turtle_error(8)
# test circle(,) try: turtle.circle(0,0) except: _turtle_error(9)
#test towards try: turtle.towards except: _turtle_error(15)
# test for unfixable missing functions _missing_fct=["write","pensize","dot"] for f in tuple(_missing_fct): try: eval("turtle."+f) _missing_fct.remove(f) except: pass if len(_missing_fct): _turtle_error(16)
_missing_alias=[ ["backward","back","bk"], ["forward","fd"], ["right","rt"], ["left","lt"], ["position","pos"], ["goto","setpos","setposition"], ["setheading","seth"], ["pendown","pd","down"], ["penup","pu","up"], ["pensize","width"], ["showturtle","st"], ["hideturtle","ht"], ] for aliases in tuple(_missing_alias): validf = None for f in tuple(aliases): try: eval("turtle."+f) validf = f aliases.remove(f) break except: pass for f in tuple(aliases): try: eval("turtle."+f) aliases.remove(f) except: pass if not len(aliases): _missing_alias.remove(aliases) else: aliases.insert(0, validf) if len(_missing_alias): _turtle_error(17)
from ttl_chk import * from ttl_chk import _fix_turtle, _turtle_errors, _colors_fix, _missing_fct, _missing_alias
def turtle_diags(): print("Type: " + str(type(turtle))) print("Patchable: " + (_fix_turtle and "yes" or "no")) errors_msg = ( "No <import turtle>", "No pencolor()", "No color()", "No colormode()", "No color as list", "No color as tuple", "No color as args", "No color as string", "Missing colors strings: ", "No circle(,angle)", "Can't get position()", "No heading()", "No fill", "No clear()", "No reset()", "No towards()", "Other missing: ", "Missing aliases: ", ) errors = 0 for k in range(len(errors_msg)): if _turtle_errors & 1 << k: errors += 1 msg = "Err " + str(k) + ": " + errors_msg[k] if k == 8: msg += str(len(_colors_fix)) + " " + str(tuple(_colors_fix.keys())) if k == 16: msg += str(len(_missing_fct)) + " " + " ".join(_missing_fct) if k == 17: l = [] for v in _missing_alias: l.extend(v[1:]) msg += str(len(l)) + " " + " ".join(l) print(msg) print(str(errors) + " error" + ((errors > 1) and "s" or ""))
turtle_diags()
Voici ce que nous racontent les scripts sur les différentes solutions
Aucune erreur n'est détectée automatiquement autmatiquement par nos scripts avec
KhiCAS
, chose exceptionnelle si l'on compare aux solutions officielles, et signe d'un soin absolument minutieux !
Mais ça, c'est pour les problèmes détectables par des vérifications automatisées. Voyons maintenant d'éventuels écarts visuels sur quelques exemples de scripts.
Afin de pouvoir comparer équitablement avec les solutions officielles visiblement parfois bien moins conformes au standard
turtle
tout en conservant une unique version de chaque script utilisable sur l'ensemble des solutions, voici un script qu'il suffira d'importer à la place de chaque bibliothèque
turtle
et qui, lorsque celle-ci sera modifiable, corrigera la plupart des erreurs détectées :
_fix_color = _color_types & 0b11 != 0b11 or not "colormode" in dir(turtle)
