π
<-
Chat plein-écran
[^]

TI-Nspire Réétiquette & connecte clavier + souris USB à ta TI-Nspire

New postby critor » 25 Apr 2022, 10:14

Les calculatrices graphiques
TI-83 Premium CE
,
TI-84 Plus CE
et
TI-Nspire
sont de formidables machines. Ce sont les seules calculatrice graphiques permettant à ce jour la connexion fonctionnelle de périphériques de saisie
USB HID
, une exclusivité de la gamme
Texas Instruments
! :favorite:

13805Pour être plus exact, nous pouvons évoquer la
HP Prime G2
dont la mise à jour de
mai 2021
active enfin le support générique des périphériques
USB
.

Sauf qu'en pratique aucun pilote n'est inclus et donc rien ne peut fonctionner en dehors des périphériques officiels
HP StreamSmart
(interfaces pour capteurs de mesures physiques)
. Cette dernière mise à jour développée dans l'urgence des examens juste avant la cession de la branche a de plus le défaut d'être hautement instable, plantant très facilement sur des opérations officielles avec une fréquence jamais vue jusqu'alors.

Rajoutons que
Hewlett Packard
s'est séparé définitivement de sa branche calculatrices pour la rentrée 2021, commettant l'erreur monumentale de vendre le tout à , une obscure société tchèque.

Rappelons que
Moravia
avait également racheté la branche calculatrices de
Sharp
en 2015, et n'en a strictement rien fait depuis maintenant 7 ans, continuant à vendre les mêmes produits sans plus jamais investir dans la moindre évolution logicielle ou matérielle. Les calculatrices
Sharp
accumulant en conséquence un retard de plus en plus abyssal par rapport à la concurrence, forcément leur popularité s'est effondrée depuis et elles ont de plus en plus disparu des rayons de nos boutiques physiques ou virtuelles.

Moravia
ne semblant pas se donner davantage de mal ici, n'ayant notamment toujours pas fait l'effort depuis un an de nous sortir une mise à jour corrigeant l'instabilité, et n'ayant donc visiblement aucun scrupule à vendre à prix d'or un produit défectueux, nous doutons fortement qu'ils s'amusent à court ou même moyen terme à achever le support générique des périphériques
USB
ébauché chez
HP
juste avant la fin.

12277Les périphériques
USB
peuvent donc être connectés directement à ta calculatrice
TI
l'aide d'un simple adaptateur
mini-USB
.

Il t'est ensuite possible par exemple de connecter un clavier
USB Qwerty
à ta
TI-83 Premium CE
ou
TI-84 Plus CE
pour une saisie beaucoup plus rapide en situation semi-nomade
(en classe ou chez toi par exemple)
, et même comme déjà expliqué pour encore plus d'efficacité d'en profiter pour réétiqueter le clavier en question :
134621346313464

Aujourd'hui parlons
TI-Nspire
. Le support des périphériques
USB HID
est :
  • directement intégré aux derniers modèles
    TI-Nspire CX II
  • peut être activé sur les anciens modèles
    TI-Nspire
    via le programme

La même chose est donc possible, et nous te partageons donc d'une part aujourd'hui la feuillet de réétiquetage de clavier pour
TI-Nspire
dont nous venons tout juste de finaliser une première version. Pour rappel, feuillet à imprimer sur papier autocollant transparent
(dans les options d'impression choisir un type de papier
brillant épais
si disponible, ou sinon à défaut
brillant
tout court)
.
1548115482

1548415483Encore mieux que ça, contrairement aux
TI-83 Premium CE
ou
TI-84 Plus CE
, les
TI-Nspire
gèrent également les souris
USB
pour encore plus de confort ! :bj:

Mais comment faire pour profiter à la fois des clavier et souris
USB
alors que ta
TI-Nspire
ne dispose que d'un unique port
mini-USB
?

Le plus simple est de te procurer un hub
mini-USB
, que tu pourras alors directement connecter à l'aide du câble fourni à l'achat et destiné à relier deux calculatrices entre elles.

15486Et voici maintenant enfin ta nouvelle station d'accueil
TI-Nspire
pour travailler en situation semi-nomade à la maison ou en classe ! :bj:
Attention toutefois, en France la réglementation des examens interdit l'usage de tout module externe avec ta calculatrice, peu importe qu'il nécessite un câble ou soit directement enfichable.

Le but de cette interdiction était initialement d'empêcher l'échange de données entre candidats :
  • par connexion et échange de cartes mémoire
    (c'était possible sur d'anciens modèles
    Casio
    et
    HP
    , capacité qui a totalement disparu dans le cadre du renouvellement de l'ensemble de la gamme pour le mode examen à l'approche de 2015)
  • par connexion de modules de communication sans fil
    (des solutions infrarouge ont existé dans le temps, même si de nos jours cela se ferait plutôt en bluetooth ou WiFi)

Donc même si clavier et souris
USB
ne sont absolument pas les appareils de triche ciblés par cette interdiction, malheureusement ils tombent sous le coup de cette interdiction générique et ce confort d'utilisation te sera ainsi hélas interdit en examen. :'(

Téléchargements
:


Casio Mise à jour 1.0.10 applis Classpad fx-CP400 pour Android/iOS

New postby critor » 21 Apr 2022, 09:05

Classpad
est le haut de gamme des calculatrices graphiques
Casio
. Lancée pour la rentrée 2003, cette gamme se caractérise par des modèles munis d'un écran tactile à stylet de
160×240
pixels ainsi que d'un moteur de calcul formel.

Se sont succédées les :
  • Classpad 300
    (rentrée 2003)
  • Classpad 300+
    (rentrée 2005)
    qui rajoutait une connexion USB standard
  • Classpad 330
    (rentrée 2007)
  • Classpad 330+
    (rentrée 2012)
    qui remplaçait le processeur
    Renesas SH3
    historique par un
    SH4
    , mais également hélas fermait l'écosystème en retirant la possibilité d'installer et lancer des applications tierces, limitation qui persiste à ce jour et nuit grandement à la popularité de cette gamme au sein de nos communautés de passionnés et développeurs

2714Depuis la gamme est passée à une nouvelle génération matérielle dite
Classpad II
, accélérant le processeur
SH4
à
117,96 MHz
tout en passant à un écran couleur en
320×528
pixels. Cette fois-ci, les modèles sont distints selon la zone de distribution :
  • la
    fx-CP400
    , modèle international sorti à la rentrée 2013
  • la
    fx-CP400+E
    qui remplace la
    fx-CP400
    en France à la rentrée 2016, lui rajoutant une diode examen conformément à la nouvelle réglementation
  • la
    fx-CG500
    pour l'Amérique du Nord à la rentrée 2017, déclinaison conçue pour être autorisée aux examens en retirant diverses choses interdites : dispositions non alphabétiques du clavier virtuel
    (Qwerty, Qwertz, Azerty)
    , mentions de la gamme
    Classpad
    car nommément interdite à cause de cela dans plusieurs réglementations d'examens

Mais
Casio
te permet également de retrouver l'intégralité des capacités de son logiciel de Mathématiques intégré
Classpad
sur ton
smartphone
ou ta tablette, aussi bien sous
Android
qu'
iOS
, grâce à 2 applications d'émulation dédiées :
  • Classpad
    qui reproduit le fonctionnement des
    fx-CP400
    et
    fx-CP400+E
  • fx-CG500
    pour l'Amérique du Nord
Les dernières versions étaient les
1.0.9
du
30 octobre 2020
, qui intégraient elles-mêmes les dernières nouveautés apportées au logiciel
Classpad
avec les mises à jour pour calculatrices en version
2.01.7000
du
11 juin 2020
.

Suprise
Casio
nous sort aujourd'hui pour la rentrée 2022 une mise à jour de l'ensemble de ces applications, la version
1.0.10
.

Datée du
20 avril 2022
, elle continue apparemment à utiliser le même logiciel de Mathématiques intégré
Classpad
en version
2.01.7000
, ce qui suggère donc déjà qu'il n'y a aucune nouveauté niveau capacités après pourtant près de 2 ans, et peut-être même qu'il n'y en aurait pas davantage pour calculatrices d'ici la rentrée 2022.

Les pages des applications indiquent la correction d'un bug mineur sans plus de précisions, que l'on peut par élimination supposer être spécifique à la gestion de l'appareil hôte ou de son système d'exploitation.

Téléchargements
:


TI-Nspire nQuake 1.03 accéléré + gérant dernières TI-Nspire CX

New postby critor » 20 Apr 2022, 09:19

Nous te parlons régulièrement sur nos calculatrices de jeux
Doom
-like
, du nom du mythique jeu
fps
de 1993 par
id Software
avec affichage 3D
(technique du raycasting étendu)
.

Si sur calculatrices il s'est souvent agi de créations de fans dans loin d'égaler l'original, signalons les
TI-Nspire
avec leur formidable processeur 32 bits
ARM9
(architecture
ARMv5
)
qui sont les premières calculatrices à avoir bénéficié d'un véritable portage, par
Mrakoplatz
pour les
TI-Nspire
monochromes dès 2011, puis moi-même dès 2012 pour les
TI-Nspire CX
. C'est-à-dire qu'il s'agit d'une recompilation intégrale à partir du code source du jeu. Tu pouvais donc ici retrouver l'intégralité du jeu original ainsi que de ses extensions et évolutions compatibles
(
Ultimate Doom
,
Final Doom
,
Plutonia Experiment
,
TNT Evilution
,
Doom II
, ...)

Le code source de
nDoom
vient tout juste d'être repris cette année pour créer , un portage compatible
Casio Graph 90+E
et
fx-CG10/20/50
.

