π
<-
Chat plein-écran
[^]

Correction exo 3 (algo) BAC ES/L 2018 (Inde)

Online

Correction exo 3 (algo) BAC ES/L 2018 (Inde)

Unread postby critor » 05 May 2018, 23:29

Correction exercice n°3 du sujet de Maths du BAC ES/L 2018 en Inde :
https://toutmonexam.fr/epreuve.php?id=2955

Question 1
:

Pour tout entier naturel
n
,
$mathjax$u_{n+1}=0,8 u_n+18$mathjax$
.
Donc
$mathjax$u_1=u_{0+1}\\
\phantom{u_1}=0,8 u_0+18\\
\phantom{u_1}=0,8\times 65+18\\
\phantom{u_1}=52+18\\
\phantom{u_1}=70$mathjax$

De même
$mathjax$u_2=u_{1+1}\\
\phantom{u_2}=0,8 u_1+18\\
\phantom{u_2}=0,8\times 70+18\\
\phantom{u_2}=56+18\\
\phantom{u_2}=74$mathjax$


Question 2a
:

Pour tout entier naturel
n
,
$mathjax$v_n=u_n-90$mathjax$
.
Donc pour tout entier naturel
n
,
$mathjax$v_{n+1}=u_{n+1}-90\\
\phantom{v_{n+1}}=0,8 u_n+18-90\\
\phantom{v_{n+1}}=0,8 u_n-72\\
\phantom{v_{n+1}}=0,8\left(u_n-\frac{72}{0,8}\right)\\
\phantom{v_{n+1}}=0,8\left(u_n-90\right)\\
\phantom{v_{n+1}}=0,8 v_n$mathjax$

Donc la suite
$mathjax$\left(v_n\right)$mathjax$
est géométrique de raison
$mathjax$q=0,8$mathjax$
et de premier terme
$mathjax$v_0=u_0-90\\
\phantom{v_0}=65-90\\
\phantom{v_0}=-25$mathjax$


Question 2b
:

Donc pour tout entier naturel
n
,
$mathjax$v_n=v_0\times 0,8^n\\
\phantom{v_n}=-25\times 0,8^n$mathjax$

Or, pour tout entier naturel
n
,
$mathjax$v_n=u_n-90\Leftrightarrow v_n+90=u_n-90+90\\
\phantom{v_n=u_n-90}\Leftrightarrow v_n+90=u_n\\
\phantom{v_n=u_n-90}\Leftrightarrow u_n=v_n+90\\
\phantom{v_n=u_n-90}\Leftrightarrow u_n=-25\times 0,8^n+90\\
\phantom{v_n=u_n-90}\Leftrightarrow u_n=90-25\times 0,8^n$mathjax$


Question 3a
:

L'algorithme s'articule autour d'une boucle tant que et utilise deux variables :
  • n
    initialisée à 0 et incrémenté de 1 dans la boucle qui est donc le rang
  • u
    initialisée à
    $mathjax$u_0=65$mathjax$
    et affecté selon la relation de récurrence dans la boucle qui est donc le terme
    $mathjax$u_n$mathjax$
L'algorithme doit rechercher le plus petit
n
pour que
$mathjax$u_n\ge 85$mathjax$
, c'est-à-dire dans son contexte se terminer sur la réalisation de
$mathjax$u\ge 85$mathjax$
.
La condition de poursuite de la boucle tant que est donc le contraire, c'est-à-dire
$mathjax$u<85$mathjax$
.
Ligne 3: Tant que u<85

Question 3b
:

Programmons l'algorithme sur notre calculatrice graphique pour obtenir la réponse. Afin de pouvoir en prime en justifier via une pseudo-trace de son exécution, rajoutons en fin du corps de la boucle une instruction d'affichage de l'état des variables et de la condition de poursuite de la boucle.


Algorithme
Programme
Code: Select all
u←65
n←0
Tant que u<85
   n←n+1
   u←0,8×u+18
   Afficher n et u
Fin Tant que
Code: Select all
65→U
0→N
While U<85
   N+1→N
   0.8*U+18→U
   Disp {N,U,U<85}
End
N

Code: Select all
Define algo()=
Func
   Local n,u
   u:=65
   n:=0
   While u<85
      n:=n+1
      u:=0.8·u+18
      Disp n,u,u<85
   EndWhile
   Return n
EndFunc
Code: Select all
65→U
0→N
While U<85
   N+1→N
   0.8×U+18→U
   {N,U,U<85}◢
WhileEnd
N

Code: Select all
def algo():
   u=65
   n=0
   while u<85
      n=n+1
      u=0.8*u+18
      print(n,u,u<85)
   return n

Code: Select all
65⇒u
0⇒n
While u<85
   n+1⇒n
   0.8×u+18⇒u
   Print {n,u,judge(u<85)}
WhileEnd
Return n
Code: Select all
EXPORT IN2018ES()
BEGIN
   U:=65;
   N:=0;
   WHILE U<85 DO
      N:=N+1;
      U:=0.8*U+18;
      PRINT({N,U,U<85});
   END;
   RETURN N;
END;
Code: Select all
#cas
def IN2018ESP():
   u=65
   n=0
   while u<85:
      n=n+1
      u=0.8*u+18
      print(n,u,u<85)
   return n
#end
Code: Select all
def algo():
   u=65
   n=0
   while u<85:
      n=n+1
      u=0.8*u+18
      print(n,u,u<85)
   return n


Voici une trace d'exécution de l'algorithme :
Etapenuu<85
Initialisation065Vrai
1ère itération tant que170Vrai
2ème itération tant que274Vrai
3ème itération tant que377,2Vrai
4ème itération tant que479,76Vrai
5ème itération tant que581,808Vrai
6ème itération tant que683,4464Vrai
7ème itération tant que784,75712Vrai
8ème itération tant que885,805696Faux

L'algorithme répond donc 8.

