π
<-
Chat plein-écran
[^]

Correction algo BAC S obligatoire 2015 (Inde - avril 2015)

Toutes les news concernant les examens (BAC, DNB, etc.) et concours scolaires
Online

Correction algo BAC S obligatoire 2015 (Inde - avril 2015)

Unread postby critor » 17 Apr 2015, 20:54

Le Baccalauréat 2015 a démarré cette semaine, avec les premiers sujets tombés en Inde.

Le sujet de mathématiques pour séries S non spécialistes comportait plusieurs questions d'algorithmique en exercice 4, dans le contexte inhabituel et donc intéressant de la géométrie dans l'espace.

3)a)
Le résultat de l'algorithme est stocké par la dernière instruction dans la variable k.
Cet algorithme consiste ici en une série d'affectations indépendantes, et de simples substitutions nous donnent en fin d'algorithme l'état
$mathjax$k=(x_N-x_M)\times(x_P-x_M)+(y_N-y_M)\times(y_P-y_M)+(z_N-z_M)\times(z_P-z_M)$mathjax$


Dans le contexte de l'énoncé, on obtient donc en fin d'algorithme :
$mathjax$k=(0-1)\times(1-1)+(\frac{1}{2}-1)\times(0-1)+(1-\frac{3}{4})\times(-\frac{5}{4}-\frac{3}{4})\\
\phantom{k}=-1\times 0-\frac{1}{2}\times(-1)+\frac{1}{4}\times(-\frac{8}{4})\\
\phantom{k}=0+\frac{1}{2}+\frac{1}{4}\times(-2)\\
\phantom{k}=\frac{1}{2}-\frac{2}{4}\\
\phantom{k}=\frac{1}{2}-\frac{1}{2}\\
\phantom{k}=0$mathjax$




3)b)
En fin d'algorithme, nous avons donc
$mathjax$k=(x_N-x_M)\times(x_P-x_M)+(y_N-y_M)\times(y_P-y_M)+(z_N-z_M)\times(z_P-z_M)$mathjax$

Or, cette formule est celle d'un produit scalaire.
Nous avons donc
$mathjax$k=\overrightarrow{MN}\cdot\overrightarrow{MP}$mathjax$


D'après le 3)a) on déduit que dans le contexte de l'énoncé
$mathjax$\overrightarrow{MN}\cdot\overrightarrow{MP}=0$mathjax$
.

Leur produit scalaire étant nul, les vecteurs
$mathjax$\overrightarrow{MN}$mathjax$
et
$mathjax$\overrightarrow{MP}$mathjax$
sont orthogonaux.
Donc le triangle MNP est rectangle en M.



4)
On cherche donc à savoir si un triangle MNP dont on connaît les coordonnées des sommets est rectangle isocèle en M.

L'annexe reprend l'algorithme précédent avec son calcul du produit scalaire
$mathjax$k=\overrightarrow{MN}\cdot\overrightarrow{MP}$mathjax$
.
Une condition nécessaire est donc k=0, auquel cas le triangle MNP est rectangle en M comme déjà expliqué ci-dessus.

Pour vérifier si le triangle MNP est isocèle en M, on peut par exemple calculer l=MN² et m=MP², et vérifier si l=m.

D'où l'algorithme suivant :
Code: Select all
Saisir xM,yM,zM,xN,yN,zN,xP,yP,zP
d prend la valeur xN-xM
e prend la valeur yN-yM
f prend la valeur zN-zM
g prend la valeur xP-xM
h prend la valeur yP-yM
i prend la valeur zP-zM
k prend la valeur d×g+e×h+f×i
l prend la valeur d²+e²+f²
m prend la valeur g²+h²+i²
Si k=0 et l=m alors
   Afficher "Le triangle MNP est rectangle et isocèle en M."
sinon
   Afficher "Le triangle MNP n'est pas rectangle et isocèle en M."
FinSi




Liens
:
Image
User avatar
critorAdmin
Niveau 19: CU (Créateur Universel)
Niveau 19: CU (Créateur Universel)
Level up: 8.5%
 
Posts: 35922
Images: 9787
Joined: 25 Oct 2008, 00:00
Location: Montpellier
Gender: Male
Calculator(s):
Class: Lycée
YouTube: critor3000
Twitter: critor2000
Facebook: critor.ti
GitHub: critor

Re: Correction algo BAC S obligatoire 2015 (Inde - avril 201

Unread postby cpierquet » 17 Apr 2015, 21:49

Au moins ça change des classiques algorithmes de seuil ou de dichotomie ! Pas compliqué car faisable niveau 2de avec les normes de vecteurs, et puis le petit Si...Alors...Sinon à la fin ça change aussi !
User avatar
cpierquetPremium
Niveau 9: IC (Compteur Infatigable)
Niveau 9: IC (Compteur Infatigable)
Level up: 19.9%
 
Posts: 187
Joined: 10 Mar 2014, 18:34
Location: Chaumont (52)
Gender: Male
Calculator(s):
Class: Prof de Maths [Lycée & BTS]

Re: Correction algo BAC S obligatoire 2015 (Inde - avril 201

Unread postby Adriweb » 17 Apr 2015, 21:51

Dommage de ne pas avoir à utiliser la calculatrice pour l'exo d'algorithmique, cependant :P
User avatar
AdriwebAdmin
Niveau 16: CC2 (Commandeur des Calculatrices)
Niveau 16: CC2 (Commandeur des Calculatrices)
Level up: 55.4%
 
Posts: 13051
Images: 1087
Joined: 01 Jun 2007, 00:00
Location: France
Gender: Male
Calculator(s):
Class: (ingénieur)
Twitter: adriweb
GitHub: adriweb


Return to News Examens / Concours

Who is online

Users browsing this forum: No registered users and 13 guests

-
Search
-
Featured topics
Comparaisons des meilleurs prix pour acheter sa calculatrice !
Découvre les nouvelles fonctionnalités en Python de l'OS 5.2 pour les Nspire CX II
Découvre les nouvelles fonctionnalités en Python de l'OS 5.5 pour la 83PCE/84+C-T Python Edition
Omega, le fork étendant les capacités de ta NumWorks, même en mode examen !
1234
-
Donations / Premium
For more contests, prizes, reviews, helping us pay the server and domains...

Discover the the advantages of a donor account !
JoinRejoignez the donors and/or premium!les donateurs et/ou premium !


Partner and ad
Notre partenaire Jarrety Calculatrices à acheter chez Calcuso
-
Stats.
707 utilisateurs:
>689 invités
>12 membres
>6 robots
Record simultané (sur 6 mois):
6892 utilisateurs (le 07/06/2017)

-
Other interesting websites
Texas Instruments Education
Global | France
 (English / Français)
Banque de programmes TI
ticalc.org
 (English)
La communauté TI-82
tout82.free.fr
 (Français)