Rappelons que sur les
TI-Nspire
la couche logicielle très lourde de l'environnement écrase littéralement les performances des programmes en langage interprété
(
Basic
ou
Python
)
, que pour ce genre de projet il faut pouvoir exécuter du code machine et donc disposer du
jailbreak
Ndless
, que malheureusement
Texas Instruments
a toujours farouchement combatte le
jailbreak
Ndless
et que l'équipe de développement de ce dernier semble avoir baissé les bras,
Ndless
n'est plus adapté pour les dernières mises à jour de rentrée 2021
(
TI-Nspire CX 4.5.5
et
TI-Nspire CX II 5.3.1
)
qui bien évidemment interdisent le retour à une version inférieure. :'(

5937Mais
id Software
n'a pas sorti que
Doom
dans ce style. Avant
Doom
il y a eu
Wolfenstein 3D
en 1992, et après
Doom
il y a eu
Quake
en 1996.

Quake
a lui aussi bénéficié d'un portage pour
TI-Nspire
par
Ralf Willenbacher
alias en 2015.

Par rapport à
Doom
,
Quake
apporte plusieurs évolutions significatives au moteur :
  • D'une part le moteur permet d'afficher l'ensemble des éléments en 3D. C'est-à-dire que les ennemis et items ne sont plus de simples
    sprites
    te présentant toujours la même face pour les items, ou un nombre limité de faces pour les ennemis.
  • D'autre part, tu peux désormais sauter et même dans certaines conditions voler. c'est-à-dire que la 3ème dimension passe d'une décoration à un véritable élément de jeu.

nous ayant hélas quitté pour un temps, dans le cadre des dernières mises à jour de
Ndless
s'était chargé de
patcher
nQuake
pour le rendre compatible avec les révisions majeures du matériel
TI-Nspire CX
sorties depuis :
  • les
    TI-Nspire CX CR4+
    (assemblées à partir d'
    octobre 2015
    )
    qui retournaient la géométrie du
    buffer
    l'écran, ce dernier passant de
    320×240
    pixels à
    240×320
    pixels
  • les
    TI-Nspire CX II
    (assemblées depuis
    novembre 2018
    )
Toutefois, il s'agissait d'un
patch
très rapide s'appuyant sur le mode de compatibilité alors introduit dans
Ndless
, un mode qui interceptait et corrigeait les affichages. L'activation de ce mode t'était indiquée par une fenêtre
popup
au lancement de
nQuake
, et dans ce cas les performances n'étaient pas au rendez-vous.

15453Et bien bonne nouvelle, est de retour cette année ! :D

Il vient de prendre le temps de nous signer une mise à jour
nQuake
de qualité, la version
1.03
:
  • gérant désormais directement les dernières révisions matérielles
    TI-Nspire
    , et n'utilisant donc plus le mode de compatibilité
    Ndless
    :bj:
  • et en prime nettement plus performante :bj:

Regarde un peu ces performances que nous avons mesurées, sans aucun
overclocking
:
modèle
fréquence
processeur
ancien
nQuake

par
nouveau
nQuake

par
TI-Nspire CX
132 MHz
7.8 fps
10 fps
(+28,21%)
TI-Nspire CX CR4+
156 MHz
9.8 fps
10 fps
(+2,04%)
TI-Nspire CX II
396 MHz
20.8 fps
26 fps
(+25%)


Avec des performances aussi fantastiques, sur les dernières
TI-Nspire CX II
nous sommes désormais à vitesse réelle, zyeute un peu ça : :#tritop#:

Téléchargements
:


Source
:
viewtopic.php?f=20&t=25548

TI-Nspire KhiCAS NumWorks Nspire CX: Python-turtle encore plus parfait

New postby critor » 19 Apr 2022, 11:25

15120Pour accompagner en douceur la transition du
Scratch
au
Python
en Seconde, la plupart des solutions
Python
sur calculatrices graphiques offrent
turtle
, une bibliothèque permettant du tracé relatif comme en
Scratch
. On peut citer :
  • la
    NumWorks
    dont l'application
    Python
    intègre directement
    turtle
  • les
    Casio Graph 35+E II
    et
    Graph 90+E
    dont l'application
    Python
    intègre directement
    turtle
  • les
    TI-Nspire CX II
    sur lesquelles on peut rajouter la bibliothèque officielle
    turtle
    (anciennement
    ce_turtl
    )
    à l'environnement
    Python
  • les
    TI-83 Premium CE Edition Python
    (France)
    ,
    TI-84 Plus CE-T Python Edition
    (Europe)
    et
    TI-84 Plus CE Python
    (Amérique du Nord)
    , sur lesquelles on peut rajouter une bibliothèque
    turtle
    officielle
  • et
    KhiCAS

11302Aujourd'hui penchons-nous à nouveau sur le
turtle
de
KhiCAS
. Conçu par
Bernard Parisse
, enseignant-chercheur à l'Université de Grenoble,
KhiCAS
est la déclinaison sur calculatrices du logiciel de Mathématiques intégré
Xcas
. Disponible pour calculatrices
NumWorks N0110
,
TI-Nspire CX
,
Casio Graph 35+E II
et
Graph 90+E
,
KhiCAS
te donne donc accès à une interface unifiée ainsi qu'à des fonctionnalités haut de gamme peu importe la marque ou le modèle de ta calculatrice ! :bj:

12024Ce formidable environnement de Mathématiques et de sciences t'apporte bien des choses. Nous pouvons citer dans tous les cas :
  • la reprise du moteur de calcul formel
    GIAC
    développé pour
    Xcas
    par le même auteur.
  • la possibilité de programmer dans 2 langages :
    • le langage
      Xcas
      historique
    • le langage
      Xcas
      avec une couche de compatibilité syntaxique
      Python

Dans ses éditions pour
TI-Nspire CX
et
NumWorks N0110
,
KhiCAS
apporte pas mal de compléments :
  • possibilité de composer et convertir ses unités
  • une bibliothèque de constantes physiques
  • plusieurs applications elles-même intégrées, dont entre autres :
    • tableur / feuille de calcul
    • tableau périodique des éléments
    • calcul financier
  • 2 langages de programmation supplémentaires :
    • Python
      via un interpréteur
      Micropython
    • Javascript
      via un interpréteur
      QuickJS

L'environnement
Python
sur ces modèles est extrêmement riche, bien davantage que les solutions
Python
intégrées par les constructeurs. On peut citer nombre de bibliothèques :
  • cas
    et
    xcas
    pour appeler le moteur de calcul formel
    GIAC
    directement depuis tes scripts
    Python
  • cmath
    pour traiter directement tes calculs sur les nombres complexes en
    Python
  • linalg
    pour l'algèbre linéaire
  • arit
    pour l'arithmétique
  • ulab.scipy
    pour le calcul scientifique
  • ulab.numpy
    pour le calcul matriciel et vectoriel
  • plusieurs bibliothèque de tracés :
    • turtle
      pour les tracés relatifs à la
      Scratch
    • matplotlib
      pour les tracés dans un repère
    • graphic
      pour les tracés par pixels, accompagnée de
      casioplot
      pour la compatibilité avec les scripts graphiques
      Casio
      et
      kandinsky
      pour la compatibilité avec les scripts graphiques
      NumWorks
  • et bien d'autres :
    gc
    ,
    math
    ,
    micropython
    ,
    nsp
    ,
    pylab
    ,
    random
    ,
    sys
    ,
    time
    ,
    ubinascii
    ,
    ucollections
    ,
    uctypes
    ,
    uerrno
    ,
    uhashlib
    ,
    uheapq
    ,
    uio
    ,
    ujson
    ,
    ure
    ,
    ustruct
    ,
    uzlib

Un fantastique avantage du
turtle
KhiCAS
, exclusif à ce jour, c'est qu'une fois que ton script
Python-turtle
a terminé de s'exécuter, il t'est possible d'en faire défiler l'affichage avec les flèches du clavier ! :bj:

La dernière mise à jour
alpha
de
KhiCAS
améliore encore plus la fiabilité de la bibliothèque
turtle
. Elle est disponible à ce jour :
  • uniquement en version
    alpha
    pour
    TI-Nspire CX
  • uniquement en version
    alpha
    pour
    NumWorks N0110
Découvrons ensemble les nouveautés.








A) Tests de conformité comparatifs
(toutes solutions turtle)

Go to top

Tentons pour le moment un autodiagnostic plus général des différences entres les ancienne et nouvelle bibliothèques
turtle
de
KhiCAS
, c'est-à-dire la vérification de tout ce qui peut différer du standard.

Voici des scripts en ce sens, une amélioration majeure de ceux développés dans le code de notre test de rentrée
QCC 2021
:
Code: Select all
_turtle_errors = 0

def _turtle_error(k):
  global _turtle_errors
  _turtle_errors |= 1 << k

# import turtle
try:
  import turtle
  if not "forward" in dir(turtle):
    turtle = turtle.Turtle()
except ImportError: #TI-83 Premium CE
  from ce_turtl import turtle
  _turtle_error(0)
try:
  turtle.clear()
except:
  turtle.reset()

# can turtle be patched ?
_fix_turtle = True
try:
  def _fixcolor(c): return c
  turtle._fixcolor = _fixcolor
except:
  _fix_turtle = False

# test color() + pencolor() + fillcolor()
if not "pencolor" in dir(turtle):
  pencolor = turtle.color
  _turtle_error(1)
else:
  pencolor = turtle.pencolor
if not "color" in dir(turtle):
  _turtle_error(2)
if not "fillcolor" in dir(turtle):
  _turtle_error(12)

if not "clear" in dir(turtle):
  _turtle_error(13)
if not "reset" in dir(turtle):
  _turtle_error(14)
if not "heading" in dir(turtle):
  _turtle_error(11)

# test color argument types
_color_types = 0
try:
  pencolor([0, 0, 0])
  _color_types |= 1 << 0
except: _turtle_error(4)
try:
  pencolor((0, 0, 0))
  _color_types |= 1 << 1
except: _turtle_error(5)
try:
  pencolor(0, 0, 0)
  _color_types |= 1 << 2
except: _turtle_error(6)
try:
  pencolor("black")
  _color_types |= 1 << 3
except: _turtle_error(7)

