dipoleelec
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu

Informations
Catégorie :Category: mViewer GX Creator Lua TI-Nspire
Auteur Author: MatiMatiMati
Type : Classeur 3.6
Page(s) : 7
Taille Size: 458.41 Ko KB
Mis en ligne Uploaded: 18/04/2019 - 20:39:06
Mis à jour Updated: 18/04/2019 - 20:39:15
Uploadeur Uploader: MatiMatiMati (Profil)
Téléchargements Downloads: 11
Visibilité Visibility: Archive publique
Shortlink : https://tipla.net/a2035727
Type : Classeur 3.6
Page(s) : 7
Taille Size: 458.41 Ko KB
Mis en ligne Uploaded: 18/04/2019 - 20:39:06
Mis à jour Updated: 18/04/2019 - 20:39:15
Uploadeur Uploader: MatiMatiMati (Profil)
Téléchargements Downloads: 11
Visibilité Visibility: Archive publique
Shortlink : https://tipla.net/a2035727
Description
!" #$ % − &+ ' >(
− +
) $ $ = *
+ = << *
%$ *' &
>>
− +
,
− + θ
) $ . -& =
) /% ' ' *
+ / &θ &ϕ *
) $$ 0 ϕ= *
−
' = +
πε ( πε (
1
1
=' + 1
= 1
+ 1
+1 ⋅ = + 1
−1 θ
1
& >> *
− 21 − 21
1 1
=' 1 − 21
= 1
− θ+ 1
= − θ+ ' 1
1
= + θ+ ' 1
1
1 1
$3$ & 1
= + 1
+1 θ = − θ+ ' 1
*
1 1
1 1
& ' = − − θ+ ' + + θ+ '
πε ( 1 1
1 1
1
= θ+ '
πε ( 1
5
&4 $ 2 #
θ ⋅
' = =
πε ( 1
πε ( 1
) / *
1
) 2 & *
$
∂ ∂ ∂
' =− =− − θ − ϕ = ' + θ ' θ *
∂ ∂θ θ ∂ϕ
=(
θ
' = *
πε ( 1
∂ −1 θ ∂ − θ
= =
∂ θ πε ( 5
∂θ πε ( 1
1 θ
πε ( 5
θ
' = 6 & θ 2 5
πε ( 1
(
7 =
5' ⋅ − 1
=5 θ* * − 1
' θ* − θ* θ
=1 1
θ* + 1
θ* θ
5' ⋅ − 1
' = 6 $ 3
πε ( 8
/$ " #$ = = *
$
$
/ $ ∧ ' = (*
'
1
− θ θ ϕ =(
θ ∧ θ =(⇔ θ ϕ =(
θ ϕ ( θ − θ =( '
% $# $ ϕ =(& ϕ= *
θ 1 θ
' ⇔ − θ =(
πε ( 5
πε ( 5
⇔ θ* =1 θ* θ
θ
⇔ =1 θ
θ
⇔ =1 θ +
⇔ =9 1
θ
1
θ
' = ⇔ = ⇔ 1
= : θ
πε (
;$
$ $ Γ& < 7 # =
' ⋅ >(
Γ
δ >(
> 4 ...
− +
) $ $ = *
+ = << *
%$ *' &
>>
− +
,
− + θ
) $ . -& =
) /% ' ' *
+ / &θ &ϕ *
) $$ 0 ϕ= *
−
' = +
πε ( πε (
1
1
=' + 1
= 1
+ 1
+1 ⋅ = + 1
−1 θ
1
& >> *
− 21 − 21
1 1
=' 1 − 21
= 1
− θ+ 1
= − θ+ ' 1
1
= + θ+ ' 1
1
1 1
$3$ & 1
= + 1
+1 θ = − θ+ ' 1
*
1 1
1 1
& ' = − − θ+ ' + + θ+ '
πε ( 1 1
1 1
1
= θ+ '
πε ( 1
5
&4 $ 2 #
θ ⋅
' = =
πε ( 1
πε ( 1
) / *
1
) 2 & *
$
∂ ∂ ∂
' =− =− − θ − ϕ = ' + θ ' θ *
∂ ∂θ θ ∂ϕ
=(
θ
' = *
πε ( 1
∂ −1 θ ∂ − θ
= =
∂ θ πε ( 5
∂θ πε ( 1
1 θ
πε ( 5
θ
' = 6 & θ 2 5
πε ( 1
(
7 =
5' ⋅ − 1
=5 θ* * − 1
' θ* − θ* θ
=1 1
θ* + 1
θ* θ
5' ⋅ − 1
' = 6 $ 3
πε ( 8
/$ " #$ = = *
$
$
/ $ ∧ ' = (*
'
1
− θ θ ϕ =(
θ ∧ θ =(⇔ θ ϕ =(
θ ϕ ( θ − θ =( '
% $# $ ϕ =(& ϕ= *
θ 1 θ
' ⇔ − θ =(
πε ( 5
πε ( 5
⇔ θ* =1 θ* θ
θ
⇔ =1 θ
θ
⇔ =1 θ +
⇔ =9 1
θ
1
θ
' = ⇔ = ⇔ 1
= : θ
πε (
;$
$ $ Γ& < 7 # =
' ⋅ >(
Γ
δ >(
> 4 ...