π
<-

News 2025
June (6)
May (26)
April (28)
March (11)
January (14)

News 2024
October (12)
August (9)
July (10)
June (20)
May (14)
April (16)
March (7)
January (20)

News 2023
October (19)
August (14)
July (13)
June (21)
May (29)
April (24)
March (24)
January (24)

News 2022
October (23)
August (14)
July (15)
June (17)
May (31)
April (27)
March (28)
January (34)

News 2021
October (24)
August (37)
July (50)
June (32)
May (48)
April (61)
March (35)
January (34)

News 2020
October (17)
August (43)
July (43)
June (45)
May (60)
April (78)
March (36)
January (39)

News 2019
October (13)
August (18)
July (23)
June (28)
May (31)
April (26)
March (38)
January (37)

News 2018
October (13)
August (32)
July (23)
June (64)
May (63)
April (45)
March (43)
January (45)

News 2017
October (26)
August (39)
July (52)
June (88)
May (51)
April (43)
March (37)
January (33)

News 2016
October (25)
August (42)
July (34)
June (109)
May (55)
April (34)
March (37)
January (24)

News 2015
October (22)
August (56)
July (22)
June (94)
May (56)
April (32)
March (40)
January (21)

News 2014
October (26)
August (18)
July (23)
June (101)
May (57)
April (59)
March (54)
January (31)

News 2013
October (67)
August (50)
July (43)
June (193)
May (93)
April (102)
March (45)
January (50)

News 2012
October (64)
August (63)
July (53)
June (132)
May (88)
April (73)
March (57)
January (58)

News 2011
October (56)
August (31)
July (27)
June (71)
May (61)
April (32)
March (36)
January (24)

News 2010
October (11)
August (8)
July (14)
June (10)
May (3)
April (3)
March (1)

News 2009
August (3)
July (1)
June (2)
May (1)
April (2)
March (1)

CCC 2021 épisode 2: consommation TI-Nspire monochrome

New postby critor » 19 Aug 2021, 16:02

Combien Consomme ma Calculatrice 2021

Épisode 2 - TI-Nspire monochrome

5409Nous sommes en plein QCC 2021 Universel, événement au cours duquel nous te publions et alimentons la base de données intégrale de nos classements de rentrée QCC organisés depuis la rentrée 2015.

Repassons aujourd'hui sur l'événement dans l'événement, le CCC 2021, pour Combien Consomme ma Calculatrice.

Nous nous intéressons pour le moment à la consommation des seuls modèles à piles AAA, n'ayant pour le moment ni matériel ni protocole pour mesurer la consommation des modèles à batterie.

49544973Mais pourquoi donc cette série ? Le mardi 31 mars 2015, suite à une annonce sur leboncoin, nous avions réussi à te récupérer une Casio Graph 75+E, avant même l'annonce officielle de ce nouveau modèle. Les nouveautés comportaient un mode examen dont le bon fonctionnement était indiqué par le clignotement d'une diode examen. L'emballage annonçait une conformité à une nouvelle réglementation des examens à compter de 2018, alors non encore publiée. Le Bulletin Officiel avec les derniers textes officiels paraissant chaque jeudi matin il nous fallait faire vite. Nous t'avions donc testé la Graph 75+E tout notre mercredi après-midi, et finalisé la publication pour 2 heures du matin. Et nous avions bien fait, quelques heures plus tard la première circulaire relative au mode examen allait effectivement être publiée.

Une mention dans le guide de prise en main nous avait toutefois grandement surpris :
Casio wrote:
  • La mise en place d'un jeu de piles neuves est recommandée avant d'utiliser le Mode Examen.
  • La LED clignote lorsque la calculatrice est en mode Examen, de sorte que davantage d'énergie est utilisée. Veillez à quitter le mode Examen dès que possible une fois la session d'examen terminée.

Une pauvre petite diode allumée par intermittence, est-ce vraiment censé augmenter aussi significativement la consommation de la calculatrice ? Nous traiterons donc ici entre autres de la surconsommation induite par l'activation du mode examen.

Dans le premier épisode de cette série, nous nous étions occupées des Casio Graph monochromes.

Pour l'épisode d'aujourd'hui, intéressons-nous aux calculatrices TI-Nspire monochromes.

Ah les TI-Nspire monochromes. Ces modèles sont réputés pour avoir une consommation de piles absolument phénoménale, comme illustré ci-contre par Levak. Précisons qu'il s'agit à chaque fois de la consommation d'une seule calculatrice.

Une consommation absolument catastrophique, digne de certaines consoles de jeux portables tristement connues pour cela (Atari Lynx ou encore Sega Game Gear).

Cette réputation est-elle injuste ou bien méritée ? Et dans ce dernier cas qu'est-ce qui consomme autant ?

Plus de 10 ans après ces photos, nous allons enfin te vérifier tout cela aujourd'hui.

1451414513Niveau protocole, nous allons effectuer les mesures à l'aide d'une TI-Nspire CX II. Nous allons mesurer l'intensité, et utiliserons pour cela un capteur d'intensité Vernier. Muni d'une prise BT-A (le standard historique de téléphonie analogique chez British Telecom), il nous faut une interface pour le connecter à notre calculatrice, comme par exemple le Vernier EasyLink.

14515Problème suivant, un ampèremètre cela se branche en série. Comment faire donc pour couper le circuit de chaque calculatrice testée afin d'y intercaler le capteur d'intensité, tout en permettant à cette dernière de continuer à fonctionner ?