# test colormode()
if not "colormode" in dir(turtle):
  _turtle_error(3)

# test color strings
_colors_fix={
  "blue":(0,0,1),
  "green":(0,1,0),
  "red":(1,0,0),
  "cyan":(0,1,1),
  "yellow":(1,1,0),
  "magenta":(1,0,1),
  "white":(1,1,1),
  "orange":(1,0.65,0),
  "purple":(0.66,0,0.66),
  "brown":(0.75,0.25,0.25),
  "pink":(1,0.75,0.8),
  "grey":(0.66,0.66,0.66),
  "black":(0,0,0),
}
for c in tuple(_colors_fix.keys()):
  try:
    pencolor(c)
    _colors_fix.pop(c)
  except: pass
if len(_colors_fix):
  if _color_types & 1 << 3:
    _turtle_error(8)

# test circle(,)
try: turtle.circle(0,0)
except:
  _turtle_error(9)

#test towards
try: turtle.towards
except:
  _turtle_error(15)

# test for unfixable missing functions
_missing_fct=["write","pensize","dot"]
for f in tuple(_missing_fct):
  try:
    eval("turtle."+f)
    _missing_fct.remove(f)
  except: pass
if len(_missing_fct):
    _turtle_error(16)

_missing_alias=[
  ["backward","back","bk"],
  ["forward","fd"],
  ["right","rt"],
  ["left","lt"],
  ["position","pos"],
  ["goto","setpos","setposition"],
  ["setheading","seth"],
  ["pendown","pd","down"],
  ["penup","pu","up"],
  ["pensize","width"],
  ["showturtle","st"],
  ["hideturtle","ht"],
]
for aliases in tuple(_missing_alias):
  validf = None
  for f in tuple(aliases):
    try:
      eval("turtle."+f)
      validf = f
      aliases.remove(f)
      break
    except: pass
  for f in tuple(aliases):
    try:
      eval("turtle."+f)
      aliases.remove(f)
    except: pass
  if not len(aliases):
    _missing_alias.remove(aliases)
  else:
    aliases.insert(0, validf)
if len(_missing_alias):
    _turtle_error(17)

try:
  turtle.position()
except:
  try:
    turtle.pos()
  except:
    _turtle_error(10)
Code: Select all
from ttl_chk import *
from ttl_chk import _fix_turtle, _turtle_errors, _colors_fix, _missing_fct, _missing_alias

def turtle_diags():
  print("Type: " + str(type(turtle)))
  print("Patchable: " + (_fix_turtle and "yes" or "no"))
  errors_msg = (
    "No <import turtle>",
    "No pencolor()",
    "No color()",
    "No colormode()",
    "No color as list",
    "No color as tuple",
    "No color as args",
    "No color as string",
    "Missing colors strings: ",
    "No circle(,angle)",
    "Can't get position()",
    "No heading()",
    "No fill",
    "No clear()",
    "No reset()",
    "No towards()",
    "Other missing: ",
    "Missing aliases: ",
  )
  errors = 0
  for k in range(len(errors_msg)):
    if _turtle_errors & 1 << k:
      errors += 1
      msg = "Err " + str(k) + ": " + errors_msg[k]
      if k == 8:
        msg += str(len(_colors_fix)) + " " + str(tuple(_colors_fix.keys()))
      if k == 16:
        msg += str(len(_missing_fct)) + " " + " ".join(_missing_fct)
      if k == 17:
        l = []
        for v in _missing_alias:
          l.extend(v[1:])
        msg += str(len(l)) + " " + " ".join(l)
      print(msg)
  print(str(errors) + " error" + ((errors > 1) and "s" or ""))

turtle_diags()


Voici ce que nous racontent les scripts sur les différentes solutions
turtle
:

TI-83PCE/84+CE
turtle


TI-Nspire CX II
turtle

Casio
Graph 90E


KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl


NumWorks

Casio
Graph 35+E II



Aucune erreur n'est détectée automatiquement autmatiquement par nos scripts avec
KhiCAS
, chose exceptionnelle si l'on compare aux solutions officielles, et signe d'un soin absolument minutieux ! :bj:

Mais ça, c'est pour les problèmes détectables par des vérifications automatisées. Voyons maintenant d'éventuels écarts visuels sur quelques exemples de scripts.

Afin de pouvoir comparer équitablement avec les solutions officielles visiblement parfois bien moins conformes au standard
turtle
tout en conservant une unique version de chaque script utilisable sur l'ensemble des solutions, voici un script qu'il suffira d'importer à la place de chaque bibliothèque
turtle
et qui, lorsque celle-ci sera modifiable, corrigera la plupart des erreurs détectées : :bj:
Code: Select all
from ttl_chk import *
from ttl_chk import _color_types, _turtle_errors, _colors_fix, _missing_fct, _missing_alias

_fix_turtle = True

def nop(*argv): return None
idty = lambda c: c

try: # can turtle be patched ?
  turtle._fixcolorlist = idty
  turtle._fixcolorval = idty
  turtle._fixcolorstring = idty
  turtle._fixcolorargs = idty
  turtle._fixcolor = lambda c: turtle._fixcolorlist(turtle._fixcolorval(turtle._fixcolorstring(turtle._fixcolorargs(c))))
except:
  _fix_turtle = False

if _fix_turtle:

  # fix color() + pencolor()
  if _turtle_errors & 0x1000:
    turtle.fillcolor, turtle.begin_fill, turtle.end_fill = idty, nop, nop
  if _turtle_errors & 2:
    def _pencolor_(*argv):
      if len(argv): turtle.color(argv)
      else: return turtle.color()[0]
    turtle.pencolor = _pencolor_
  if _turtle_errors & 4:
    def _color_(*argv):
      if len(argv) == 2:
        turtle.pencolor(argv[0])
        turtle.fillcolor(argv[1])
      elif len(argv):
        turtle.pencolor(argv)
      else:
        return (turtle.pencolor(), turtle.fillcolor())
    turtle.color = _color_

  _fix_color = _color_types & 0b11 != 0b11 or not "colormode" in dir(turtle)

  # fix list/tuple color argument
  if _color_types & 0b11 == 0b10:
    def _fixcolorlist(c): return type(c) is list and tuple(c) or c
    turtle._fixcolorlist = _fixcolorlist
  if _color_types & 0b11 == 0b01:
    def _fixcolorlist(c): return type(c) is list and list(c) or c
    turtle._fixcolorlist = _fixcolorlist
  if not _color_types & 4:
    def _fixcolorargs(*argv):
      return len(argv) != 1 and argv or argv[0]

  if _fix_color:
    turtle._color = turtle.color
    turtle._pencolor = turtle.pencolor
    turtle._fillcolor = turtle.fillcolor
    if _color_types & 0b11:
      def _color(*argv):
        n = len(argv)
        if not(n): return turtle._color()
        elif n==2: turtle._color(argv[0], argv[1])
        else: turtle._color(n > 1 and argv or argv[0])
      def _pencolor(*argv):
        if not(len(argv)): return turtle._pencolor()
        turtle._pencolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0]))
      def _fillcolor(*argv):
        if not(len(argv)): return turtle._fillcolor()
        turtle._fillcolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0]))
    else:
      def _color(*argv):
        n = len(argv)
        if not(n): return turtle._color()
        c = turtle._fixcolor(n == 3 and argv or argv[0])
        turtle._color(c[0], c[1], c[2])
      def _pencolor(*argv):
        if not(len(argv)): return turtle._pencolor()
        c = turtle._fixcolor(len(argv)>1 and argv or argv[0])
        turtle._pencolor(c[0], c[1], c[2])
      def _fillcolor(*argv):
        if not(len(argv)): return turtle._fillcolor()
        c = turtle._fixcolor(len(argv)>1 and argv or argv[0])
        turtle._fillcolor(c[0], c[1], c[2])
    turtle.color = _color
    turtle.pencolor = _pencolor
    turtle.fillcolor = _fillcolor

  # fix colormode()
  if _turtle_errors & 8:
    # test color mode
    try:
      turtle.pencolor([255, 0, 0])
      _color_mode = 255
    except: _color_mode = 1.0
    turtle._color_mode = _color_mode
    def _colormode(*argv):
      if not(len(argv)): return turtle._color_mode
      if int(argv[0]) in (1, 255):
        turtle._color_mode = int(argv[0]) == 255 and 255 or 1.0
    turtle.colormode = _colormode
    if _color_mode == 255:
      turtle._fixcolorval = lambda c: int(turtle._color_mode) == 1 and type(c) in (list, tuple) and [int(c[k] * 255) for k in range(3)] or c
    else:
      turtle._fixcolorval = lambda c: turtle._color_mode == 255 and type(c) in (list, tuple) and [c[k] / 255 for k in range(3)] or c

  # fix color strings
  if len(_colors_fix):
    def _fixcolorstring(c):
      if type(c) is str and c in _colors_fix:
        c = _colors_fix[c]
        if turtle.colormode() == 255:
          c = [int(c[k] * 255) for k in range(3)]
      return c
    turtle._fixcolorstring = _fixcolorstring

  # fix circle(,)
  if _turtle_errors & 0x200:
    turtle._circle = turtle.circle
    def _circle(r, a=360): turtle._circle(r)
    turtle.circle = _circle

  if len(_missing_fct):
    for f in _missing_fct:
      exec("turtle."+f+"=nop")

  if len(_missing_alias):
    for aliases in _missing_alias:
      validf = aliases[0]
      for f in aliases[1:]:
        exec(validf and "turtle."+f+"=turtle."+validf or "turtle."+f+"=nop")

  # fix clear()
  if _turtle_errors & 0x2000:
    turtle.clear = turtle.reset

  # fix reset()
  if _turtle_errors & 0x4000:
    turtle.reset = turtle.clear

  # fix towards()
  if _turtle_errors & 0x8000:
    from math import atan2, pi
    def _towards(x, y):
      x0, y0 = turtle.pos()
      return atan2(y - y0, x - x0) * 180 / pi
    turtle.towards = _towards




B) 4 exemples comparatifs améliorés

Go to top

Maintenant que nous avons de quoi faire tourner une unique version de chaque script sur l'ensemble des machines, poursuivons donc l'exploration de l'ensemble des solutions
turtle
avec quelques exemples de script.

