π
<-
Chat plein-écran
[^]

Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Discussions scientifiques et scolaires

Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude critor » 22 Juin 2015, 11:15

Correction de l'exercice 4
(fonctions + algorithme)
du sujet de BAC S de France juin 2015.


Partie 1 - Question 1)
:

$mathjax$\displaystyle{f'(x)=(x+1)^\prime \ln(x+1)+(x+1)\left(\ln(x+1)\right)^\prime-3\\\phantom{f'(x)}=1\cdot \ln(x+1)+(x+1)\times \dfrac{1}{x+1}-3\\
\phantom{f'(x)}=\ln(x+1)+\dfrac{x+1}{x+1}-3\\
\phantom{f'(x)}=\ln(x+1)+1-3\\
\phantom{f'(x)}=\ln(x+1)-2}$mathjax$



Partie 1 - Question 2)
:

$mathjax$\displaystyle{f'(x)≥0\Leftrightarrow \ln(x+1)-2≥0\\
\phantom{f'(x)≥0}\Leftrightarrow \ln(x+1)≥2\\
\phantom{f'(x)≥0}\Leftrightarrow \mathrm{e}^{\ln(x+1)}≥\mathrm{e}^2 (*)\\
\phantom{f'(x)≥0}\Leftrightarrow x+1≥\mathrm{e}^2\\
\phantom{f'(x)≥0}\Leftrightarrow x≥\mathrm{e}^2-1}$mathjax$

Or,
$mathjax$\displaystyle{\mathrm{e}^2-1\approx 6,4}$mathjax$
.
(*) car la fonction exponentielle est croissante


De plus,
$mathjax$\displaystyle{f(0)=(0+1)\ln(0+1)-3\times 0+7\\
\phantom{f(0)}=1 \ln(1)-0+7\\
\phantom{f(0)}=0+7\\
\phantom{f(0)}=7}$mathjax$
et
$mathjax$\displaystyle{f(20)=(20+1)\ln(20+1)-3\times 20+7\\
\phantom{f(20)}=21 \ln(21)-60+7\\
\phantom{f(20)}=21 \ln(21)-53}$mathjax$
et
$mathjax$\displaystyle{f\left(\mathrm{e}^2-1\right)=(\mathrm{e}^2-1+1)\ln(\mathrm{e}^2-1+1)-3\left(\mathrm{e}^2-1\right)+7\\
\phantom{f\left(\mathrm{e}^2-1\right)}=\mathrm{e}^2\ln(\mathrm{e}^2)-3\mathrm{e}^2+3+7\\
\phantom{f\left(\mathrm{e}^2-1\right)}=\mathrm{e}^2\times 2-3\mathrm{e}^2+10\\
\phantom{f\left(\mathrm{e}^2-1\right)}=-\mathrm{e}^2+10}$mathjax$

Donc : Image


Partie 1 - Question 3)
:

$mathjax$\displaystyle{f'(0)=\ln(0+1)-2\\
\phantom{f'(0)}=\ln(1)-2\\
\phantom{f'(0)}=0-2\\
\phantom{f'(0)}=-2}$mathjax$

L'inclinaison au point B est donc de 2.


Partie 1 - Question 4)
:

On remarque que
$mathjax$\displaystyle{f(x)=g'(x)-3x+7}$mathjax$

Une primitive de f est donc donnée par
$mathjax$\displaystyle{F(x)=g(x)-\dfrac{3}{2}x^2+7x\\
\phantom{F(x)}=\dfrac{1}{2}(x+1)^2\ln(x+1)-\dfrac{1}{4}x^2-\dfrac{1}{2}x-\dfrac{3}{2}x^2+7x\\
\phantom{F(x)}=\dfrac{1}{2}(x+1)^2\ln(x+1)-\dfrac{1}{4}x^2-\dfrac{1}{2}x-\dfrac{6}{4}x^2+\dfrac{14}{2}x\\
\phantom{F(x)}=\dfrac{1}{2}(x+1)^2\ln(x+1)-\dfrac{7}{4}x^2+\dfrac{13}{2}x}$mathjax$



Partie 2 - Question 1)
:

La hauteur du point le plus bas est
$mathjax$\displaystyle{f(\mathrm{e}^2-1)=-\mathrm{e}^2+10\\
\phantom{f(\mathrm{e}^2-1)}=10-\mathrm{e}^2\\
\phantom{f(\mathrm{e}^2-1)}\approx 2,6}$mathjax$
.

D'autre part,
$mathjax$\displaystyle{f(0)=7}$mathjax$
et
$mathjax$\displaystyle{f(20)=21 \ln(21)-53\\
\phantom{f(\mathrm{e}^2-1)}\approx 10,9}$mathjax$
.
La hauteur du point le plus haut est donc
$mathjax$\displaystyle{f(20)\approx 10,9}$mathjax$
.