# fix list/tuple color argument if _color_types & 0b11 == 0b10: def _fixcolorlist(c): return type(c) is list and tuple(c) or c turtle._fixcolorlist = _fixcolorlist if _color_types & 0b11 == 0b01: def _fixcolorlist(c): return type(c) is list and list(c) or c turtle._fixcolorlist = _fixcolorlist if not _color_types & 4: def _fixcolorargs(*argv): return len(argv) != 1 and argv or argv[0]
if _fix_color: turtle._color = turtle.color turtle._pencolor = turtle.pencolor turtle._fillcolor = turtle.fillcolor if _color_types & 0b11: def _color(*argv): n = len(argv) if not(n): return turtle._color() elif n==2: turtle._color(argv[0], argv[1]) else: turtle._color(n > 1 and argv or argv[0]) def _pencolor(*argv): if not(len(argv)): return turtle._pencolor() turtle._pencolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0])) def _fillcolor(*argv): if not(len(argv)): return turtle._fillcolor() turtle._fillcolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0])) else: def _color(*argv): n = len(argv) if not(n): return turtle._color() c = turtle._fixcolor(n == 3 and argv or argv[0]) turtle._color(c[0], c[1], c[2]) def _pencolor(*argv): if not(len(argv)): return turtle._pencolor() c = turtle._fixcolor(len(argv)>1 and argv or argv[0]) turtle._pencolor(c[0], c[1], c[2]) def _fillcolor(*argv): if not(len(argv)): return turtle._fillcolor() c = turtle._fixcolor(len(argv)>1 and argv or argv[0]) turtle._fillcolor(c[0], c[1], c[2]) turtle.color = _color turtle.pencolor = _pencolor turtle.fillcolor = _fillcolor
# fix colormode() if _turtle_errors & 8: # test color mode try: turtle.pencolor([255, 0, 0]) _color_mode = 255 except: _color_mode = 1.0 turtle._color_mode = _color_mode def _colormode(*argv): if not(len(argv)): return turtle._color_mode if int(argv[0]) in (1, 255): turtle._color_mode = int(argv[0]) == 255 and 255 or 1.0 turtle.colormode = _colormode if _color_mode == 255: turtle._fixcolorval = lambda c: int(turtle._color_mode) == 1 and type(c) in (list, tuple) and [int(c[k] * 255) for k in range(3)] or c else: turtle._fixcolorval = lambda c: turtle._color_mode == 255 and type(c) in (list, tuple) and [c[k] / 255 for k in range(3)] or c
# fix color strings if len(_colors_fix): def _fixcolorstring(c): if type(c) is str and c in _colors_fix: c = _colors_fix[c] if turtle.colormode() == 255: c = [int(c[k] * 255) for k in range(3)] return c turtle._fixcolorstring = _fixcolorstring
if len(_missing_fct): for f in _missing_fct: exec("turtle."+f+"=nop")
if len(_missing_alias): for aliases in _missing_alias: validf = aliases[0] for f in aliases[1:]: exec(validf and "turtle."+f+"=turtle."+validf or "turtle."+f+"=nop")
# fix clear() if _turtle_errors & 0x2000: turtle.clear = turtle.reset
# fix reset() if _turtle_errors & 0x4000: turtle.reset = turtle.clear
# fix towards() if _turtle_errors & 0x8000: from math import atan2, pi def _towards(x, y): x0, y0 = turtle.pos() return atan2(y - y0, x - x0) * 180 / pi turtle.towards = _towards
Maintenant que nous avons de quoi faire tourner une unique version de chaque script sur l'ensemble des machines, poursuivons donc l'exploration de l'ensemble des solutions
turtle
avec quelques exemples de script.
Nous allons en profiter pour nous en donner à cœur joie avec les formidables fonctions de remplissage rajoutées dans l'avant-dernière version de
C'est donc l'occasion de voir si il y avait d'autres problèmes qui n'ont pas pu être détectés automatiquement, et si ils sont toujours présents dans la dernière version.