Nous allons en profiter pour nous en donner à cœur joie avec les formidables fonctions de remplissage rajoutées dans l'avant-dernière version de
KhiCAS
, sur le thème de .

C'est donc l'occasion de voir si il y avait d'autres problèmes qui n'ont pas pu être détectés automatiquement, et si ils sont toujours présents dans la dernière version.

Plusieurs des exemples qui vont suivre sont inspirés de publications de pour
TI-Nspire CX II
et très librement et fortement adaptés pour être fonctionnels dans le contexte du
heap
Python
bien plus restreint des
TI-83 Premium CE
et compatibles.

Commençons par quelques exemples sur lesquels la dernière version de
KhiCAS
progresse :

Exemple B1 : Le défilé automobile

Go to top

Nous t'emmenons maintenant au défilé avec les logos de plusieurs grands constructeurs... automobiles :
Code: Select all
from ttl_fix import *

def rpoly(c, n):
  for k in range(n):
    turtle.forward(c)
    turtle.left(360 / n)

def audi(r):
  ir = 2 * r // 13
  turtle.penup()
  turtle.left(90)
  turtle.forward(r//2 - 2*ir)
  turtle.right(90)
  turtle.forward(-ir)
  turtle.pendown()
  turtle.pensize(3)
  for i in range(4):
    turtle.penup()
    turtle.forward(3 * ir)
    turtle.pendown()
    turtle.circle(2 * ir)

def mercedez_benz(r):
  ir = r // 2
  turtle.penup()
  turtle.forward(ir)
  turtle.left(90)
  turtle.forward(ir)
  turtle.pendown()
  turtle.pensize(2)
  x, y = turtle.pos()
  turtle.setheading(210)
  for i in range(3):
    turtle.goto(x,y)
    turtle.forward(ir)
    turtle.left(120)
  turtle.setheading(0)
  turtle.circle(-ir)

def citroen(r):
  x,y=turtle.pos()
  turtle.setheading(0)
  turtle.color((255,0,0), (255,0,0))
  turtle.begin_fill()
  rpoly(r, 4)
  turtle.end_fill()
  turtle.fillcolor((255,255,255))
  for i in range(2):
    turtle.setheading(45)
    turtle.begin_fill()
    for k in range(2):
      turtle.forward(.71 * r)
      turtle.left(k and 172 or -90)
    for k in range(2):
      turtle.forward(5 * r / 6)
      turtle.left(106)
    turtle.end_fill()
    y += r / 3
    turtle.penup()
    turtle.goto(x,y)
    turtle.pendown()

def mitsubichi(r):
  ir = r // 3
  turtle.penup()
  turtle.left(90)
  turtle.forward(ir)
  turtle.right(90)
  turtle.forward(r // 2)
  turtle.pendown()
  for i in range(3):
    turtle.setheading(60 + 120*i)
    turtle.color((255,0,0), (255,0,0))
    turtle.begin_fill()
    for k in range(4):
      turtle.forward(ir)
      turtle.left((k%2) and 120 or 60)
    turtle.end_fill()

def jeep(r):
  a=54
  ir = r/0.47552825814758/4 #sin(radians(a))/cos(radians(a))
  a=ir/0.85
  d=0.93*ir
  turtle.penup()
  turtle.forward(r//2)
  turtle.right(90)
  turtle.forward(ir - r)
  turtle.pendown()
  x, y = turtle.pos()
  turtle.setheading(234)
  turtle.forward(ir)
  turtle.left(126)
  turtle.fillcolor((180,180,180))
  turtle.begin_fill()
  rpoly(a, 5)
  turtle.end_fill()
  for i in range(5):
    col = i < 3 and (0,0,0) or (255,255,255)
    for j in range(2):
      turn =  j and turtle.left or turtle.right
      turtle.goto(x,y)
      turtle.setheading(90 + 72*i)
      turtle.fillcolor(col)
      turtle.begin_fill()
      turtle.forward(d)
      turn(172)
      turtle.forward(0.85*d)
      turn(44)
      turtle.forward(0.2*d)
      turtle.end_fill()
      col = [255 - col[k] for k in range(3)]

turtle.speed(0)
turtle.colormode(255)

r = 92
for iy in range(2):
  for ix in range(3):
    i = iy*3+ix
    if i < 5:
      y, x = (2*iy - 1) * r//2 - 48, (ix - 1)*r - 50
      turtle.penup()
      turtle.goto(x, y)
      turtle.setheading(0)
      turtle.pensize(1)
      turtle.pencolor((0,0,0))
      turtle.pendown()
      (mercedez_benz,jeep,mitsubichi,citroen,audi)[i](r)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Amélioration fantastique,
KhiCAS
rattrape le gros retard qu'il avait ici par rapport à la concurrence, et trace maintenant correctement les différents logos des constructeurs ! :bj:

Exemple B2 : Les flocons de Koch

Go to top

Encore une fois si tu es dans le Sud de la France, tu n'a pas dû voir de neige depuis des années... Faison donc neiger dans ta calculatrice maintenant, faisons neiger des
flocons de Koch
:
Code: Select all
from ttl_fix import *

def rotate_list(l):
  l[1:],l[0] = l[0:-1],l[-1]

def koch(n, l):
  if n<=0:
    turtle.forward(l)
  else:
    koch(n - 1, l / 3)
    turtle.left(60)
    koch(n - 1, l / 3)
    turtle.right(120)
    koch(n - 1, l / 3)
    turtle.left(60)
    koch(n - 1, l / 3)

def flock(n, l):
  koch(n, l)
  turtle.right(120)
  koch(n, l)
  turtle.right(120)
  koch(n, l)

turtle.speed(0)
turtle.colormode(255)

c = [127, 255, 0]
l = 80
for j in range(2):
  for i in range(3):
    n = j and 3 + i or 2 - i
    s = 5 - n
    turtle.penup()
    turtle.goto(i*117-157, j*95-25)
    turtle.pencolor(tuple(c))
    turtle.pensize(s)
    turtle.setheading(0)
    turtle.pendown()
    flock(n, l)
    n += 1
    rotate_list(c)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Beau progrès ici aussi, le flocon en haut à droite est enfin tracé de la bonne couleur comme chez la concurrence.

Exemple B3 : La linea

Go to top

Code: Select all
try: #TI-83 Premium CE
  from ti_system import disp_clr
  disp_clr()
except: pass
from ttl_fix import *

def spiral(k,a,l):
  x0, y0 = turtle.pos()
  h0 = turtle.heading()
  while True:
    for s in l:
      turtle.forward(s*k)
      turtle.left(180-a)
    x, y = turtle.pos()
    if abs(x - x0) + abs(y - y0) + abs(turtle.heading() - h0) <= 1:
      break

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(255)
turtle.color((0,0,0),(255,255,0))

try:
  for i in range(-1, 2, 2):
    turtle.penup()
    turtle.goto(80*i - ((i > 0) and 40 or 50), 0)
    turtle.pendown()
    try: turtle.begin_fill()
    except: pass
    spiral((i > 0) and 9 or 30, (i > 0) and 90 or 36, (i > 0) and (1,2,3,4,5,6,7,8,9) or (1,2,3))
    try: turtle.end_fill()
    except: pass
except MemoryError as e: print(e)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Belle amélioration ici aussi,
KhiCAS
remplit enfin correctement la forme de droite magré sa complexité !

Exemple B4 : Pavage d'une lagogne

Go to top

Partons maintenant à la pêche avec un script très hautement impressionnant par rapport aux contraintes de
heap
des
TI-83 Premium CE
et compatibles ; ici nous sommes vraiment sur le fil de la limite des possibilités concernant ces modèles.

Voici donc une lagogne littéralement pavée de poissons :
Code: Select all
from math import sqrt
from ttl_fix import *

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(255)
turtle.pencolor((0,0,0))

a=16

try:
  j = 0
  while -5 < j < 4:
    col = ((0,0,255),(255,0,0),(255,180,0))[j%3]
    i = 0
    while -2 + (j % 2) < i < 2:
      for c in range(3):
        turtle.penup()
        turtle.goto(sqrt(3)*3*a*(i*2-(j%2)), 3*a*j)
        turtle.setheading(-30 + 120*c)
        turtle.pendown()
        turtle.fillcolor(col)
        turtle.begin_fill()
        for k in range(-17, 18):
          l = a*sqrt(7)
          tf = ((1,141.787), (0,l), (1,-100.893), (0,a), (1,120), (0,a/2), [1,-120], [0,-a], [0,a], [1,120], (0,a/2), (1,60), (0,a), (1,-120), (0,a), (1,100.893), (0,l), [1,-40.893])[abs(k)]
          if k==6 or k==9 or k==17: tf[1] -= 180
          elif k==7 or k==8: tf[1] *= -1
          (turtle.forward, turtle.left)[tf[0]](tf[1])
        turtle.end_fill()
        turtle.forward(6*a)
        turtle.backward(5*a)
        turtle.penup()
        turtle.right(90)
        l = a*sqrt(3)/6
        for k in range(2):
          turtle.forward(l)
          turtle.pencolor((255,255,255))
          turtle.dot(a//4)
          turtle.pencolor((0,0,0))
          turtle.dot(a//8)
          turtle.backward(l)
          turtle.left(180)
      i = -i + (i <= 0)
    j = -j - (j >= 0)
except Exception as e: print(e)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Formidable ici aussi, les poissons se comportent enfin correctement sous
KhiCAS
pour réaliser la pavage !
Petits détails toutefois non spécifiques à cet exemple, lorsque l'on fait défiler le tracé obtenu :
  • les affichages effectués sur la barre de titre/état en haut d'écran
    (18 premières lignes de pixels)
    ne sont pas nettoyés correctement lors des rafraichissements
  • les formes ne sont bizarrement pas remplies correctement dans une bande correspondant aux 42 premières lignes de pixels