Par conséquent
$mathjax$\displaystyle{f(20)-f(0)\approx 8,3}$mathjax$
.

Donc P1 est vraie : la différence est f(20)-f(0) est au moins égale à 8 mètres.

$mathjax$\displaystyle{f'(20)=\ln(20+1)-2\\
\phantom{f'(20)}=\ln(21)-2\\
\phantom{f'(20)}\approx 1,04}$mathjax$

Donc P2 est vraie : l'inclinaison de 2 de la piste en B est presque deux fois plus grande qu'en C.



Partie 2 - Question 2)
:

Calculons l'aire des quatre faces latérales :
$mathjax$\displaystyle{A_{ODCB}=A_{AD'C'B'}=\int_0^{20} f(x) \, \mathrm{d}x\\
\phantom{A_{ODCB}=A_{AD'C'B'}}=\left[F(x)\right]_0^{20}\\
\phantom{A_{ODCB}=A_{AD'C'B'}}=\left[\dfrac{1}{2}(x+1)^2\ln(x+1)-\dfrac{7}{4}x^2+\dfrac{13}{2}x\right]_0^{20}\\
\phantom{A_{ODCB}=A_{AD'C'B'}}=\dfrac{1}{2}(20+1)^2\ln(20+1)-\dfrac{7}{4}20^2+\dfrac{13}{2}20-\left(\dfrac{1}{2}(0+1)^2\ln(0+1)-\dfrac{7}{4}0^2+\dfrac{13}{2}0\right)\\
\phantom{A_{ODCB}=A_{AD'C'B'}}=\dfrac{1}{2}21^2\ln(21)-\dfrac{7}{4}400+13\times 10-\left(\dfrac{1}{2}1^2\ln(1)-\dfrac{7}{4}0+0\right)\\
\phantom{A_{ODCB}=A_{AD'C'B'}}=\dfrac{1}{2}441\ln(21)-7\times 100+130-\left(\dfrac{1}{2}1\times 0-0\right)\\
\phantom{A_{ODCB}=A_{AD'C'B'}}=\dfrac{1}{2}441\ln(21)-700+130-0\\
\phantom{A_{ODCB}=A_{AD'C'B'}}=\dfrac{1}{2}441\ln(21)-570}$mathjax$


OAB'B étant un rectangle,
$mathjax$\displaystyle{A_{OAB'B}=OA\times OB\\
\phantom{A_{OAB'B}}=10\times f(0)\\
\phantom{A_{OAB'B}}=10\times 7\\
\phantom{A_{OAB'B}}=70}$mathjax$


OD'C'C étant un rectangle,
$mathjax$\displaystyle{A_{OD'C'C}=DD'\times DC\\
\phantom{A_{OD'C'C}}=10\times f(20)\\
\phantom{A_{OD'C'C}}=10\left(21\times \ln(21)-53\right)\\
\phantom{A_{OD'C'C}}=210\times \ln(21)-530}$mathjax$


Donc, l'aire totale est
$mathjax$\displaystyle{A=A_{ODCB}+A_{AD'C'B'}+A_{OAB'B}+A_{OD'C'C}\\
\phantom{A}=2A_{ODCB}+A_{OAB'B}+A_{OD'C'C}\\
\phantom{A}=2\left(\dfrac{1}{2}441\ln(21)-570\right)+70+210\times \ln(21)-530\\
\phantom{A}=441\ln(21)-1140-460+210\times \ln(21)\\
\phantom{A}=651\ln(21)-1600}$mathjax$


Comme
$mathjax$\displaystyle{\dfrac{A}{5}=\dfrac{651\ln(21)-1600}{5}\\
\phantom{\dfrac{A}{5}}\approx 76,4}$mathjax$
, il faut donc 77 litres de peinture.



Partie 2 - Question 3)a)
:

Dans le repère (O;I,J),
$mathjax$\displaystyle{B_k\left(k,f(k)\right)}$mathjax$
et
$mathjax$\displaystyle{B_{k+1}\left(k+1,f(k+1)\right)}$mathjax$


(O;I,J) étant orthonormal,
$mathjax$\displaystyle{B_{k}B_{k+1}=\sqrt{\left(x_{B_{k+1}}-x_{B_k}\right)^2+\left(y_{B_{k+1}}-y_{B_k}\right)^2}\\
\phantom{B_{k}B_{k+1}}=\sqrt{(k+1-k)^2+\left(f(k+1)-f(k)\right)^2}\\
\phantom{B_{k}B_{k+1}}=\sqrt{1^2+\left(f(k+1)-f(k)\right)^2}\\
\phantom{B_{k}B_{k+1}}=\sqrt{1+\left(f(k+1)-f(k)\right)^2}}$mathjax$




Partie 2 - Question 3)b)
:

Il s'agit ici d'additionner les aires de tous les rectangles BkBk+1B'k+1B'k.