Nous allons utiliser un éliminateur de piles AAA modifié à cette fin. Une fausse pile AAA permet d'ouvrir le circuit, et il suffit alors de connecter en série à ses bornes un réceptacle pour la 4ème pile AAA alors manquante, ainsi que le capteur d'intensité.

Le gros avantage est donc qu'il n'y a aucune soudure ou modification à effectuer sur les calculatrices testées.

1451714518Et voilà donc à quoi ressemble le montage final.

Nous configurons la TI-Nspire CX II pour effectuer :
  • 50 mesures par seconde
  • pendant une durée de 29 secondes (car plusieurs modèles passent en mode économie d'énergie après 30 secondes d'inutilisation)
Nous retiendrons la valeur moyenne.
14516Par soucis d'égalité, nous n'utiliserons que des piles neuves avec au minimum 1,6 Volts de tension à vide entre leurs bornes, tension revérifiée à chaque changement de modèle testé.

La TI-Nspire utilise un écran monochrome, les mesures seront effectuées avec le contraste par défaut de l'écran.

Nous allons de plus effectuer les mesures dans des conditions différentes :
  • Calculatrice éteinte (hors mode examen + en mode examen)
  • Calculatrice allumée mais inoccupée (hors mode examen + en mode examen)
  • Calculatrice en train d'effectuer un calcul suffisamment long (hors mode examen + en mode examen)
    Nous choisissons en mode degrés :
    $mathjax$\sum{\sqrt[3]{e^{sin\left(Arctan\left(x\right)\right)}}}$mathjax$

Les mesures sont toutes effectuées sans aucun overclocking.

Même hors mode examen, on peut déjà remarquer que la TI-Nspire ne se met pas complètement en veille une fois éteinte. Nous mesurons sur 29 secondes une consommation moyenne phénoménale de pas moins de 0,434 mA. Donc déjà, même éteinte, ta TI-Nspire monochrome vide les piles à grande vitesse. Tu ne rêves pas, lorsque ta TI-Nspire est éteinte, elle consomme déjà bien plus que les modèles de l'épisode précédent.

Cela vient sans doute du fait que la RAM de 32 Mio doit continuer à être alimentée, sans quoi son contenu sera perdu et la calculatrice devra redémarrer (ce qui est autant que possible à éviter, puisque cela nécessite une bonne 30aine de secondes). Ici aucune possibilité de sauvegarder le contenu RAM en ROM Flash à l'extinction, puisque cette dernière ne fait également que 32 Mio de capacité.

Une fois passée en mode examen, la consommation de la machine éteinte trouve en prime le moyen de passer à 0,715 mA.

C'est dû comme tu peux l'observer sur le diagramme ci-contre aux brefs allumages de la diode examen, avec un double flash très exactement toutes les 2 secondes. Une surconsommation significative par rapport au fonctionnement hors mode examen.

Si tu oses maintenant allumer ta TI-Nspire monochrome, sans rien faire sa consommation bondit déjà à 6,556 mA, et même 7,147 mA en mode examen.

Si en prime tu as le culot de lui demander un calcul, la consommation monte à 19,931 mA, et même 20,133 mA si c'est de plus en mode examen.
TI-Nspire
hors
mode examen
en
mode examen
éteinte
0,434 mA
0,715 mA (+64,67%)
inoccupée
6,556 mA
6,725 mA (+2,59%)
calcul
19,931 mA
20,133 mA (+1,04%)

La consommation en calcul de la TI-Nspire monochrome n'est pas extraordinaire par rapport aux modèles de l'épisode précédent. Par contre, ce qui est ici effrayant, c'est la consommation absolument catastrophique lorsque la machine ne fait rien. Et comme c'est le cas la plupart du temps, Levak avait bien raison... :#roll#:

Se rendant compte du problème, Texas Instruments a fait quelques efforts au fur et à mesure des mises à jour :
  • Déjà la calculatrice s'éteint par défaut après 3 minutes d'inutilisation, réglable également à 1 minute.
    Mais comme nous avons vu plus haut, c'est très loin d'être une veille complète et la consommation continue à être non négligeable dans ce mode.
  • Et surtout, Texas Instruments a implémenté un mode hibernation qui se déclenchera après 3 jours d'inutilisation. Ici tous les composants de la calculatrice s'éteignent complètement, et cette dernière devra donc se réamorcer au prochain allumage, ce qui nécessitera une 30aine de secondes. Le délai peut être réduit, mais pas à moins de 1 jour.
    Donc à moins d'enlever les piles toi-même, à chaque fois que tu cesses d'utiliser ta calculatrice tu perds quand même au moins 1 jour de consommation continue à 0,434 mA, ce qui n'est pas rien.

CCC 2021 épisode 3: Lexibook GC3000FR + Esquisse GCEXFR

New postby critor » 19 Aug 2021, 20:05

Combien Consomme ma Calculatrice 2021

Épisode 3 - Lexibook GC3000FR + Esquisse GCEXFR

5409Nous sommes en plein QCC 2021 Universel, événement au cours duquel nous te publions et alimentons la base de données intégrale de nos classements de rentrée QCC organisés depuis la rentrée 2015.

Voici la suite de l'événement dans l'événement, le CCC 2021, pour Combien Consomme ma Calculatrice.

Nous nous intéressons pour le moment à la consommation des seuls modèles à piles AAA.