Plusieurs des exemples qui vont suivre sont inspirés de publications de
def rpoly(c, n): for k in range(n): turtle.forward(c) turtle.left(360 / n)
def audi(r): ir = 2 * r // 13 turtle.penup() turtle.left(90) turtle.forward(r//2 - 2*ir) turtle.right(90) turtle.forward(-ir) turtle.pendown() turtle.pensize(3) for i in range(4): turtle.penup() turtle.forward(3 * ir) turtle.pendown() turtle.circle(2 * ir)
def mercedez_benz(r): ir = r // 2 turtle.penup() turtle.forward(ir) turtle.left(90) turtle.forward(ir) turtle.pendown() turtle.pensize(2) x, y = turtle.pos() turtle.setheading(210) for i in range(3): turtle.goto(x,y) turtle.forward(ir) turtle.left(120) turtle.setheading(0) turtle.circle(-ir)
def citroen(r): x,y=turtle.pos() turtle.setheading(0) turtle.color((255,0,0), (255,0,0)) turtle.begin_fill() rpoly(r, 4) turtle.end_fill() turtle.fillcolor((255,255,255)) for i in range(2): turtle.setheading(45) turtle.begin_fill() for k in range(2): turtle.forward(.71 * r) turtle.left(k and 172 or -90) for k in range(2): turtle.forward(5 * r / 6) turtle.left(106) turtle.end_fill() y += r / 3 turtle.penup() turtle.goto(x,y) turtle.pendown()
def mitsubichi(r): ir = r // 3 turtle.penup() turtle.left(90) turtle.forward(ir) turtle.right(90) turtle.forward(r // 2) turtle.pendown() for i in range(3): turtle.setheading(60 + 120*i) turtle.color((255,0,0), (255,0,0)) turtle.begin_fill() for k in range(4): turtle.forward(ir) turtle.left((k%2) and 120 or 60) turtle.end_fill()
def jeep(r): a=54 ir = r/0.47552825814758/4 #sin(radians(a))/cos(radians(a)) a=ir/0.85 d=0.93*ir turtle.penup() turtle.forward(r//2) turtle.right(90) turtle.forward(ir - r) turtle.pendown() x, y = turtle.pos() turtle.setheading(234) turtle.forward(ir) turtle.left(126) turtle.fillcolor((180,180,180)) turtle.begin_fill() rpoly(a, 5) turtle.end_fill() for i in range(5): col = i < 3 and (0,0,0) or (255,255,255) for j in range(2): turn = j and turtle.left or turtle.right turtle.goto(x,y) turtle.setheading(90 + 72*i) turtle.fillcolor(col) turtle.begin_fill() turtle.forward(d) turn(172) turtle.forward(0.85*d) turn(44) turtle.forward(0.2*d) turtle.end_fill() col = [255 - col[k] for k in range(3)]
turtle.speed(0) turtle.colormode(255)
r = 92 for iy in range(2): for ix in range(3): i = iy*3+ix if i < 5: y, x = (2*iy - 1) * r//2 - 48, (ix - 1)*r - 50 turtle.penup() turtle.goto(x, y) turtle.setheading(0) turtle.pensize(1) turtle.pencolor((0,0,0)) turtle.pendown() (mercedez_benz,jeep,mitsubichi,citroen,audi)[i](r)
Encore une fois si tu es dans le Sud de la France, tu n'a pas dû voir de neige depuis des années... Faison donc neiger dans ta calculatrice maintenant, faisons neiger des
c = [127, 255, 0] l = 80 for j in range(2): for i in range(3): n = j and 3 + i or 2 - i s = 5 - n turtle.penup() turtle.goto(i*117-157, j*95-25) turtle.pencolor(tuple(c)) turtle.pensize(s) turtle.setheading(0) turtle.pendown() flock(n, l) n += 1 rotate_list(c)
try: for i in range(-1, 2, 2): turtle.penup() turtle.goto(80*i - ((i > 0) and 40 or 50), 0) turtle.pendown() try: turtle.begin_fill() except: pass spiral((i > 0) and 9 or 30, (i > 0) and 90 or 36, (i > 0) and (1,2,3,4,5,6,7,8,9) or (1,2,3)) try: turtle.end_fill() except: pass except MemoryError as e: print(e)
for i in range(2): turtle.color(c[0], c[i]) for h in range(10*i,370,20): r=h * pi / 180 x=d*cos(r) y=d*sin(r) turtle.penup() turtle.goto(x,y) turtle.pendown() turtle.setheading(h) feuille(core,32)
C'est donc parti pour quelques exemples afin d'approfondir les améliorations de la nouvelle bibliothèque
turtle
pour
TI-83 Premium CE Edition Python
et compatibles, ainsi que les points forts et faibles par rapport aux autres modèles de calculatrices.
Précisons que les problèmes récurrents ne seront pas systématiquement réévoqués sur chaque exemple.
Un petit peu au Nord de Digne-les-bains en rive droite de la Bléone se trouve la dalle aux ammonites. Comme il est strictement interdit d'en prélever, voici de quoi en reproduire une sur ta calculatrice :
turtle.penup() turtle.goto(0, -20) turtle.pendown() turtle.right(90) for i in range(20): c = [exp(-.5 * ((i - k) / 12)**2) for k in (6, 18, 30)] cb = [v/2 for v in c] turtle.color(cb, c) try: turtle.begin_fill() except: pass turtle.circle(27 + i) try: turtle.end_fill() except: pass turtle.right(10)
? Et bien voici de quoi en afficher le plan dans ta calculatrice, tu n'auras plus qu'à l'imprimer en 3D, si tu arrives à comprendre où est le devant et l'arrière :
Voici maintenant une belle rosace rhombique pour décorer le bâtiment de ton choix.