Exemple B4 : ♫ Le tournesol, le tournesol, ... ♫

Go to top

15452Terminons enfin avec un exemple absolument bluffant de réalisme pour du
turtle
, nous allons faire pousser un tournesol devant toi :
Code: Select all
from math import pi, sin, cos, sqrt
from ttl_fix import *

def spiral():
  phi = (1+sqrt(5))/2
  a  =0
  r = 0
  dr = 0.15
  turtle.penup()
  for i in range(300):
    turtle.forward(r)
    turtle.pencolor((0,0,0))
    try: turtle.dot(3)
    except: pass
    turtle.pencolor((205,133,63))
    try: turtle.dot(2)
    except: pass
    turtle.goto(0,0)
    turtle.setheading(0)
    a+=360/phi
    turtle.right(a)
    if a>=360:
      r+=dr
      a-=360   

def feuille(core,a):
    try: turtle.begin_fill()
    except: pass
    turtle.right(a/2)
    turtle.forward(core)
    turtle.left(a)
    turtle.forward(core)
    turtle.left(180-a)
    turtle.forward(core)
    turtle.left(a)
    turtle.forward(core)
    try: turtle.end_fill()
    except: pass

turtle.speed(0)
turtle.colormode(255)
turtle.pencolor((30,144,255))
try: turtle.dot(320)
except: pass

d=25
core=40
turtle.pencolor((160,82,45))
try: turtle.dot(40)
except: pass

c=((255,215,0),(255,255,0))

for i in range(2):
  turtle.color(c[0], c[i])
  for h in range(10*i,370,20):
    r=h * pi / 180
    x=d*cos(r)
    y=d*sin(r)
    turtle.penup()
    turtle.goto(x,y)
    turtle.pendown()
    turtle.setheading(h)
    feuille(core,32)

spiral()

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Excellent, les graines dans le cœur sont enfin délimitées correctement sous
KhiCAS
! :bj:





C) 13 autres exemples comparatifs

Go to top




Exemple C1 : La dalle aux ammonites

Go to top

C'est donc parti pour quelques exemples afin d'approfondir les améliorations de la nouvelle bibliothèque
turtle
pour
TI-83 Premium CE Edition Python
et compatibles, ainsi que les points forts et faibles par rapport aux autres modèles de calculatrices.

Précisons que les problèmes récurrents ne seront pas systématiquement réévoqués sur chaque exemple.

Un petit peu au Nord de Digne-les-bains en rive droite de la Bléone se trouve la dalle aux ammonites. Comme il est strictement interdit d'en prélever, voici de quoi en reproduire une sur ta calculatrice :
Code: Select all
from ttl_fix import *
from math import pi

turtle.speed(0)
turtle.pencolor((0,0,0))
turtle.pendown()
turtle.pensize(1)

turtle.goto(0,-8)
x,y = turtle.pos()
turtle.left(115)
for i in range(132):
  turtle.forward(10)
  try:
    h = turtle.towards(x,y)
    turtle.setheading(h)
  except: pass
  d=10*pi
  turtle.forward(d)
  turtle.backward(d)
  turtle.right(90)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C2 : L'escargot de lumière

Go to top

Si tu es dans le Sud de la France tu sais qu'il ne pleut pas souvent
(par contre, quand il pleut... il pleut !)
. Alors voici pour toi un escargot bariolé :
Code: Select all
from math import exp
from ttl_fix import *

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(1.0)

turtle.penup()
turtle.goto(0, -20)
turtle.pendown()
turtle.right(90)
for i in range(20):
  c = [exp(-.5 * ((i - k) / 12)**2) for k in (6, 18, 30)]
  cb = [v/2 for v in c]
  turtle.color(cb, c)
  try: turtle.begin_fill()
  except: pass
  turtle.circle(27 + i)
  try: turtle.end_fill()
  except: pass
  turtle.right(10)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C3 : Le triangle de Penrose

Go to top

Tu n'as jamais touché à un triangle de
Penrose
? Et bien voici de quoi en afficher le plan dans ta calculatrice, tu n'auras plus qu'à l'imprimer en 3D, si tu arrives à comprendre où est le devant et l'arrière : ;)
Code: Select all
from math import sqrt
from ttl_fix import *

def hook(a, c):
  turtle.penup()
  turtle.goto(0,-15)
  turtle.setheading(a)
  turtle.forward((l - 4*b) / sqrt(3))
  turtle.right(150)
  turtle.pendown()
  lf = ((turtle.left, 60),[turtle.forward,b],(turtle.left,120),(turtle.forward,l-b),[turtle.right,120],[turtle.forward,l-3*b])
  try:
    turtle.fillcolor(c)
    turtle.begin_fill()
  except: pass
  for k in range(-len(lf) + 1, len(lf)):
    tf = lf[abs(k)]
    if k == 1: tf[1] = l
    elif k == 4: tf[0] = turtle.left
    elif k == 5: tf[1] = b
    tf[0](tf[1])
  try: turtle.end_fill()
  except: pass
 
turtle.speed(0)
turtle.pensize(2)
turtle.colormode(255)

l=180
b=23

for i in range(112):
  turtle.pencolor(232 - int(i * 23 / 11), 249 - int(i * 29 / 55), 255)
  turtle.penup()
  turtle.goto(-192, 111 - 2*i)
  turtle.pendown()
  turtle.forward(384)

turtle.pencolor((0,0,0))
turtle.pensize(1)

hook(330, (255,255,0))
hook(90, (0,0,255))
hook(210, (255,0,0))

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C4 : La courtepointe de Mamie

Go to top

Voici maintenant la courtepointe brodée avec amour et soin par Mamie :
Code: Select all
from ttl_fix import *

def rotate_list(l):
  l[1:],l[0] = l[0:-1],l[-1]

def poly_reg_a(l, a):
  h0 = turtle.heading()
  while True:
    turtle.forward(l)
    turtle.left(a)
    if abs(h0 - turtle.heading()) < .1:
      break

turtle.hideturtle()
turtle.speed(0)
turtle.pensize(1)
turtle.colormode(255)

c = [191, 127, 0]
cf = [127, 255, 0]
i = 0
while i > -3:
  j = 0
  while j > -2:
    turtle.penup()
    turtle.goto((i - 1)*88, (j - 1)*85 + 28)
    turtle.pendown()
    turtle.color(c, cf)
    try: turtle.begin_fill()
    except: pass
    poly_reg_a(80, 140)
    try: turtle.end_fill()
    except: pass
    rotate_list(c)
    rotate_list(cf)
    j = -j + (j <= 0)
  i = -i + (i <= 0)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C5 : Les vitraux rhombiques

Go to top

Voici maintenant une belle rosace rhombique pour décorer le bâtiment de ton choix.

Nous utilisons ici la méthode
.dot()
permettant de remplir un disque de diamètre donné, afin de générer de quoi avoir une couleur de fond d'écran sur nos calculatrices, suffit-il juste de lui spécifier un diamètre suffisamment grand :
Code: Select all
from ttl_fix import *

turtle.speed(0)
turtle.colormode(255)
turtle.pencolor((0,0,255))
turtle.dot(320)
turtle.pencolor((0,0,0))
turtle.pensize(2)
col = ((255,0,0),(255,255,0),(0,255,0),(255,255,255),(255,0,255))
a=60

for i in range(10):
  c = col[i%5]
  turtle.color(c, c)
  turtle.begin_fill()
  for j in range(5):
    turtle.forward(a)
    turtle.right(72)
  turtle.end_fill()
  turtle.right(36)

for i in range(10):
  c = [v//3 for v in col[i%5]]
  turtle.pencolor(c)
  for j in range(5):
    turtle.forward(a)
    turtle.right(72)
  turtle.right(36)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Par rapport au fond bleu, notons que c'est bel et bien
KhiCAS
qui adopte le comportement correct. Selon le standard
turtle
, la méthode
.dot()
attend en paramètre le diamètre du disque à tracer. Ce sont les modèles
Texas Instruments
qui le considèrent à tort comme un rayon et remplissent alors tout l'écran.

Exemple C6 : Les roses par 12

Go to top

Voici maintenant une rose, cette fois-ci sur un fond d'écran en dégradé radial. Nous utiliserons pour cela cette fois-ci une boucle de
.dot()
:
Code: Select all
from math import pi, sin, cos, sqrt
from ttl_fix import *

def rpoly(c, n):
  a=360/n
  for k in range(n):
    turtle.forward(c)
    turtle.left(a)
def carre(c): rpoly(c, 4)

turtle.speed(0)
turtle.colormode(255)
turtle.penup()

r=80
alpha=(15 * pi / 180)

for i in range(320):
  c=int(255/320*i)
  turtle.pencolor(c,c,c)
  try: turtle.dot(320-i)
  except: pass

turtle.goto(20,-76)
turtle.color((255,255,255),(0,0,0))

for i in range(4):
  a=r*sin(alpha)*2
  d=a/sqrt(2)
  turtle.pendown()
  for i in range(12):
    turtle.right(15)
    try: turtle.begin_fill()
    except: pass
    carre(d)
    try: turtle.end_fill()
    except: pass
    turtle.left(45)
    turtle.penup()
    turtle.forward(a)
    turtle.pendown()
  turtle.penup()
  turtle.left(75)
  turtle.forward(d)
  turtle.right(60)
  r=r*cos(alpha)-a/2

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Sur la taille du disque de fond d'écran et comme déjà dit, c'est ici encore
KhiCAS
qui fait comme il faut.