49544973Mais pourquoi donc cette série ? Le mardi 31 mars 2015, suite à une annonce sur leboncoin, nous avions réussi à te récupérer une Casio Graph 75+E, avant même l'annonce officielle de ce nouveau modèle. Les nouveautés comportaient un mode examen dont le bon fonctionnement était indiqué par le clignotement d'une diode examen. L'emballage annonçait une conformité à une nouvelle réglementation des examens à compter de 2018, alors non encore publiée. Le Bulletin Officiel avec les derniers textes officiels paraissant chaque jeudi matin il nous fallait faire vite. Nous t'avions donc testé la Graph 75+E tout notre mercredi après-midi, et finalisé la publication pour 2 heures du matin. Et nous avions bien fait, quelques heures plus tard la première circulaire relative au mode examen allait effectivement être publiée.

Une mention dans le guide de prise en main nous avait toutefois grandement surpris :
Casio wrote:
  • La mise en place d'un jeu de piles neuves est recommandée avant d'utiliser le Mode Examen.
  • La LED clignote lorsque la calculatrice est en mode Examen, de sorte que davantage d'énergie est utilisée. Veillez à quitter le mode Examen dès que possible une fois la session d'examen terminée.

Une pauvre petite diode allumée par intermittence, est-ce vraiment censé augmenter aussi significativement la consommation de la calculatrice ? Nous traiterons donc ici entre autres de la surconsommation induite par l'activation du mode examen.

Nous nous sommes déjà occupés des Casio Graph monochromes et TI-Nspire monochromes.

Pour cet épisode, intéressons-nous aux Lexibook GC3000FR et Esquisse GCEXFR.

1451414513Niveau protocole, nous effectuons les mesures à l'aide d'une TI-Nspire CX II. Nous mesurons l'intensité, et utilisons pour cela un capteur d'intensité Vernier. Muni d'une prise BT-A (le standard historique de téléphonie analogique chez British Telecom), il nous faut une interface pour le connecter à notre calculatrice, comme par exemple le Vernier EasyLink.

14515Problème suivant, un ampèremètre cela se branche en série. Comment faire donc pour couper le circuit de chaque calculatrice testée afin d'y intercaler le capteur d'intensité, tout en permettant à cette dernière de continuer à fonctionner ?

Nous utilisons pour cela un éliminateur de piles AAA modifié à cette fin. Une fausse pile AAA permet d'ouvrir le circuit, et il suffit alors de connecter en série à ses bornes un réceptacle pour la 4ème pile AAA alors manquante, ainsi que le capteur d'intensité.

Le gros avantage est donc qu'il n'y a aucune soudure ou modification à effectuer sur les calculatrices testées.

1451714518Et voilà donc à quoi ressemble le montage final.

Nous configurons la TI-Nspire CX II pour effectuer :
  • 50 mesures par seconde
  • pendant une durée de 29 secondes (car plusieurs modèles passent en mode économie d'énergie après 30 secondes d'inutilisation)
Nous retiendrons la valeur moyenne.

Rappelons que les Lexibook GC3000FR et Esquisse GCEXFR ne permettent pas de régler le contraste de l'écran.

Elles ne disposent pas non plus de l'opérateur de sommation pour déclencher un gros calcul. Nous nous contenterons donc ici de seulement 2 conditions de tests :
  • Calculatrice éteinte (hors mode examen + en mode examen)
  • Calculatrice allumée mais inoccupée (hors mode examen + en mode examen)

Éteintes, les Lexibook GC3000FR et Esquisse GCEXFR consomment 0,092 mA.

Rien d'extraordinaire jusque là. Activons le mode examen, ce qui fait clignoter la diode examen toutes les 2,5 secondes. Et la nouvelle mesure est alors absolument terrifiante...

Le mode examen génère en effet ici une surconsommation absolument phénoménale, rien que donc pour le clignotement de la diode examen ci-contre :
  • calculatrice éteinte, nous passons de seulement 0,092 mA hors mode examen, à 2,324 mA de moyenne en mode examen, c'est horrible :~o
  • et même calculatrice allumée mais inoccupée, nous passons de 0,266 mA hors mode examen, à 2,372 mA en mode examen, c'est monstrueux ! :#fou#:
Lexibook / Esquisse
hors
mode examen
en
mode examen
éteinte
0,092 mA
2,324 mA (+2518,03%)
inoccupée
0,266 mA
2,372 mA (+789,99%)

Une pauvre diode serait-elle plus puissante que tout le reste des éléments des Lexibook GC3000FR et Esquisse GCEXFR ? :troll:

Ou alors Lexibook, qui prétend avoir réussi l'exploit de concevoir en Europe ce produit chinois de chez Truly, aurait-il commis la bêtise de choisir une diode trop lumineuse ? :P

Ou plus sérieusement, les éléments du circuit de la diode examen auraient-ils été ici particulièrement mal choisis ou agencés ? Aucun autre modèle testé jusqu'à présent n'atteint une telle surconsommation rien qu'en allumant la diode examen, ni en valeur ni en proportion... :#roll#:

CCC 2021 épisode 4: TI-82 Advanced monochrome

New postby critor » 19 Aug 2021, 21:14

Combien Consomme ma Calculatrice 2021

Épisode 4 - TI-82 Advanced monochrome

5409Nous sommes en plein QCC 2021 Universel, événement au cours duquel nous te publions et alimentons la base de données intégrale de nos classements de rentrée QCC organisés depuis la rentrée 2015.

Voici la suite de l'événement dans l'événement, le CCC 2021, pour Combien Consomme ma Calculatrice.

Nous nous intéressons pour le moment à la consommation des seuls modèles à piles AAA.