Les rectangles extrêmes sont B0B1B'1B'0 pour k=0 et B19B20B'20B'19 pour k=19.
Cela implique de faire varier
K
de 0 à 19 :
Code: Tout sélectionner
Pour K variant de 0 à 19

Remarque :
On pouvait noter que cette réponse figurait déjà dans l'énoncé de la question 3)a).


Pour l'addition on utilise donc la variable
S
, somme initialisée à 0. On y rajoute quelque chose de la façon suivante :
Code: Tout sélectionner
S prend la valeur S+...

La valeur à rajouter est l'aire du rectangle BkBk+1B'k+1B'k, c'est-à-dire d'après la question 3)a)
$mathjax$\displaystyle{A_{B_kB_{k+1}B'_{k+1}B'_k}=B_kB_{k+1}\times B_kB'_k\\
\phantom{A_{B_kB_{k+1}B'_{k+1}B'_k}}=\sqrt{1+\left(f(k+1)-f(k)\right)^2}\times 10\\
\phantom{A_{B_kB_{k+1}B'_{k+1}B'_k}}=10\sqrt{1+\left(f(k+1)-f(k)\right)^2}}$mathjax$

Code: Tout sélectionner
S prend la valeur S+10√(1+(f(k+1)-f(k))²)


D'où l'algorithme ainsi complété :
Code: Tout sélectionner
Variables :
   S: réel
   K: entier
Fonction :
   f: définie par f(x)=(x+1)\ln(x+1)-3x+7
Trairement :
   S prend pour valeur 0
   Pour K variant de 0 à 19
      S prend la valeur S+10√(1+(f(k+1)-f(k))²)
   FinPour
   Afficher S
Image
Avatar de l’utilisateur
critorAdmin.
Niveau 18: DC (Deus ex Calculatorum)
Niveau 18: DC (Deus ex Calculatorum)
Prochain niv.: 78.7%
 
Messages: 30969
Images: 7327
Inscription: 25 Oct 2008, 00:00
Localisation: Montpellier
Genre: Homme
Calculatrice(s):
Classe: Lycée
YouTube: critor3000
Twitter: critor2000
Facebook: critor.ti

Re: Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude pierrotdu18 » 22 Juin 2015, 11:32

Heu... √(1+(f(k+1)-f(k))²) c'est la distance entre Bk et Bk+1, c'est pas l'air du rectangle, il fallait multiplier par 10 qui est la largeur du module non ?
Bonjour
Avatar de l’utilisateur
pierrotdu18Premium
Niveau 15: CC (Chevalier des Calculatrices)
Niveau 15: CC (Chevalier des Calculatrices)
Prochain niv.: 7%
 
Messages: 975
Inscription: 07 Nov 2013, 20:18
Localisation: Paris V
Genre: Homme
Calculatrice(s):
Classe: MP* Lycée Henri IV

Re: Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude Wistaro » 22 Juin 2015, 11:34

*10 non? Ou alors j'ai rien compris
Avatar de l’utilisateur
WistaroModo.G
Niveau 15: CC (Chevalier des Calculatrices)
Niveau 15: CC (Chevalier des Calculatrices)
Prochain niv.: 56.5%
 
Messages: 2721
Images: 29
Inscription: 25 Fév 2013, 16:21
Localisation: Toulouse
Genre: Homme
Calculatrice(s):
Classe: Etudiant ingénieur (Ex TS - SI)
YouTube: Wistaro
Twitter: @Wistaro
GitHub: Wistaro

Re: Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude critor » 22 Juin 2015, 11:46

C'est pas un corrigé officiel, j'ai eu moins de temps que vous pour le faire
(les sujets ne circulent pas avant 1h15)
- je vais relire et me corriger pour vous rassurer. :)
Image
Avatar de l’utilisateur
critorAdmin.
Niveau 18: DC (Deus ex Calculatorum)
Niveau 18: DC (Deus ex Calculatorum)
Prochain niv.: 78.7%
 
Messages: 30969
Images: 7327
Inscription: 25 Oct 2008, 00:00
Localisation: Montpellier
Genre: Homme
Calculatrice(s):
Classe: Lycée
YouTube: critor3000
Twitter: critor2000
Facebook: critor.ti

Re: Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude critor » 22 Juin 2015, 11:52

Voilà, rajouté le facteur 10 manquant à la dernière question - fallait pas paniquer pour si peu.