Nous utilisons ici la méthode
.dot()
permettant de remplir un disque de diamètre donné, afin de générer de quoi avoir une couleur de fond d'écran sur nos calculatrices, suffit-il juste de lui spécifier un diamètre suffisamment grand :
turtle.speed(0) turtle.colormode(255) turtle.pencolor((0,0,255)) turtle.dot(320) turtle.pencolor((0,0,0)) turtle.pensize(2) col = ((255,0,0),(255,255,0),(0,255,0),(255,255,255),(255,0,255)) a=60
for i in range(10): c = col[i%5] turtle.color(c, c) turtle.begin_fill() for j in range(5): turtle.forward(a) turtle.right(72) turtle.end_fill() turtle.right(36)
for i in range(10): c = [v//3 for v in col[i%5]] turtle.pencolor(c) for j in range(5): turtle.forward(a) turtle.right(72) turtle.right(36)
for i in range(4): a=r*sin(alpha)*2 d=a/sqrt(2) turtle.pendown() for i in range(12): turtle.right(15) try: turtle.begin_fill() except: pass carre(d) try: turtle.end_fill() except: pass turtle.left(45) turtle.penup() turtle.forward(a) turtle.pendown() turtle.penup() turtle.left(75) turtle.forward(d) turtle.right(60) r=r*cos(alpha)-a/2
def sierp(n, l): if n == 0: for i in range (0, 3): turtle.forward(l) turtle.left(120) if n > 0: sierp(n - 1, l / 2) turtle.forward(l / 2) sierp(n - 1, l / 2) turtle.backward(l / 2) turtle.left(60) turtle.forward(l / 2) turtle.right(60) sierp(n - 1, l / 2) turtle.left(60) turtle.backward(l / 2) turtle.right(60)
try: # TI-83 Premium CE from ti_system import disp_clr disp_clr() except: pass from ttl_fix import *
def rpoly(c, n): a=360/n for k in range(n): turtle.forward(c) turtle.left(a)
def rosace(c, n1, a, n2): try: turtle.begin_fill() except: pass for i in range(n2): turtle.left(a) rpoly(c, n1) try: turtle.end_fill() except: pass
turtle.colormode(255) turtle.pencolor((0,0,0))
try: turtle.dot(320) except: pass turtle.color((255,255,255),(255,255,0)) turtle.speed(0) turtle.pensize(1) try: for i in range(-1, 2, 2): turtle.penup() turtle.goto(80*i, 0) turtle.pendown() rosace((i > 0) and 21 or 30, (i > 0) and 12 or 8, 30, 12) turtle.pensize(2) turtle.pencolor((0,0,255)) except MemoryError as e: print(e)
def spiral(a,b): turtle.pencolor((0,0,0)) try: turtle.dot(320) except: pass turtle.pencolor((255,255,0)) for i in range(189): for j in range(6): turtle.forward(i/a) turtle.left(23) turtle.left(b) try: turtle.dot(2) except: pass
officielles, et semble en conséquence bien mieux se comporter en pratique sur une majorité de nos exemples. nous semble offrir à ce jour la meilleure bibliothèque
Python turtle
toutes solutions confondues.
Les méthodes de remplissage, absentes des implémentations officielles de
Casio
et
NumWorks
t'ouvrent la porte à de formidables progrès.
Les progrès témoignent d'un soin minutieux apporté par
Bernard Parisse
, et vu que tout semble parfait maintenant il va nous falloir tenter d'inventer de nouveaux exemples piégeux...
réalise de gros efforts pour rendre la programmation de ses calculatrices accessible à tous et toutes. Le constructeur a prêté une attention toute particulière aux plus jeunes et non initiés, souhaitant leur permettre de créer tous les projets imaginables sans avoir à se concentrer sur des difficultés annexes.
. Tous ces éléments ont de plus l'avantage d'être utilisables directement avec le langage
Python
des calculatrices concernées, faisant de l'écosystème
Texas Instruments
le seul
Python
connecté !