49544973Mais pourquoi donc cette série ? Le mardi 31 mars 2015, suite à une annonce sur leboncoin, nous avions réussi à te récupérer une Casio Graph 75+E, avant même l'annonce officielle de ce nouveau modèle. Les nouveautés comportaient un mode examen dont le bon fonctionnement était indiqué par le clignotement d'une diode examen. L'emballage annonçait une conformité à une nouvelle réglementation des examens à compter de 2018, alors non encore publiée. Le Bulletin Officiel avec les derniers textes officiels paraissant chaque jeudi matin il nous fallait faire vite. Nous t'avions donc testé la Graph 75+E tout notre mercredi après-midi, et finalisé la publication pour 2 heures du matin. Et nous avions bien fait, quelques heures plus tard la première circulaire relative au mode examen allait effectivement être publiée.

Une mention dans le guide de prise en main nous avait toutefois grandement surpris :
Casio wrote:
  • La mise en place d'un jeu de piles neuves est recommandée avant d'utiliser le Mode Examen.
  • La LED clignote lorsque la calculatrice est en mode Examen, de sorte que davantage d'énergie est utilisée. Veillez à quitter le mode Examen dès que possible une fois la session d'examen terminée.

Une pauvre petite diode allumée par intermittence, est-ce vraiment censé augmenter aussi significativement la consommation de la calculatrice ? Nous traiterons donc ici entre autres de la surconsommation induite par l'activation du mode examen.

Nous nous sommes déjà occupés des Casio Graph monochromes, TI-Nspire monochromes, Lexibook GC3000FR et Esquisse GCEXFR.

1451414513Niveau protocole, nous allons effectuer les mesures à l'aide d'une TI-Nspire CX II. Nous allons mesurer l'intensité, et utiliserons pour cela un capteur d'intensité Vernier. Muni d'une prise BT-A (le standard historique de téléphonie analogique chez British Telecom), il nous faut une interface pour le connecter à notre calculatrice, comme par exemple le Vernier EasyLink.

14515Problème suivant, un ampèremètre cela se branche en série. Comment faire donc pour couper le circuit de chaque calculatrice testée afin d'y intercaler le capteur d'intensité, tout en permettant à cette dernière de continuer à fonctionner ?

Nous allons utiliser un éliminateur de piles AAA modifié à cette fin. Une fausse pile AAA permet d'ouvrir le circuit, et il suffit alors de connecter en série à ses bornes un réceptacle pour la 4ème pile AAA alors manquante, ainsi que le capteur d'intensité.

Le gros avantage est donc qu'il n'y a aucune soudure ou modification à effectuer sur les calculatrices testées.

1451714518Et voilà donc à quoi ressemble le montage final.

Nous configurons la TI-Nspire CX II pour effectuer :
  • 50 mesures par seconde
  • pendant une durée de 29 secondes (car plusieurs modèles passent en mode économie d'énergie après 30 secondes d'inutilisation)
Nous retiendrons la valeur moyenne.
14516Pour cet épisode, intéressons-nous à la TI-82 Advanced monochrome. Comme pour les autres modèles monochromes, les mesures seront effectuées avec des piles neuves identiques d'au moins 1,60V de tension à vide, et avec le contraste par défaut de l'écran.

Nous allons effectuer les mesures sous différentes conditions :
  • Calculatrice éteinte (hors mode examen + en mode examen)
  • Calculatrice allumée mais inoccupée (hors mode examen + en mode examen)
  • Calculatrice en train d'effectuer un calcul suffisamment long (hors mode examen + en mode examen)
    Nous choisissons en mode degrés :
    $mathjax$\sum{\sqrt[3]{e^{sin\left(Arctan\left(x\right)\right)}}}$mathjax$

La TI-82 Advanced consomme 0,211 mA éteinte, 1,197 mA allumée mais inoccupée, et 11,730 mA lors du calcul.

L'activation du mode examen fait monter la consommation moyenne calculatrice éteinte à 1,445 mA. Elle déclenche en effet toutes les 2 secondes un double flash de la diode examen, comme illustré par le diagramme ci-contre.

Calculatrice allumée mais inoccupée la consommation passe à 1,682 mA, et lors d'un calcul à 12,185 mA.
TI-82 Advanced
hors
mode examen
en
mode examen
éteinte
0,211 mA
1,445 mA (+585,03%)
inoccupée
1,197 mA
1,682 mA (+40,53%)
calcul
12,185 mA
20,133 mA (+3,87%)
Link to topic: CCC 2021 épisode 4: TI-82 Advanced monochrome (Comments: 0)

CCC 2021 épisode 5: TI-82 Advanced Edition Python

New postby critor » 20 Aug 2021, 08:41

Combien Consomme ma Calculatrice 2021

Épisode 5 - TI-82 Advanced Edition Python

5409Nous sommes en plein QCC 2021 Universel, événement au cours duquel nous te publions et alimentons la base de données intégrale de nos classements de rentrée QCC organisés depuis la rentrée 2015.

Voici la suite de l'événement dans l'événement, le CCC 2021, pour Combien Consomme ma Calculatrice.

Nous nous intéressons pour le moment à la consommation des seuls modèles à piles AAA, mais passons aujourd'hui aux modèles munis d'un écran couleur éclairé.

49544973Mais pourquoi donc cette série ? Le mardi 31 mars 2015, suite à une annonce sur leboncoin, nous avions réussi à te récupérer une Casio Graph 75+E, avant même l'annonce officielle de ce nouveau modèle. Les nouveautés comportaient un mode examen dont le bon fonctionnement était indiqué par le clignotement d'une diode examen. L'emballage annonçait une conformité à une nouvelle réglementation des examens à compter de 2018, alors non encore publiée. Le Bulletin Officiel avec les derniers textes officiels paraissant chaque jeudi matin il nous fallait faire vite. Nous t'avions donc testé la Graph 75+E tout notre mercredi après-midi, et finalisé la publication pour 2 heures du matin. Et nous avions bien fait, quelques heures plus tard la première circulaire relative au mode examen allait effectivement être publiée.

