doccomplex
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu

Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: cheeseburgqr
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.82 Ko KB
Mis en ligne Uploaded: 25/08/2025 - 10:44:48
Uploadeur Uploader: cheeseburgqr (Profil)
Téléchargements Downloads: 1
Visibilité Visibility: Archive publique
Shortlink : https://tipla.net/a4826280
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 1.82 Ko KB
Mis en ligne Uploaded: 25/08/2025 - 10:44:48
Uploadeur Uploader: cheeseburgqr (Profil)
Téléchargements Downloads: 1
Visibilité Visibility: Archive publique
Shortlink : https://tipla.net/a4826280
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
Key Formulas & Facts · Definition: · Imaginaryunit: · Conjugate: · Modulus& Argument: (adjust quadrant) · Polar /Euler Form: (where ) · De Moivre sTheorem: · Roots: =Ý Worked Examples 3.1 Real & imaginary parts For : . 3.2 Arithmetic of complex numbers If , find . 3.3 Multiplication . Find . 3.4 Division (simplify to ) Multiply num & denom byconjugate: =¡ Tip: Always multiply top & bottom bythe complex conjugate to simplifyfractions. 3.5 Modulus & argument Find modulus-argument form of . But point is in QIII . So: . 3.6 Solving for x,y . Equating real parts: . Equating imaginary parts: . 3.7 Reciprocal If , find . 3.8 Roots of quadratics with complex solutions Solve . =¡ Tip: Whenever discriminant < 0,answer will be in form . 3.9 Higher powers of Simplify: . · . · Inside brackets: . · Then: . Expand: . So: . 3.10 Polar form & De Moivre For . . . This gives approx , but point is in QII . So: . Made with nCreator - tiplanet.org
>>
Compatible OS 3.0 et ultérieurs.
<<
Key Formulas & Facts · Definition: · Imaginaryunit: · Conjugate: · Modulus& Argument: (adjust quadrant) · Polar /Euler Form: (where ) · De Moivre sTheorem: · Roots: =Ý Worked Examples 3.1 Real & imaginary parts For : . 3.2 Arithmetic of complex numbers If , find . 3.3 Multiplication . Find . 3.4 Division (simplify to ) Multiply num & denom byconjugate: =¡ Tip: Always multiply top & bottom bythe complex conjugate to simplifyfractions. 3.5 Modulus & argument Find modulus-argument form of . But point is in QIII . So: . 3.6 Solving for x,y . Equating real parts: . Equating imaginary parts: . 3.7 Reciprocal If , find . 3.8 Roots of quadratics with complex solutions Solve . =¡ Tip: Whenever discriminant < 0,answer will be in form . 3.9 Higher powers of Simplify: . · . · Inside brackets: . · Then: . Expand: . So: . 3.10 Polar form & De Moivre For . . . This gives approx , but point is in QII . So: . Made with nCreator - tiplanet.org
>>