Exemple C7 : Les triangles de Sierpiński

Go to top

Revenons aux fractales et à la récursivité avec les
triangles de Sierpiński
. As-tu déjà réussi à les compter ? Et bien voici de quoi commencer sur ta calculatrice :
Code: Select all
from ttl_fix import *

def sierp(n, l):
  if n == 0:
    for i in range (0, 3):
      turtle.forward(l)
      turtle.left(120)
  if n > 0:
    sierp(n - 1, l / 2)
    turtle.forward(l / 2)
    sierp(n - 1, l / 2)
    turtle.backward(l / 2)
    turtle.left(60)
    turtle.forward(l / 2)
    turtle.right(60)
    sierp(n - 1, l / 2)
    turtle.left(60)
    turtle.backward(l / 2)
    turtle.right(60)

turtle.colormode(255)
turtle.speed(0)
turtle.pensize(1)

turtle.penup()
turtle.goto(-110, -95)
turtle.pendown()
turtle.pencolor((255,0,0))
sierp(6, 220)
turtle.penup()
turtle.forward(400)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C8 : Sous le soleil exactement

Go to top

Plaçons-nous maintenant
sous le soleil exactement
, profitant ainsi de toutes les couleurs de la lumière blanche :
Code: Select all
from math import exp
from ttl_fix import *

def rpoly(c, n):
  a=360/n
  for k in range(n):
    turtle.forward(c)
    turtle.left(a)
def carre(c): rpoly(c, 4)

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(1.0)

n = 36
for i in range(n):
  k=.4 + 4*i/255
  cp = [.7*exp(-.5 * ((n - i - k) / (n / 3))**2) for k in (6, 18, 30)]
  turtle.pencolor(cp)
  try:
    turtle.fillcolor((k,k,0))
    turtle.begin_fill()
  except: pass
  carre(60)
  try: turtle.end_fill()
  except: pass
  turtle.right(360 / n)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C9 : Le labyrinthe du Minotaure

Go to top

Explorons maintenant dans la labyrinthe du Minotaure :
Code: Select all
from ttl_fix import *

turtle.speed(0)
turtle.colormode(255)
turtle.pendown()

turtle.right(48)
turtle.pencolor((0,0,0))
for i in range(98):
  turtle.forward(2*i)
  turtle.left(90.5)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C10 : Le carreau de carreaux

Go to top

Code: Select all
from math import sqrt
from ttl_fix import *

def rotate_list(l):
  l[1:],l[0] = l[0:-1],l[-1]

def reg_poly(l, n):
  for i in range(n):
    turtle.forward(l)
    turtle.left(360/n)

def square(l):
  reg_poly(l, 4)

turtle.colormode(255)
turtle.pencolor(0,0,0)
turtle.speed(0)

turtle.pensize(3)
d=190
c=[0,255,127]
turtle.penup()
turtle.goto(-d/2,-d/2)
turtle.setheading(0)
turtle.pendown()
for i in range(8):
  try:
    turtle.fillcolor(tuple(c))
    turtle.begin_fill()
  except: pass
  square(d)
  try:
    turtle.end_fill()
  except: pass
  turtle.penup()
  turtle.forward(d/2)
  turtle.left(45)
  turtle.pendown()
  d/=sqrt(2)
  rotate_list(c)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C11 : Les étoiles jumelles

Go to top

Code: Select all
try: # TI-83 Premium CE
  from ti_system import disp_clr
  disp_clr()
except: pass
from ttl_fix import *

def rpoly(c, n):
  a=360/n
  for k in range(n):
    turtle.forward(c)
    turtle.left(a)

def rosace(c, n1, a, n2):
  try: turtle.begin_fill()
  except: pass
  for i in range(n2):
    turtle.left(a)
    rpoly(c, n1)
  try: turtle.end_fill()
  except: pass

turtle.colormode(255)
turtle.pencolor((0,0,0))

try: turtle.dot(320)
except: pass
turtle.color((255,255,255),(255,255,0))
turtle.speed(0)
turtle.pensize(1)
try:
  for i in range(-1, 2, 2):
    turtle.penup()
    turtle.goto(80*i, 0)
    turtle.pendown()
    rosace((i > 0) and 21 or 30, (i > 0) and 12 or 8, 30, 12)
    turtle.pensize(2)
    turtle.pencolor((0,0,255))
except MemoryError as e: print(e)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Sur la taille du disque de fond d'écran, c'est à nouveau ici
KhiCAS
qui a raison et pas
TI
.

Exemple C12 : La toile de l'araignée

Go to top

Suivons maintenant le fil de l'araignée :
Code: Select all
from ttl_fix import *

def spiral(a,b):
  turtle.pencolor((0,0,0))
  try: turtle.dot(320)
  except: pass
  turtle.pencolor((255,255,0))
  for i in range(189):
    for j in range(6):
      turtle.forward(i/a)
      turtle.left(23)
    turtle.left(b)
    try: turtle.dot(2)
    except: pass
   
turtle.speed(0)
turtle.colormode(255)
turtle.pensize(1)

a=17
b=194

spiral(a,b)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II





Conclusion

Go to top

Selon notre outil de tests,
KhiCAS
pour
TI-Nspire CX
et
NumWorks N0110
est bien mieux conforme au standard
Python-turtle
que l'ensemble des solutions
turtle
officielles, et semble en conséquence bien mieux se comporter en pratique sur une majorité de nos exemples. nous semble offrir à ce jour la meilleure bibliothèque
Python turtle
toutes solutions confondues.

Les méthodes de remplissage, absentes des implémentations officielles de
Casio
et
NumWorks
t'ouvrent la porte à de formidables progrès.

Les progrès témoignent d'un soin minutieux apporté par
Bernard Parisse
, et vu que tout semble parfait maintenant il va nous falloir tenter d'inventer de nouveaux exemples piégeux... :P




Téléchargements

Go to top


TI-Nspire KhiCAS NumWorks Nspire CX: Python-turtle encore plus parfait

New postby critor » 19 Apr 2022, 11:25

15120Pour accompagner en douceur la transition du
Scratch
au
Python
en Seconde, la plupart des solutions
Python
sur calculatrices graphiques offrent
turtle
, une bibliothèque permettant du tracé relatif comme en
Scratch
. On peut citer :
  • la
    NumWorks
    dont l'application
    Python
    intègre directement
    turtle
  • les
    Casio Graph 35+E II
    et
    Graph 90+E
    dont l'application
    Python
    intègre directement
    turtle
  • les
    TI-Nspire CX II
    sur lesquelles on peut rajouter la bibliothèque officielle
    turtle
    (anciennement
    ce_turtl
    )
    à l'environnement
    Python
  • les
    TI-83 Premium CE Edition Python
    (France)
    ,
    TI-84 Plus CE-T Python Edition
    (Europe)
    et
    TI-84 Plus CE Python
    (Amérique du Nord)
    , sur lesquelles on peut rajouter une bibliothèque
    turtle
    officielle
  • et
    KhiCAS

11302Aujourd'hui penchons-nous à nouveau sur le
turtle
de
KhiCAS
. Conçu par
Bernard Parisse
, enseignant-chercheur à l'Université de Grenoble,
KhiCAS
est la déclinaison sur calculatrices du logiciel de Mathématiques intégré
Xcas
. Disponible pour calculatrices
NumWorks N0110
,
TI-Nspire CX
,
Casio Graph 35+E II
et
Graph 90+E
,
KhiCAS
te donne donc accès à une interface unifiée ainsi qu'à des fonctionnalités haut de gamme peu importe la marque ou le modèle de ta calculatrice ! :bj:

12024Ce formidable environnement de Mathématiques et de sciences t'apporte bien des choses. Nous pouvons citer dans tous les cas :
  • la reprise du moteur de calcul formel
    GIAC
    développé pour
    Xcas
    par le même auteur.
  • la possibilité de programmer dans 2 langages :
    • le langage
      Xcas
      historique
    • le langage
      Xcas
      avec une couche de compatibilité syntaxique
      Python

Dans ses éditions pour
TI-Nspire CX
et
NumWorks N0110
,
KhiCAS
apporte pas mal de compléments :
  • possibilité de composer et convertir ses unités
  • une bibliothèque de constantes physiques
  • plusieurs applications elles-même intégrées, dont entre autres :
    • tableur / feuille de calcul
    • tableau périodique des éléments
    • calcul financier
  • 2 langages de programmation supplémentaires :
    • Python
      via un interpréteur
      Micropython
    • Javascript
      via un interpréteur
      QuickJS

L'environnement
Python
sur ces modèles est extrêmement riche, bien davantage que les solutions
Python
intégrées par les constructeurs. On peut citer nombre de bibliothèques :
  • cas
    et
    xcas
    pour appeler le moteur de calcul formel
    GIAC
    directement depuis tes scripts
    Python
  • cmath
    pour traiter directement tes calculs sur les nombres complexes en
    Python
  • linalg
    pour l'algèbre linéaire
  • arit
    pour l'arithmétique
  • ulab.scipy
    pour le calcul scientifique
  • ulab.numpy
    pour le calcul matriciel et vectoriel
  • plusieurs bibliothèque de tracés :
    • turtle
      pour les tracés relatifs à la
      Scratch
    • matplotlib
      pour les tracés dans un repère
    • graphic
      pour les tracés par pixels, accompagnée de
      casioplot
      pour la compatibilité avec les scripts graphiques
      Casio
      et
      kandinsky
      pour la compatibilité avec les scripts graphiques
      NumWorks
  • et bien d'autres :
    gc
    ,
    math
    ,
    micropython
    ,
    nsp
    ,
    pylab
    ,
    random
    ,
    sys
    ,
    time
    ,
    ubinascii
    ,
    ucollections
    ,
    uctypes
    ,
    uerrno
    ,
    uhashlib
    ,
    uheapq
    ,
    uio
    ,
    ujson
    ,
    ure
    ,
    ustruct
    ,
    uzlib

Un fantastique avantage du
turtle
KhiCAS
, exclusif à ce jour, c'est qu'une fois que ton script
Python-turtle
a terminé de s'exécuter, il t'est possible d'en faire défiler l'affichage avec les flèches du clavier ! :bj:

La dernière mise à jour
alpha
de
KhiCAS
améliore encore plus la fiabilité de la bibliothèque
turtle
. Elle est disponible à ce jour :
  • uniquement en version
    alpha
    pour
    TI-Nspire CX
  • uniquement en version
    alpha
    pour
    NumWorks N0110
Découvrons ensemble les nouveautés.