Une mention dans le guide de prise en main nous avait toutefois grandement surpris :
Casio wrote:
  • La mise en place d'un jeu de piles neuves est recommandée avant d'utiliser le Mode Examen.
  • La LED clignote lorsque la calculatrice est en mode Examen, de sorte que davantage d'énergie est utilisée. Veillez à quitter le mode Examen dès que possible une fois la session d'examen terminée.

Une pauvre petite diode allumée par intermittence, est-ce vraiment censé augmenter aussi significativement la consommation de la calculatrice ? Nous traiterons donc ici entre autres de la surconsommation induite par l'activation du mode examen.

Nous nous sommes déjà occupés des Casio Graph monochromes, TI-Nspire monochromes, TI-82 Advanced monochrome, Lexibook GC3000FR et Esquisse GCEXFR.

Voici aujourd'hui ce que consomme la nouvelle TI-82 Advanced Edition Python de rentrée 2021.

1451414513Niveau protocole, nous allons effectuer les mesures à l'aide d'une TI-Nspire CX II. Nous allons mesurer l'intensité, et utiliserons pour cela un capteur d'intensité Vernier. Muni d'une prise BT-A (le standard historique de téléphonie analogique chez British Telecom), il nous faut une interface pour le connecter à notre calculatrice, comme par exemple le Vernier EasyLink.

14515Problème suivant, un ampèremètre cela se branche en série. Comment faire donc pour couper le circuit de chaque calculatrice testée afin d'y intercaler le capteur d'intensité, tout en permettant à cette dernière de continuer à fonctionner ?

Nous allons utiliser un éliminateur de piles AAA modifié à cette fin. Une fausse pile AAA permet d'ouvrir le circuit, et il suffit alors de connecter en série à ses bornes un réceptacle pour la 4ème pile AAA alors manquante, ainsi que le capteur d'intensité.

Le gros avantage est donc qu'il n'y a aucune soudure ou modification à effectuer sur les calculatrices testées.

1451714518Et voilà donc à quoi ressemble le montage final.

Nous configurons la TI-Nspire CX II pour effectuer :
  • 50 mesures par seconde
  • pendant une durée de 29 secondes (car plusieurs modèles passent en mode économie d'énergie après 30 secondes d'inutilisation)
Nous retiendrons la valeur moyenne.
14516Comme pour les autres modèles, les mesures seront effectuées avec des piles neuves identiques d'au moins 1,60V de tension à vide.

Nous allons effectuer les mesures sous différentes conditions :
  • Calculatrice éteinte (hors mode examen + en mode examen)
  • Calculatrice allumée mais inoccupée (hors mode examen + en mode examen)
  • Calculatrice en train d'effectuer un calcul suffisamment long (hors mode examen + en mode examen)
    Nous choisissons en mode degrés :
    $mathjax$\sum{\sqrt[3]{e^{sin\left(Arctan\left(x\right)\right)}}}$mathjax$

De plus, lorsque possible nous effectuerons les mesures sous différents réglages de la luminosité de l'écran :
  • maximal
  • par défaut
  • minimal
  • en économie d'énergie

Éteinte, la TI-82 Advanced Edition Python tire 0,382 mA.

Une fois le mode examen activé, un double flash de la diode examen se déclenche toutes les 2 secondes. Cela fait monter l'intensité mesurée à 3,273 mA. On constate aussi que les creux d'intensité sont également nettement supérieurs au niveau précédent, montrant qu'il n'y a pas que la diode examen qui rentre en compte. Sans doute le processeur reste-t-il éveillé pour assurer son bon clignotement.

4 mêmes niveaux d'éclairage de l'écran peuvent être obtenus très facilement :
  • luminosité maximale avec
    2nde
  • luminosité par défaut intermédiaire avec le bouton reset au dos
  • luminosité minimale avec
    2nde
  • mode économie d'énergie après 30 secondes d'inutilisation

Voici dans ce même ordre, les intensités relevées en fonctionnement sous chacune de ces configurations :


TI-82 Advanced Edition Python
hors
mode examen
en
mode examen
éclairage
écran
éteinte
0,382 mA
3,273 mA (+757,16%)
inoccupée
70,600 mA
37,041 mA
26,033 mA
20,660 mA
71,205 mA (+0,86%)
37,651 mA (+1,65%)
26,661 mA (+2,41%)
21,184 mA (+2,50%)
maximal
par défaut
minimal
économique
calcul
72,983 mA
39,418 mA
28,459 mA
73,703 mA (+0,99%)
39,944 mA (+1,33%)
29,138 mA (+2,38%)
maximal
par défaut
minimal

Sur certains modèles à écran couleur, nous n'avons pas moyen de rerégler la luminosité par défaut. Aussi retiendrons-nous pour les comparaisons les mesures effectuées sous la luminosité maximale.

Avant de conclure, une dernière remarque avec quelque chose que nous n'avons encore observé sur aucun autre modèle.

Lorsque l'on éteint la calculatrice, il se passe des choses étranges. On observe un pic d'intensité 7 secondes après l'extinction, et ce pendant 2,5 secondes. Cela a l'air très conséquent, la calculatrice réalise clairement une opération d'importance.

