aaaaaaaaaaaaaaaaaaaaaaaaaaaaa
DownloadTélécharger
Actions
Vote :
ScreenshotAperçu

Informations
Catégorie :Category: nCreator TI-Nspire
Auteur Author: vicente messer
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 2.10 Ko KB
Mis en ligne Uploaded: 28/06/2025 - 02:42:06
Mis à jour Updated: 28/06/2025 - 02:42:15
Uploadeur Uploader: vicente messer (Profil)
Téléchargements Downloads: 1
Visibilité Visibility: Archive publique
Shortlink : https://tipla.net/a4762244
Type : Classeur 3.0.1
Page(s) : 1
Taille Size: 2.10 Ko KB
Mis en ligne Uploaded: 28/06/2025 - 02:42:06
Mis à jour Updated: 28/06/2025 - 02:42:15
Uploadeur Uploader: vicente messer (Profil)
Téléchargements Downloads: 1
Visibilité Visibility: Archive publique
Shortlink : https://tipla.net/a4762244
Description
Fichier Nspire généré sur TI-Planet.org.
Compatible OS 3.0 et ultérieurs.
<<
efine trGEN()= rgm ocal lhsCoeffs, rhsCoeffs, icList, Us, s, A, B, Ipoly, Y ocal n, m, j, k 1) Coeficientes del LHS: [a, a, &, a] equest "Coef LHS [a&a]=", lhsCoeffs 2) Coeficientes del RHS: [b, b, &, b] equest "Coef RHS [b&b]=", rhsCoeffs 3) Función de entrada en Laplace equest "U(s)=", Us 4) Definir símbolo s := getSymbol("s") 5) Grados de los polinomios := dim(lhsCoeffs) - 1 // orden de la EDO := dim(rhsCoeffs) - 1 6) Construir A(s) = a·s + & + a := 0 or j,1,dim(lhsCoeffs) := A + lhsCoeffs[j] * s^(dim(lhsCoeffs)-j) ndFor 7) Construir B(s) = b·sP + & + b := 0 or j,1,dim(rhsCoeffs) := B + rhsCoeffs[j] * s^(dim(rhsCoeffs)-j) ndFor 8) Pedir condiciones iniciales [y(0), y'(0), &, y}{¹~(0)] equest "ICs [y(0)&y}{¹~(0)]=", icList 9) Calcular el polinomio de términos iniciales: // poly = £_{j=1..n} a_j · £_{k=0..j-1} [ s^(j-1-k) · y}O~(0) ] poly := 0 or j,1,n or k,0,j-1 poly := Ipoly + lhsCoeffs[j] * s^(j-1-k) * icList[k+1] ndFor ndFor 10) Calcular Y(s) = [ B(s)·U(s) + Ipoly ] / A(s) := (B * Us + Ipoly) / A 11) Mostrar resultado isp "Y(s) =" isp Y ndPrgm Made with nCreator - tiplanet.org
>>
Compatible OS 3.0 et ultérieurs.
<<
efine trGEN()= rgm ocal lhsCoeffs, rhsCoeffs, icList, Us, s, A, B, Ipoly, Y ocal n, m, j, k 1) Coeficientes del LHS: [a, a, &, a] equest "Coef LHS [a&a]=", lhsCoeffs 2) Coeficientes del RHS: [b, b, &, b] equest "Coef RHS [b&b]=", rhsCoeffs 3) Función de entrada en Laplace equest "U(s)=", Us 4) Definir símbolo s := getSymbol("s") 5) Grados de los polinomios := dim(lhsCoeffs) - 1 // orden de la EDO := dim(rhsCoeffs) - 1 6) Construir A(s) = a·s + & + a := 0 or j,1,dim(lhsCoeffs) := A + lhsCoeffs[j] * s^(dim(lhsCoeffs)-j) ndFor 7) Construir B(s) = b·sP + & + b := 0 or j,1,dim(rhsCoeffs) := B + rhsCoeffs[j] * s^(dim(rhsCoeffs)-j) ndFor 8) Pedir condiciones iniciales [y(0), y'(0), &, y}{¹~(0)] equest "ICs [y(0)&y}{¹~(0)]=", icList 9) Calcular el polinomio de términos iniciales: // poly = £_{j=1..n} a_j · £_{k=0..j-1} [ s^(j-1-k) · y}O~(0) ] poly := 0 or j,1,n or k,0,j-1 poly := Ipoly + lhsCoeffs[j] * s^(j-1-k) * icList[k+1] ndFor ndFor 10) Calcular Y(s) = [ B(s)·U(s) + Ipoly ] / A(s) := (B * Us + Ipoly) / A 11) Mostrar resultado isp "Y(s) =" isp Y ndPrgm Made with nCreator - tiplanet.org
>>