A) Tests de conformité comparatifs
(toutes solutions turtle)

Go to top

Tentons pour le moment un autodiagnostic plus général des différences entres les ancienne et nouvelle bibliothèques
turtle
de
KhiCAS
, c'est-à-dire la vérification de tout ce qui peut différer du standard.

Voici des scripts en ce sens, une amélioration majeure de ceux développés dans le code de notre test de rentrée
QCC 2021
:
Code: Select all
_turtle_errors = 0

def _turtle_error(k):
  global _turtle_errors
  _turtle_errors |= 1 << k

# import turtle
try:
  import turtle
  if not "forward" in dir(turtle):
    turtle = turtle.Turtle()
except ImportError: #TI-83 Premium CE
  from ce_turtl import turtle
  _turtle_error(0)
try:
  turtle.clear()
except:
  turtle.reset()

# can turtle be patched ?
_fix_turtle = True
try:
  def _fixcolor(c): return c
  turtle._fixcolor = _fixcolor
except:
  _fix_turtle = False

# test color() + pencolor() + fillcolor()
if not "pencolor" in dir(turtle):
  pencolor = turtle.color
  _turtle_error(1)
else:
  pencolor = turtle.pencolor
if not "color" in dir(turtle):
  _turtle_error(2)
if not "fillcolor" in dir(turtle):
  _turtle_error(12)

if not "clear" in dir(turtle):
  _turtle_error(13)
if not "reset" in dir(turtle):
  _turtle_error(14)
if not "heading" in dir(turtle):
  _turtle_error(11)

# test color argument types
_color_types = 0
try:
  pencolor([0, 0, 0])
  _color_types |= 1 << 0
except: _turtle_error(4)
try:
  pencolor((0, 0, 0))
  _color_types |= 1 << 1
except: _turtle_error(5)
try:
  pencolor(0, 0, 0)
  _color_types |= 1 << 2
except: _turtle_error(6)
try:
  pencolor("black")
  _color_types |= 1 << 3
except: _turtle_error(7)

# test colormode()
if not "colormode" in dir(turtle):
  _turtle_error(3)

# test color strings
_colors_fix={
  "blue":(0,0,1),
  "green":(0,1,0),
  "red":(1,0,0),
  "cyan":(0,1,1),
  "yellow":(1,1,0),
  "magenta":(1,0,1),
  "white":(1,1,1),
  "orange":(1,0.65,0),
  "purple":(0.66,0,0.66),
  "brown":(0.75,0.25,0.25),
  "pink":(1,0.75,0.8),
  "grey":(0.66,0.66,0.66),
  "black":(0,0,0),
}
for c in tuple(_colors_fix.keys()):
  try:
    pencolor(c)
    _colors_fix.pop(c)
  except: pass
if len(_colors_fix):
  if _color_types & 1 << 3:
    _turtle_error(8)

# test circle(,)
try: turtle.circle(0,0)
except:
  _turtle_error(9)

#test towards
try: turtle.towards
except:
  _turtle_error(15)

# test for unfixable missing functions
_missing_fct=["write","pensize","dot"]
for f in tuple(_missing_fct):
  try:
    eval("turtle."+f)
    _missing_fct.remove(f)
  except: pass
if len(_missing_fct):
    _turtle_error(16)

_missing_alias=[
  ["backward","back","bk"],
  ["forward","fd"],
  ["right","rt"],
  ["left","lt"],
  ["position","pos"],
  ["goto","setpos","setposition"],
  ["setheading","seth"],
  ["pendown","pd","down"],
  ["penup","pu","up"],
  ["pensize","width"],
  ["showturtle","st"],
  ["hideturtle","ht"],
]
for aliases in tuple(_missing_alias):
  validf = None
  for f in tuple(aliases):
    try:
      eval("turtle."+f)
      validf = f
      aliases.remove(f)
      break
    except: pass
  for f in tuple(aliases):
    try:
      eval("turtle."+f)
      aliases.remove(f)
    except: pass
  if not len(aliases):
    _missing_alias.remove(aliases)
  else:
    aliases.insert(0, validf)
if len(_missing_alias):
    _turtle_error(17)

try:
  turtle.position()
except:
  try:
    turtle.pos()
  except:
    _turtle_error(10)
Code: Select all
from ttl_chk import *
from ttl_chk import _fix_turtle, _turtle_errors, _colors_fix, _missing_fct, _missing_alias

def turtle_diags():
  print("Type: " + str(type(turtle)))
  print("Patchable: " + (_fix_turtle and "yes" or "no"))
  errors_msg = (
    "No <import turtle>",
    "No pencolor()",
    "No color()",
    "No colormode()",
    "No color as list",
    "No color as tuple",
    "No color as args",
    "No color as string",
    "Missing colors strings: ",
    "No circle(,angle)",
    "Can't get position()",
    "No heading()",
    "No fill",
    "No clear()",
    "No reset()",
    "No towards()",
    "Other missing: ",
    "Missing aliases: ",
  )
  errors = 0
  for k in range(len(errors_msg)):
    if _turtle_errors & 1 << k:
      errors += 1
      msg = "Err " + str(k) + ": " + errors_msg[k]
      if k == 8:
        msg += str(len(_colors_fix)) + " " + str(tuple(_colors_fix.keys()))
      if k == 16:
        msg += str(len(_missing_fct)) + " " + " ".join(_missing_fct)
      if k == 17:
        l = []
        for v in _missing_alias:
          l.extend(v[1:])
        msg += str(len(l)) + " " + " ".join(l)
      print(msg)
  print(str(errors) + " error" + ((errors > 1) and "s" or ""))

turtle_diags()


Voici ce que nous racontent les scripts sur les différentes solutions
turtle
:

TI-83PCE/84+CE
turtle


TI-Nspire CX II
turtle

Casio
Graph 90E


KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl


NumWorks

Casio
Graph 35+E II



Aucune erreur n'est détectée automatiquement autmatiquement par nos scripts avec
KhiCAS
, chose exceptionnelle si l'on compare aux solutions officielles, et signe d'un soin absolument minutieux ! :bj:

Mais ça, c'est pour les problèmes détectables par des vérifications automatisées. Voyons maintenant d'éventuels écarts visuels sur quelques exemples de scripts.

Afin de pouvoir comparer équitablement avec les solutions officielles visiblement parfois bien moins conformes au standard
turtle
tout en conservant une unique version de chaque script utilisable sur l'ensemble des solutions, voici un script qu'il suffira d'importer à la place de chaque bibliothèque
turtle
et qui, lorsque celle-ci sera modifiable, corrigera la plupart des erreurs détectées : :bj:
Code: Select all
from ttl_chk import *
from ttl_chk import _color_types, _turtle_errors, _colors_fix, _missing_fct, _missing_alias

_fix_turtle = True

def nop(*argv): return None
idty = lambda c: c

try: # can turtle be patched ?
  turtle._fixcolorlist = idty
  turtle._fixcolorval = idty
  turtle._fixcolorstring = idty
  turtle._fixcolorargs = idty
  turtle._fixcolor = lambda c: turtle._fixcolorlist(turtle._fixcolorval(turtle._fixcolorstring(turtle._fixcolorargs(c))))
except:
  _fix_turtle = False

if _fix_turtle:

  # fix color() + pencolor()
  if _turtle_errors & 0x1000:
    turtle.fillcolor, turtle.begin_fill, turtle.end_fill = idty, nop, nop
  if _turtle_errors & 2:
    def _pencolor_(*argv):
      if len(argv): turtle.color(argv)
      else: return turtle.color()[0]
    turtle.pencolor = _pencolor_
  if _turtle_errors & 4:
    def _color_(*argv):
      if len(argv) == 2:
        turtle.pencolor(argv[0])
        turtle.fillcolor(argv[1])
      elif len(argv):
        turtle.pencolor(argv)
      else:
        return (turtle.pencolor(), turtle.fillcolor())
    turtle.color = _color_

  _fix_color = _color_types & 0b11 != 0b11 or not "colormode" in dir(turtle)

  # fix list/tuple color argument
  if _color_types & 0b11 == 0b10:
    def _fixcolorlist(c): return type(c) is list and tuple(c) or c
    turtle._fixcolorlist = _fixcolorlist
  if _color_types & 0b11 == 0b01:
    def _fixcolorlist(c): return type(c) is list and list(c) or c
    turtle._fixcolorlist = _fixcolorlist
  if not _color_types & 4:
    def _fixcolorargs(*argv):
      return len(argv) != 1 and argv or argv[0]

  if _fix_color:
    turtle._color = turtle.color
    turtle._pencolor = turtle.pencolor
    turtle._fillcolor = turtle.fillcolor
    if _color_types & 0b11:
      def _color(*argv):
        n = len(argv)
        if not(n): return turtle._color()
        elif n==2: turtle._color(argv[0], argv[1])
        else: turtle._color(n > 1 and argv or argv[0])
      def _pencolor(*argv):
        if not(len(argv)): return turtle._pencolor()
        turtle._pencolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0]))
      def _fillcolor(*argv):
        if not(len(argv)): return turtle._fillcolor()
        turtle._fillcolor(turtle._fixcolor(len(argv) > 1 and argv or argv[0]))
    else:
      def _color(*argv):
        n = len(argv)
        if not(n): return turtle._color()
        c = turtle._fixcolor(n == 3 and argv or argv[0])
        turtle._color(c[0], c[1], c[2])
      def _pencolor(*argv):
        if not(len(argv)): return turtle._pencolor()
        c = turtle._fixcolor(len(argv)>1 and argv or argv[0])
        turtle._pencolor(c[0], c[1], c[2])
      def _fillcolor(*argv):
        if not(len(argv)): return turtle._fillcolor()
        c = turtle._fixcolor(len(argv)>1 and argv or argv[0])
        turtle._fillcolor(c[0], c[1], c[2])
    turtle.color = _color
    turtle.pencolor = _pencolor
    turtle.fillcolor = _fillcolor