Contrairement à d'autres modèles à piles, nous avions déjà remarqué que sur TI-82 Advanced Edition Python les données mémoire pouvaient être perdues/corrompues lors d'un changement de piles.

Et peut-être tenons-nous là l'explication. Il pourrait s'agir du déclenchement d'un mécanisme de protection/sauvegarde des données en mémoire RAM. Si tu te mets donc à remplacer les piles dans les 7 à 11 secondes suivant l'extinction de ta calculatrice, nous supposons que cela interfère avec le bon fonctionnement de ce mécanisme, et peut alors déclencher les corruptions ou pertes de données que nous avons constatées.

Afin de maximiser les chances de préservation de tes données, nous te conseillons donc d'attendre au minimum 15 secondes après l'extinction de ta calculatrice avant de commencer à remplacer les piles.

Tableau comparatif :

QCC 2021 Universel épisode 8: écrans et profondeurs

New postby critor » 20 Aug 2021, 12:45

Quelle Calculatrice Choisir 2021 édition Universelle

Épisode 8 - Écrans et profondeurs

5409Pour fêter les 10 ans de TI-Planet en cette rentrée 2021, nous te publions la base de données intégrale de nos classements de rentrée QCC organisés depuis la rentrée 2015.

Nous en profitons de plus pour te réaliser le travail titanesque d'étendre les tests aux modèles plus anciens :
  • toutes les calculatrices graphiques Texas Instruments (depuis la première TI-81 de 1990)
  • toutes les calculatrices graphiques Casio à technologie Flash (depuis 2003)
Ce qui donne pas moins de 136 modèles différents de calculatrices testés sous toutes leurs coutures, 10 ans de tests et découvertes à portée de clic ! :D

L'écran est décidément un élément incontournable de ta calculatrice graphique. Après avoir couvert dans des épisodes précédents ses dimensions, définition et zone graphique, nous allons aujourd'hui traiter de sa profondeur, c'est-à-dire du nombre de couleurs différentes qu'il permet d'afficher.

Commençons par enfoncer les portes ouvertes, avec les modèles dont le contrôleur écran ne gère que 1 bit de profondeur, ne permettant donc que 21= 2 couleurs différentes.

D'une part, voici les modèles à cristaux liquides bleus souffrant en conséquence d'une lisibilité assez pénible sans un excellent éclairage extérieur :
  • Esquisse GCEXFR
  • Lexibook GC3000FR
  • Casio Graph 25+E
1149712780

Et voici les modèles à cristaux liquides noirs, de bien meilleure lisibilité :
  • Casio Graph 25+E II
  • Casio Graph 35+E
  • Casio Graph 35+E II
  • Casio Graph 75+E
  • TI-82 Advanced
  • TI-84 Plus T
  • Casio fx-92+ Spéciale Collège
12588716611396

Passons maintenant aux choses intéressantes ; nous allons te présenter notre protocole de test.

Notre idée est donc d'afficher une mire avec des dégradés des composantes primaires rouge-vert-bleu, afin de déterminer le nombre de bits utilisés par chacune.

Il y a 2 façons de coder les couleurs dans le contexte des pixels en Python :
  • soit avec un tuple (r,g,b) décrivant les valeurs de chaque composante primaire rouge-vert-bleu par un entier de 0 à 255
  • soit par un nombre entier qui sera directement la valeur fournie au contrôleur écran

Prévoyons une fonction pour tester le codage utilisé, par simple vérification du type de retour d'une lecture de pixel.
Dans le cas d'un retour de type entier, tentons de plus en passant de détecter le nombre de bits gérés par le contrôleur écran, en écrivant des valeurs de pixels de plus en plus grandes et vérifiant à chaque fois si le pixel concerné a bien pris la valeur en question.

Code: Select all
#0: (R,G,B) >0: RGB-bits
def get_color_mode():
  c = get_pixel(0, 0)
  try:
    c[2]
    return 0
  except:
    b, v = 0, 1
    x, y = 0, sy0
    set_pixel(x, y, v)
    while get_pixel(x, y) == v:
      b += 1
      v *= 2
      set_pixel(x, y, v)
    return b


Un appel color_mode = get_color_mode() pourra donc renvoyer par exemple :
  • 0 : pour un codage des couleurs par des tuples (r,g,b)
  • 15 : pour un codage des couleurs sur des entiers de 15 bits
  • 16 : pour un codage des couleurs sur des entiers de 16 bits
  • 24 : pour un codage des couleurs sur des entiers de 24 bits
  • ...

Pour notre script universel il faudra bien choisir un codage plutôt qu'un autre, alors prévoyons une fonction de conversion :
Code: Select all
def fixcolor(c, bits=16):
  try:
    if not color_mode:
      return c
    r, g, b = c[0], c[1], c[2]
  except:
    if color_mode == bits:
      return c
    if bits == 16:
      br, bg, bb = 5, 6, 5
    else:
      br, bg, bb = 8, 8, 8
    r, g, b = c & (2**br - 1) * 2**(8 - br), c & ((2**bg - 1) * 2**br) // 2**br * 2**(8 - bg), c & ((2**bb - 1) * 2**(br + bg)) // 2**(br + bg) * 2**(8 - bb)
  if not color_mode:
    return (r, g, b)
  else:
    if color_mode == 16:
      br, bg, bb = 5, 6, 5
    else:
      br, bg, bb = 8, 8, 8
    r, g, b = r // 2**(8 - br), g // 2**(8 - bg) * 2**br, b // 2 **(8 - bb) * 2**(br + bg)
    c = r + g - (r & g)
    return c + b - (c & b)