Un superbe support pour les enseignements scientifiques au lycée surtout maintenant que tous partagent le même langage de programmation, notamment en
SNT
, spécialité
NSI
,
SI
et
Physique-Chimie
, avec le gros avantage de la mobilité. En effet, les programmes produits et données collectées restent présents dans la calculatrice apportée par chaque élève à chaque cours, ce qui allège la charge logistique de l'enseignant. Données et algorithmes pourront donc être traités / travaillés à la prochaine séance, en devoir à la maison ou même de façon transdisciplinaire en collaboration avec un autre enseignant !
Et depuis la rentrée 2020 dernière grande révolution en date, plus besoin de t'équiper en
TI-Innovator
pour bénéficier de ces formidables avantages. En effet, la
TI-83 Premium CE Edition Python
française s'est vu rajouter la gestion du nanoordinateur
Pour moins d'encombrement, tu as aussi la solution d'utiliser un câble direct, au choix :
USB micro-B
mâle ↔
USB mini-A
mâle
USB micro-B
mâle ↔
USB mini-B OTG
mâle
La carte
micro:bit
dans ses versions 1 est programmable en
Python
et présentait initialement les caractéristiques et capacités suivantes :
processeur
32 bits ARM Cortex-M0
cadencé à
16 MHz
mémoire de stockage
Flash
d'une capacité de
256 Kio
mémoire de travail
RAM
d'une capacité de
16 Kio
permettant un
heap (tas)
Python
de
10,048 Ko
un afficheur, grille programmable de 5×5= 25 diodes rouges adressables, bien adapté pour l'affichage de motifs éventuellement animés ou encore de texte défilant
nombre de capteurs intégrés :
capteur de luminosité
(lié aux diodes)
capteur de température
(sur le processeur)
2 boutons poussoirs
A
et
B
programmables de part et d'autre, comme sur les premières manettes et consoles de jeux portables de chez
Nintendo
accéléromètre 3D, permettant de détecter les variations d'accélération et par conséquence diverses actions : secouer, pencher, chute libre, ...
boussole magnétique 3D, pour détecter cette fois-ci les champs magnétiques
connectivité
Bluetooth 4.0
basse énergie 2,4 GHz maître/esclave
Depuis début 2021 est disponible la nouvelle carte
micro:bit v2
.
Elle utilise un tout nouveau microcontrôleur, le
nRF52833
, toujours de chez
Nordic Semiconductor
. Cette fois-ci nous avons des spécifications qui devraient nous permettre de respirer :
processeur
32 bits ARM Cortex-M0
cadencé à
64 MHz
au lieu de
16 MHz
soit 4 fois plus rapide !
mémoire de stockage
Flash
d'une capacité de
512 Kio
au lieu de
256 Kio
soit 2 fois plus grande !
mémoire de travail
RAM
d'une capacité de
128 Kio
au lieu de
16 Kio
soit 8 fois plus grande, permettant un
heap (tas)
Python
de
64,512 Ko
!
Elle apporte sur cette même face plusieurs nouveautés ou changements :
ajout d'un haut-parleur
ajout d'un microphone MEMs
bouton poussoir qui ne sert plus seulement à la réinitialisation
(reset)
, mais permet désormais également d'éteindre la carte
(appui long)
et de la rallumer
(appui court)
l'antenne
Bluetooth
qui devient compatible
BLE Bluetooth 5.0
, contre seulement
4.0
auparavant
D'autres nouveautés ou changements sont également présents sur l'autre face :
ajout d'une diode DEL indiquant l'état du microphone
ajout d'un bouton tactile sur le logo
micro:bit
, voici pourquoi il perd sa couleur au profit de contacts métalliques
Expliquons brièvement la composition de la solution de connectivité
BBC micro:bit
de
Texas Instruments
, ainsi que son fonctionnement.
Le solution se compose d'une part d'un fichier
TI-Runtime
unique à copier sur la carte
micro:bit
v1
ou
v2
et qui lui permet d'être pilotée par la calculatrice. La bonne installation du fichier est aisément vérifiable, puisque faisant afficher à la carte le logo
Texas Instruments
.
La solution a un principe de fonctionnement très simple, mais non moins ingénieux pour autant. La carte
micro:bit
étant justement programmable en
Python
, une fois le
TI-Runtime
installé elle se met alors à écouter les commandes
Python
envoyées depuis la calculatrice et à les exécuter.