Sinon c'est super de votre part d'être arrivés jusqu'à la fin de cet exo ;)
Image
Avatar de l’utilisateur
critorAdmin.
Niveau 18: DC (Deus ex Calculatorum)
Niveau 18: DC (Deus ex Calculatorum)
Prochain niv.: 78.7%
 
Messages: 30969
Images: 7327
Inscription: 25 Oct 2008, 00:00
Localisation: Montpellier
Genre: Homme
Calculatrice(s):
Classe: Lycée
YouTube: critor3000
Twitter: critor2000
Facebook: critor.ti

Re: Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude pierrotdu18 » 22 Juin 2015, 12:06

Ok super merci ;)
Ah ah pas compliqué d'arriver jusqu'à la fin de celui-ci j'ai trouvé...
La géo dans l'espace m'a un peu perturbé par contre... je ne sais pas si c'est moi qui me trompe ou s'il y a une petite coquille dans le sujet mais quelque chose m'a perturbé !
Et aussi, l'exo de spé, j'avais pas vu qu'on savait où on était pour X0... Du coup j'ai fait le cas général avec X0 = {3/25, 4/25, 18/25} :'(
Bonjour
Avatar de l’utilisateur
pierrotdu18Premium
Niveau 15: CC (Chevalier des Calculatrices)
Niveau 15: CC (Chevalier des Calculatrices)
Prochain niv.: 7%
 
Messages: 975
Inscription: 07 Nov 2013, 20:18
Localisation: Paris V
Genre: Homme
Calculatrice(s):
Classe: MP* Lycée Henri IV

Re: Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude Wistaro » 22 Juin 2015, 12:12

Partie 2 - Question 1) :

Je me suis trompé j'ai pas pris le sommet de la parabole, j'ai pris sa valeur en 0. Du coup j'ai mis faux. Je suis dégoûté, je suis allé trop vite.

Du coup, vous pensez que cette erreur va me coûter combien de points ?
Avatar de l’utilisateur
WistaroModo.G
Niveau 15: CC (Chevalier des Calculatrices)
Niveau 15: CC (Chevalier des Calculatrices)
Prochain niv.: 56.5%
 
Messages: 2721
Images: 29
Inscription: 25 Fév 2013, 16:21
Localisation: Toulouse
Genre: Homme
Calculatrice(s):
Classe: Etudiant ingénieur (Ex TS - SI)
YouTube: Wistaro
Twitter: @Wistaro
GitHub: Wistaro

Re: Correction exo 4 (algo) BAC S 2015 (France - juin 2015)

Message non lude pierrotdu18 » 22 Juin 2015, 12:43

(j'ai un peu revigorifié le LaTeX :p)
Bonjour
Avatar de l’utilisateur
pierrotdu18Premium
Niveau 15: CC (Chevalier des Calculatrices)
Niveau 15: CC (Chevalier des Calculatrices)
Prochain niv.: 7%
 
Messages: 975
Inscription: 07 Nov 2013, 20:18
Localisation: Paris V
Genre: Homme
Calculatrice(s):
Classe: MP* Lycée Henri IV


Retourner vers Maths, physique, informatique et autre...

Qui est en ligne

Utilisateurs parcourant ce forum: Aucun utilisateur enregistré et 4 invités

-
Rechercher
-
Sujets à la une
"NumWorks++": Challenge de modification matérielle pour rajouter une puce de mémoire Flash !
Offre TI-Planet/Jarrety pour avoir la TI-83 Premium CE avec son chargeur pour 79,79€ port inclus !
Offre TI-Planet/Jarrety pour avoir la TI-Nspire CX CAS à seulement 130€ TTC port inclus!
Jailbreake ta TI-Nspire avec Ndless et profite des meilleurs jeux et applications !
Transforme ta TI-Nspire CX en console Game Boy Advance!
12345
-
Donations/Premium
Pour plus de concours, de lots, de tests, nous aider à payer le serveur et les domaines...
PayPal : paiement en ligne sécurisé - secure online payments
Découvrez les avantages d'un compte donateur !
JoinRejoignez the donors and/or premium!les donateurs et/ou premium !


Partenaires et pub
Notre partenaire Jarrety 
-
Stats.
363 utilisateurs:
>330 invités
>27 membres
>6 robots
Record simultané (sur 6 mois):
6892 utilisateurs (le 07/06/2017)
-
Autres sites intéressants
Texas Instruments Education
Global | France
 (English / Français)
Banque de programmes TI
ticalc.org
 (English)
La communauté TI-82
tout82.free.fr
 (Français)