Voici de quoi tracer des lignes verticales et horizontales :
Code: Select all
def draw_vline(x, y1, y2, c):
  for j in range(y2 - y1 + 1):
    set_pixel(x, y1 + j, c)

def draw_hline(y, x1, x2, c):
  for j in range(x2 - x1 + 1):
    set_pixel(x1 + j, y, c)


Et voici enfin notre code de tracé de la mire :
Code: Select all
#o: 0=horizontal, 1=vertical
#s: 0=no_shadow, 1=shadow left/up, -1=shadow right/down
def mire(w, h, y0=0, s=1, o=0):
  if o:
    l1, l2, f, i1, i2 = h, w, draw_hline, y0, 0
  else:
    l1, l2, f, i1, i2 = w, h, draw_vline, 0, y0
  n = 8
  for m in range(l1):
    v = 255
    if s != 0:
      v =  v * (s*m % l1) // (l1 - 1)
    for j in range(n):
      f(m + i1, j * l2 // n + i2, (j + 1) * l2 // n - 1 + i2, fixcolor(color8(j, v)))

def color8(j, v):
  c = [0, 0, 0]
  for b in range(3):
    if j & 2**b:
      c[b] = v
  return c


Tu vas vite comprendre tout ça avec notre premier exemple. :)

Commençons donc par les TI-83 Premium CE Edition Python et TI-84 Plus CE-T Python Edition que nous allons tester en Python.
Nous considérerons que c'est pareil sur les anciennes TI-83 Premium CE et TI-84 Plus CE, ainsi que sur la nouvelle TI-82 Advanced Edition Python.

Ici les fonctions relatives aux pixels sont ti_graphic.getPixel(x,y) et ti_graphic.setPixel(x,y,couleur). Nous disposons comme déjà vu d'une zone graphique utile en Python de 320×210 pixels, accessibles à partir de y=30.

Cela ne t'apprendra sans doute rien mais histoire de vérifier que ça marche, d'après get_color_mode() sur TI-83 Premium CE Edition Python et TI-84 Plus CE Python Edition les couleurs de pixels sont codées en Python par des tuples (r,g,b).

12795Voici donc ci-contre l'affichage de l'appel associé mire(320,240,30). On peut noter que le vert ainsi que les couleurs composées de vert (cyan, jaune et blanc) ont un dégradé beaucoup moins saccadé, beaucoup plus fluide. En effet si tu regardes bien elles utilisent 2 fois plus de teintes intermédiaires, très exactement 64 teintes contre 32 pour les autres :
  • canal rouge sur 5 bits pour 25= 32 teintes
  • canal vert sur 6 bits pour 26= 64 teintes
  • canal bleu sur 5 bits pour 25= 32 teintes
Total donc 16 bits pour 216= 65536 couleurs affichables, et un contrôleur écran fonctionnant donc au format RGB 565.

Voici maintenant la Casio Graph 90+E et son superbe écran.

Les fonctions relatives aux pixels à utiliser sont casioplot.get_pixel(x,y) et casioplot.set_pixel(x,y,couleur). Nous disposons comme déjà vu en Python d'une zone graphique utile de 384×192 pixels.

Ici encore les paramètres de couleur sont passés sous forme de tuples (r,g,b).

12826Appelons donc mire(384,192). Même constat ici, nous notons 2 fois plus de teintes intermédiaires pour les dégradés de vert et de couleurs incluant du vert :
  • canal rouge sur 5 bits pour 25= 32 teintes
  • canal vert sur 6 bits pour 26= 64 teintes
  • canal bleu sur 5 bits pour 25= 32 teintes
Total donc 16 bits pour 216= 65536 couleurs affichables, et un contrôleur écran fonctionnant donc au format RGB 565.

Arrive maintenant la NumWorks.

Les fonctions de pixels sont kandinsky.get_pixel(x,y) et kandinsky.set_pixel(x,y,couleur). Avec l'application Python officielle, les paramètres de couleur prennent toujours la forme de tuples (r,g,b). La zone graphique utile en Python est ici de 320×222 pixels.

12836Appelons mire(320,222). Encore pareil, 2 fois plus de teintes intermédiaires dans le vert :
  • canal rouge sur 5 bits pour 25= 32 teintes
  • canal vert sur 6 bits pour 26= 64 teintes
  • canal bleu sur 5 bits pour 25= 32 teintes
Total donc 16 bits pour 216= 65536 couleurs affichables, et un contrôleur écran fonctionnant donc au format RGB 565.

Passons donc aux TI-Nspire CX II testables en Python.
Nous considérerons le résultat représentatif des anciennes TI-Nspire CX et TI-Nspire CM.

Les fonctions relatives aux pixels à utiliser sont ti_image.get_pixel(x,y) et ti_image.set_pixel(x,y,couleur). Nous disposons comme déjà vu en Python d'une zone graphique utile de 318×212 pixels.

Ici encore les paramètres de couleur sont passés sous forme de tuples (r,g,b).

12857Appelons donc mire(318,212). Toujours 2 fois plus de teintes intermédiaires tirant sur le vert :
  • canal rouge sur 5 bits pour 25= 32 teintes
  • canal vert sur 6 bits pour 26= 64 teintes
  • canal bleu sur 5 bits pour 25= 32 teintes
Total donc 16 bits pour 216= 65536 couleurs affichables, et un contrôleur écran fonctionnant donc au format RGB 565.

Sur les anciennes TI-Nspire monochromes, le langage interprété ne dispose hélas pas des fonctions de tracé.