Depuis ta calculatrice, tu peux envoyer n'importe quelle commande
Python
à ta carte
micro:bit
et profiter pleinement de ses capacités grâce à la fonction
ti_hub.send()
, à condition d'encadrer la commande des bons caractères de contrôle. Voici une fonction
Toutefois en pratique dans le contexte scolaire, cette façon de faire n'était pas idéale. Elle rajoutait un niveau d'imbrication : tu devais produire du code
Python
qui lui-même devait construire le code
Python
à envoyer et exécuter par la carte
micro:bit
, une marche sans doute un peu haute pour bien des élèves débutants.
Et bien justement,
Texas Instruments
est loin de s'être arrêté là. Sa solution de connectivité comporte également des bibliothèques
Python
additionnelles à charger sur ta calculatrice, au choix en Français ou Anglais, et rajoutant alors des menus permettant de faire appel plus simplement aux éléments correspondants sur la carte
micro:bit
. 11 bibliothèques étaient disponibles dans la dernière version, facilitant ainsi l'utilisation de certaines bibliothèques du
(communication radio intégrée - accessible via le menu
Radio
)
mb_sensr
(capteurs intégrés : boussole, accéléromètre, température - accessible via le menu
Sensors and gestures
ou
Capteurs et gestes
)
Texas Instruments
et l'espace, c'est une grande histoire qui ne date pas d'hier. Outre les calculatrices qui ont accompagné les missions spatiales, on peut citer une collaboration de longue date avec la
Nasa
, l'agence spatiale américaine, et nombre de projets et événements ont été conçus dans ce cadre.
Ici pas de menu fouillable depuis la calculatrice pour connaître les fonctions utilisables, mais on peut procéder autrement. On peut en effet ouvrir directement le fichier sur
# ------------------------------------------- pulse timer ---------------------------------------------------------------- def time_pulses(pin,pulses): try: pin.read_digital() # wait for one trigger pulse while not pin.read_digital(): pass while pin.read_digital(): pass while not pin.read_digital(): pass # begin timing pulses t0=ticks_us() for n in range(pulses-1): while (not pin.read_digital()): pass while pin.read_digital(): pass tf=ticks_us() pulses_time = (tf-t0)/1000000 return(str(pulses_time)) except: pass
def time_H_to_L(pin): pin.read_digital() while (pin.read_digital()): pass t0=ticks_us() while not (pin.read_digital()): pass tf=ticks_us() pulse_time = (tf-t0)/1000000 return(str(pulse_time))
def time_L_to_H(pin): pin.read_digital() while not (pin0.read_digital()): pass t0=ticks_us() while (pin.read_digital()): pass tf=ticks_us() pulse_time = (tf-t0)/1000000 return(str(pulse_time))
def set_iaq_baseline(self,eCO2,TVOC): if eCO2==0 and TVOC==0:raise RuntimeError('Invalid baseline') b=[] for i in [TVOC,eCO2]: a=[i>>8,i&0xFF] a.append(self.g_crc(a)) b+=a self.run(['iaq_set_baseline',[0x20,0x1e]+b,0,10])
def set_iaq_humidity(self,PM3): b=[] for i in [int(PM3*256)]: a=[i>>8,i&0xFF] a.append(self.g_crc(a)) b+=a self.run(['iaq_set_humidity',[0x20,0x61]+b,0,10])
def get(self,cmd,d,rs): i2c.write(0x58,bytearray(cmd)) sleep(d) if not rs:return None cr=i2c.read(0x58,rs*3) o=[] for i in range(rs): w=[cr[3*i],cr[3*i+1]] c=cr[3*i+2] if self.g_crc(w)!=c:raise RuntimeError('CRC Error') o.append(w[0]<<8|w[1]) return o
def g_crc(self,data): c=0xFF for byte in data: c^=byte for _ in range(8): if c&0x80:c=(c<<1)^0x31 else:c<<=1 return c&0xFF
def read(self): if self.ready: try: return self.eCO2(), self.TVOC() except: pass else: self.init() if self.ready: return (self.read()) else: return None
# ------------------------------------------- start up -----------------------------------------------------------
def ismb(): return(True)