Question 3c
:

D'après la question 2b :
$mathjax$u_n≥85\Leftrightarrow 90-25\times 0,8^n≥85\\
\phantom{u_n≥85}\Leftrightarrow 90-25\times 0,8^n-90≥85-90\\
\phantom{u_n≥85}\Leftrightarrow -25\times 0,8^n≥-5\\
\phantom{u_n≥85}\Leftrightarrow 25\times 0,8^n≤5\\
\phantom{u_n≥85}\Leftrightarrow \frac{25\times 0,8^n}{25}≤\frac{-5}{25}\\
\phantom{u_n≥85}\Leftrightarrow 0,8^n≤\frac{1}{5}\\
\phantom{u_n≥85}\Leftrightarrow ln\left(0,8^n\right)≤ln\left(\frac{1}{5}\right) \text{car la fonction ln est croissante}\\
\phantom{u_n≥85}\Leftrightarrow n\times ln(0,8)≤ln(1)-ln(5)\\
\phantom{u_n≥85}\Leftrightarrow n\times ln(0,8)≤0-ln(5)\\
\phantom{u_n≥85}\Leftrightarrow n\times ln(0,8)≤-ln(5)\\
\phantom{u_n≥85}\Leftrightarrow \frac{n\times ln(0,8)}{ln(0,8)}≥\frac{-ln(5)}{ln(0,8)} \text{car ln(0,8)<0}\\
\phantom{u_n≥85}\Leftrightarrow n≥\frac{-ln(5)}{ln(0,8)} \text{car ln(0,8)<0}$mathjax$

Or,
$mathjax$\frac{-ln(5)}{ln(0,8)}\approx 7,2$mathjax$

Donc
$mathjax$n≥8$mathjax$
.
Le plus petit entier
n
vérifiant la propriété est bien 8.

Question 4a
:

Nous avons au départ
$mathjax$u_0=65$mathjax$
particuliers.
Chaque mois on perd 20% par résiliation, ce qui revient à multiplier par
$mathjax$\left(1-\frac{20}{100}\right)=1-0,2\\
\phantom{\left(1-\frac{20}{100}\right)}=0,8$mathjax$

Mais on gagne 18 nouvelles souscriptions, ce qui revient à ajouter 10.
On retrouve donc bien la même relation de récurrence.

Question 4b
:

Une recette mensuelle de 4420€ correspond à
$mathjax$\frac{4420}{52}=85$mathjax$
particuliers.
La recette mensuelle dépasse 4420€ si et seulement si
$mathjax$u_n≥85$mathjax$
.
Or, nous avons vu en question 3 cette inéquation admettait comme solutions
$mathjax$n≥8$mathjax$
.
La recette dépassera donc 4420€ en 8 mois à compter de juillet 2017, c'est-à-dire en mars 2018.
Les 4420€ de recette seront donc bien dépassés en 2018.

Question 4c
:

$mathjax$\lim\limits_{n\rightarrow+\infty}0,8^n=0$mathjax$
car
$mathjax$0<0,8<1$mathjax$
.
Donc
$mathjax$\lim\limits_{n\rightarrow+\infty}u_n=90$mathjax$
.
Le nombre mensuel de particuliers va tendre vers 90.
Cela implique que la recette mensuelle va tendre vers
$mathjax$90\times 52=4680€$mathjax$
.
Image
User avatar
critorAdmin.
Niveau 18: DC (Deus ex Calculatorum)
Niveau 18: DC (Deus ex Calculatorum)
Level up: 91.9%
 
Posts: 32334
Images: 8393
Joined: 25 Oct 2008, 00:00
Location: Montpellier
Gender: Male
Calculator(s):
Class: Lycée
YouTube: critor3000
Twitter: critor2000
Facebook: critor.ti

Re: Correction exo 3 (algo) BAC ES/L 2018 (Inde)

Unread postby blouson » 06 May 2018, 22:33

il y a python sur la calculatrice HP ? sinon on peut résoudre facilement ce genre de problème avec la ti 36xpro , il suffit de faire 2nd set op , op=*0.8+18 on entre 65 en première valeur , puis 2nd op jusqu'à arriver à 85 et on trouve facilement n=8 , nul besoin de python ;)
User avatar
blouson
Niveau 0: MI (Membre Inactif)
Niveau 0: MI (Membre Inactif)
Level up: 0%
 
Posts: 97
Joined: 16 Feb 2018, 05:37
Gender: Not specified
Calculator(s):


Return to Corrections BAC avec calculatrice

Who is online

Users browsing this forum: No registered users and 0 guests

-
Search
-
Featured topics
Offre TI-Planet/Jarrety pour avoir la TI-83 Premium CE avec son chargeur pour 79,79€ port inclus !
Offre TI-Planet/Jarrety pour avoir la TI-Nspire CX CAS à seulement 130€ TTC port inclus!
Jailbreake ta TI-Nspire avec Ndless et profite des meilleurs jeux et applications !
123
-
Donations / Premium
For more contests, prizes, reviews, helping us pay the server and domains...

Discover the the advantages of a donor account !
JoinRejoignez the donors and/or premium!les donateurs et/ou premium !


Partner and ad
Notre partenaire Jarrety 
-
Stats.
549 utilisateurs:
>487 invités
>56 membres
>6 robots
Record simultané (sur 6 mois):
6892 utilisateurs (le 07/06/2017)
-
Other interesting websites
Texas Instruments Education
Global | France
 (English / Français)
Banque de programmes TI
ticalc.org
 (English)
La communauté TI-82
tout82.free.fr
 (Français)