Adaptons donc notre mire dans le langage de script Lua :
Code: Select all
o = false
s = 1

function on.charIn(c)
  print(c)
  olds, oldo = s, o
  if c == "−" or c == "-" then
    s = -1
  elseif c == "+" then
    s = 1
  elseif c == "0" then
    s = 0
  elseif c == "*" or c == "/" then
    o = not o
  end
  if s ~= olds or o ~= oldo then
    platform.window.invalidate()
  end
end

function on.resize(w, h)
  platform.window.invalidate()
end

function color8(j, v)
  l={0, 0, 0}
  for k = 1, #l do
    if math.floor(j / 2^(k - 1)) % 2 ~= 0 then
      l[k] = v
    end
  end
  return l
end

function on.paint(gc)
  pw = platform.window
  w, h = pw.width(), pw.height()
  if o then
    l1, l2 = h, w
    function f(gc, y, x1, x2, c)
      gc:setColorRGB(c[1], c[2], c[3])
      gc:drawRect(x1, y, x2, y)
    end
  else
    l1, l2 = w, h
    function f(gc, x, y1, y2, c)
      gc:setColorRGB(c[1], c[2], c[3])
      gc:drawRect(x, y1, x, y2)
    end
  end
  n = 8
  for m = 0, l1 - 1 do
    v = 255
    if s ~=0 then
      v = v * (s * m % l1) / (l1 - 1)
    end
    for j = 0, n - 1 do
      f(gc, m, j * l2 / n, (j + 1)*l2/n - 1, color8(j, v))
    end
  end
end

12869Sur les TI-Nspire monochromes nous avons donc 4 bits pour 24= 16 niveaux de gris.

Sur Casio fx-CP400+E nous ne pouvons hélas pas te programmer de mire. :'(
En effet dans le langage interprété historique de la machine et seul langage qui nous est accessible, le paramètre de couleur des fonctions graphiques ne peut prendre que 7 valeurs différentes. :mj:

12871Alors plan B, générons et enregistrons notre mire sous forme d'image, et convertissons-la en image .c2p pour la calculatrice à l'aide de notre convertisseur en ligne.

Toujours le même résultat avec 2 fois plus de teintes intermédiaires dans les tons de vert :
  • canal rouge sur 5 bits pour 25= 32 teintes
  • canal vert sur 6 bits pour 26= 64 teintes
  • canal bleu sur 5 bits pour 25= 32 teintes
Total donc 16 bits pour 216= 65536 couleurs affichables, et un contrôleur écran fonctionnant donc au format RGB 565.

On peut remarquer un petit bug d'affichage dans le dégradé de bleu, comme si la teinte la plus claire avait été marquée en tant que couleur transparente.

Mais ce n'est pas un bug lié à notre convertisseur, nous obtenons exactement le même défaut en utilisant le logiciel de conversion officiel de Casio.

Et enfin nous arrive la HP Prime.

Nous y bénéficions en Python d'une formidable zone graphique de 320×240 pixels.

Le module Python hpprime nous offre de quoi écrire un pixel : pixon(numero_calque,x,y,couleur).

Il ne fournit pas directement de quoi lire un pixel, mais par contre une fonction eval() permettant de faire appel au langage constructeur HPPPL où cette fonction existe. On peut alors se redéfinir une fonction get_pixel() en Python :
Code: Select all
def get_pixel(x, y):
      return int(eval("get_pixel(" + str(x) + "," + str(y) + ")"))


12882Ici c'est ainsi fantastique, l'appel mire(320,240) nous fournit des dégradés extrêmement fluides et ce peu importe la teinte ! :D
  • canal rouge sur 8 bits pour 28= 256 teintes
  • canal vert sur 8 bits pour 28= 256 teintes
  • canal bleu sur 8 bits pour 28= 256 teintes
Total donc 24 bits pour 224= 16777216 couleurs affichables, et un contrôleur écran fonctionnant donc au format RGB 888 ! :#tritop#:

Ces nouvelles mesures sont dès maintenant disponibles dans nos tableaux, ainsi que pour les modèles plus anciens :

-
Search
-
Social TI-Planet
-
Featured topics
Comparaisons des meilleurs prix pour acheter sa calculatrice !
"1 calculatrice pour tous", le programme solidaire de Texas Instruments. Reçois gratuitement et sans aucune obligation d'achat, 5 calculatrices couleur programmables en Python à donner aux élèves les plus nécessiteux de ton lycée. Tu peux recevoir au choix 5 TI-82 Advanced Edition Python ou bien 5 TI-83 Premium CE Edition Python.
Enseignant(e), reçois gratuitement 1 exemplaire de test de la TI-82 Advanced Edition Python. À demander d'ici le 31 décembre 2024.
Aidez la communauté à documenter les révisions matérielles en listant vos calculatrices graphiques !
1234
-
Donations / Premium
For more contests, prizes, reviews, helping us pay the server and domains...
Donate
Discover the the advantages of a donor account !
JoinRejoignez the donors and/or premium!les donateurs et/ou premium !


Partner and ad
Notre partenaire Jarrety Calculatrices à acheter chez Calcuso
-
Stats.
2187 utilisateurs:
>2123 invités
>56 membres
>8 robots
Record simultané (sur 6 mois):
6892 utilisateurs (le 07/06/2017)
-
Other interesting websites
Texas Instruments Education
Global | France
 (English / Français)
Banque de programmes TI
ticalc.org
 (English)
La communauté TI-82
tout82.free.fr
 (Français)