def get_version(): print ("TI-Runtime Version 2.4.0")
# ------------------------------------------- pulse timer ---------------------------------------------------------------- def time_pulses(pin,pulses): try: pin.read_digital() # wait for one trigger pulse while not pin.read_digital(): pass while pin.read_digital(): pass while not pin.read_digital(): pass # begin timing pulses t0=ticks_us() for n in range(pulses-1): while (not pin.read_digital()): pass while pin.read_digital(): pass tf=ticks_us() pulses_time = (tf-t0)/1000000 return(str(pulses_time)) except: pass
def time_H_to_L(pin): pin.read_digital() while (pin.read_digital()): pass t0=ticks_us() while not (pin.read_digital()): pass tf=ticks_us() pulse_time = (tf-t0)/1000000 return(str(pulse_time))
def time_L_to_H(pin): pin.read_digital() while not (pin0.read_digital()): pass t0=ticks_us() while (pin.read_digital()): pass tf=ticks_us() pulse_time = (tf-t0)/1000000 return(str(pulse_time))
def set_iaq_baseline(self,eCO2,TVOC): if eCO2==0 and TVOC==0:raise RuntimeError('Invalid baseline') b=[] for i in [TVOC,eCO2]: a=[i>>8,i&0xFF] a.append(self.g_crc(a)) b+=a self.run(['iaq_set_baseline',[0x20,0x1e]+b,0,10])
def set_iaq_humidity(self,PM3): b=[] for i in [int(PM3*256)]: a=[i>>8,i&0xFF] a.append(self.g_crc(a)) b+=a self.run(['iaq_set_humidity',[0x20,0x61]+b,0,10])
def get(self,cmd,d,rs): i2c.write(0x58,bytearray(cmd)) sleep(d) if not rs:return None cr=i2c.read(0x58,rs*3) o=[] for i in range(rs): w=[cr[3*i],cr[3*i+1]] c=cr[3*i+2] if self.g_crc(w)!=c:raise RuntimeError('CRC Error') o.append(w[0]<<8|w[1]) return o
def g_crc(self,data): c=0xFF for byte in data: c^=byte for _ in range(8): if c&0x80:c=(c<<1)^0x31 else:c<<=1 return c&0xFF
def read(self): if self.ready: try: return self.eCO2(), self.TVOC() except: pass else: self.init() if self.ready: return (self.read()) else: return None
# ------------------------------------------- start up -----------------------------------------------------------
def ismb(): return(True)
def get_version(): print ("TI-Runtime Version 2.4.0")
si c'est sa première utilisation, étape qui ne peut se faire avec la calculatrice :
Télécharge l'application de vol
Tello
sur ton téléphone.
Allume ton drone
Tello
.
Sur ton téléphone, recherche les points d'accès
WiFi
.
Connecte-toi au point d'accès
Tello
qui devrait apparaître.
Ouvre l'application et accepte l'enregistrement.
Ferme l'application et déconnecte ton téléphone du point d'accès
Tello
.
(attention à ce que ton téléphone n'y reste pas connecté ou ne s'y reconnecte pas tout seul, ce qui risque de perturber la communication avec la calculatrice)
Voici maintenant pour les connexions :
Insère le nanoordinateur
micro:bit v2
dans la carte d'extension, en faisant attention au sens.
Connecte la batterie
USB
à la carte d'extension.
Connecte le module
Grove WiFi
au port
P1
de la carte d'extension.
Assure-toi que la batterie
USB
est chargée et allumée si disposant d'un bouton.
Allume la carte d'extension si disposant d'un bouton.
(les DELs sur les
micro:bit
, carte d'extension et module
WiFi
doivent s'allumer)
Connecte enfin la
micro:bit
à la calculatrice, puis allume cette dernière si nécessaire.
Assure-toi que le drone
Tello
est chargé et allumé. Il va clignoter sous différentes couleurs puis se fixer sur du jaune clignotant lorsque prêt.
Et voilà, paré à décoller, tu peux enfin écrire et lancer ton premier script.
incontesté des projets scientifiques sur calculatrices graphiques, se permet d'innover de façon encore plus formidable. En conséquence pour toi une toute nouvelle dimension à explorer pour des projets encore plus fantastiques !