  # fix colormode()
  if _turtle_errors & 8:
    # test color mode
    try:
      turtle.pencolor([255, 0, 0])
      _color_mode = 255
    except: _color_mode = 1.0
    turtle._color_mode = _color_mode
    def _colormode(*argv):
      if not(len(argv)): return turtle._color_mode
      if int(argv[0]) in (1, 255):
        turtle._color_mode = int(argv[0]) == 255 and 255 or 1.0
    turtle.colormode = _colormode
    if _color_mode == 255:
      turtle._fixcolorval = lambda c: int(turtle._color_mode) == 1 and type(c) in (list, tuple) and [int(c[k] * 255) for k in range(3)] or c
    else:
      turtle._fixcolorval = lambda c: turtle._color_mode == 255 and type(c) in (list, tuple) and [c[k] / 255 for k in range(3)] or c

  # fix color strings
  if len(_colors_fix):
    def _fixcolorstring(c):
      if type(c) is str and c in _colors_fix:
        c = _colors_fix[c]
        if turtle.colormode() == 255:
          c = [int(c[k] * 255) for k in range(3)]
      return c
    turtle._fixcolorstring = _fixcolorstring

  # fix circle(,)
  if _turtle_errors & 0x200:
    turtle._circle = turtle.circle
    def _circle(r, a=360): turtle._circle(r)
    turtle.circle = _circle

  if len(_missing_fct):
    for f in _missing_fct:
      exec("turtle."+f+"=nop")

  if len(_missing_alias):
    for aliases in _missing_alias:
      validf = aliases[0]
      for f in aliases[1:]:
        exec(validf and "turtle."+f+"=turtle."+validf or "turtle."+f+"=nop")

  # fix clear()
  if _turtle_errors & 0x2000:
    turtle.clear = turtle.reset

  # fix reset()
  if _turtle_errors & 0x4000:
    turtle.reset = turtle.clear

  # fix towards()
  if _turtle_errors & 0x8000:
    from math import atan2, pi
    def _towards(x, y):
      x0, y0 = turtle.pos()
      return atan2(y - y0, x - x0) * 180 / pi
    turtle.towards = _towards




B) 4 exemples comparatifs améliorés

Go to top

Maintenant que nous avons de quoi faire tourner une unique version de chaque script sur l'ensemble des machines, poursuivons donc l'exploration de l'ensemble des solutions
turtle
avec quelques exemples de script.

Nous allons en profiter pour nous en donner à cœur joie avec les formidables fonctions de remplissage rajoutées dans l'avant-dernière version de
KhiCAS
, sur le thème de .

C'est donc l'occasion de voir si il y avait d'autres problèmes qui n'ont pas pu être détectés automatiquement, et si ils sont toujours présents dans la dernière version.

Plusieurs des exemples qui vont suivre sont inspirés de publications de pour
TI-Nspire CX II
et très librement et fortement adaptés pour être fonctionnels dans le contexte du
heap
Python
bien plus restreint des
TI-83 Premium CE
et compatibles.

Commençons par quelques exemples sur lesquels la dernière version de
KhiCAS
progresse :

Exemple B1 : Le défilé automobile

Go to top

Nous t'emmenons maintenant au défilé avec les logos de plusieurs grands constructeurs... automobiles :
Code: Select all
from ttl_fix import *

def rpoly(c, n):
  for k in range(n):
    turtle.forward(c)
    turtle.left(360 / n)

def audi(r):
  ir = 2 * r // 13
  turtle.penup()
  turtle.left(90)
  turtle.forward(r//2 - 2*ir)
  turtle.right(90)
  turtle.forward(-ir)
  turtle.pendown()
  turtle.pensize(3)
  for i in range(4):
    turtle.penup()
    turtle.forward(3 * ir)
    turtle.pendown()
    turtle.circle(2 * ir)

def mercedez_benz(r):
  ir = r // 2
  turtle.penup()
  turtle.forward(ir)
  turtle.left(90)
  turtle.forward(ir)
  turtle.pendown()
  turtle.pensize(2)
  x, y = turtle.pos()
  turtle.setheading(210)
  for i in range(3):
    turtle.goto(x,y)
    turtle.forward(ir)
    turtle.left(120)
  turtle.setheading(0)
  turtle.circle(-ir)

def citroen(r):
  x,y=turtle.pos()
  turtle.setheading(0)
  turtle.color((255,0,0), (255,0,0))
  turtle.begin_fill()
  rpoly(r, 4)
  turtle.end_fill()
  turtle.fillcolor((255,255,255))
  for i in range(2):
    turtle.setheading(45)
    turtle.begin_fill()
    for k in range(2):
      turtle.forward(.71 * r)
      turtle.left(k and 172 or -90)
    for k in range(2):
      turtle.forward(5 * r / 6)
      turtle.left(106)
    turtle.end_fill()
    y += r / 3
    turtle.penup()
    turtle.goto(x,y)
    turtle.pendown()

def mitsubichi(r):
  ir = r // 3
  turtle.penup()
  turtle.left(90)
  turtle.forward(ir)
  turtle.right(90)
  turtle.forward(r // 2)
  turtle.pendown()
  for i in range(3):
    turtle.setheading(60 + 120*i)
    turtle.color((255,0,0), (255,0,0))
    turtle.begin_fill()
    for k in range(4):
      turtle.forward(ir)
      turtle.left((k%2) and 120 or 60)
    turtle.end_fill()

def jeep(r):
  a=54
  ir = r/0.47552825814758/4 #sin(radians(a))/cos(radians(a))
  a=ir/0.85
  d=0.93*ir
  turtle.penup()
  turtle.forward(r//2)
  turtle.right(90)
  turtle.forward(ir - r)
  turtle.pendown()
  x, y = turtle.pos()
  turtle.setheading(234)
  turtle.forward(ir)
  turtle.left(126)
  turtle.fillcolor((180,180,180))
  turtle.begin_fill()
  rpoly(a, 5)
  turtle.end_fill()
  for i in range(5):
    col = i < 3 and (0,0,0) or (255,255,255)
    for j in range(2):
      turn =  j and turtle.left or turtle.right
      turtle.goto(x,y)
      turtle.setheading(90 + 72*i)
      turtle.fillcolor(col)
      turtle.begin_fill()
      turtle.forward(d)
      turn(172)
      turtle.forward(0.85*d)
      turn(44)
      turtle.forward(0.2*d)
      turtle.end_fill()
      col = [255 - col[k] for k in range(3)]

turtle.speed(0)
turtle.colormode(255)

r = 92
for iy in range(2):
  for ix in range(3):
    i = iy*3+ix
    if i < 5:
      y, x = (2*iy - 1) * r//2 - 48, (ix - 1)*r - 50
      turtle.penup()
      turtle.goto(x, y)
      turtle.setheading(0)
      turtle.pensize(1)
      turtle.pencolor((0,0,0))
      turtle.pendown()
      (mercedez_benz,jeep,mitsubichi,citroen,audi)[i](r)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Amélioration fantastique,
KhiCAS
rattrape le gros retard qu'il avait ici par rapport à la concurrence, et trace maintenant correctement les différents logos des constructeurs ! :bj:

Exemple B2 : Les flocons de Koch

Go to top

Encore une fois si tu es dans le Sud de la France, tu n'a pas dû voir de neige depuis des années... Faison donc neiger dans ta calculatrice maintenant, faisons neiger des
flocons de Koch
:
Code: Select all
from ttl_fix import *

def rotate_list(l):
  l[1:],l[0] = l[0:-1],l[-1]

def koch(n, l):
  if n<=0:
    turtle.forward(l)
  else:
    koch(n - 1, l / 3)
    turtle.left(60)
    koch(n - 1, l / 3)
    turtle.right(120)
    koch(n - 1, l / 3)
    turtle.left(60)
    koch(n - 1, l / 3)

def flock(n, l):
  koch(n, l)
  turtle.right(120)
  koch(n, l)
  turtle.right(120)
  koch(n, l)

turtle.speed(0)
turtle.colormode(255)

c = [127, 255, 0]
l = 80
for j in range(2):
  for i in range(3):
    n = j and 3 + i or 2 - i
    s = 5 - n
    turtle.penup()
    turtle.goto(i*117-157, j*95-25)
    turtle.pencolor(tuple(c))
    turtle.pensize(s)
    turtle.setheading(0)
    turtle.pendown()
    flock(n, l)
    n += 1
    rotate_list(c)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Beau progrès ici aussi, le flocon en haut à droite est enfin tracé de la bonne couleur comme chez la concurrence.

Exemple B3 : La linea

Go to top

Code: Select all
try: #TI-83 Premium CE
  from ti_system import disp_clr
  disp_clr()
except: pass
from ttl_fix import *

def spiral(k,a,l):
  x0, y0 = turtle.pos()
  h0 = turtle.heading()
  while True:
    for s in l:
      turtle.forward(s*k)
      turtle.left(180-a)
    x, y = turtle.pos()
    if abs(x - x0) + abs(y - y0) + abs(turtle.heading() - h0) <= 1:
      break

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(255)
turtle.color((0,0,0),(255,255,0))

try:
  for i in range(-1, 2, 2):
    turtle.penup()
    turtle.goto(80*i - ((i > 0) and 40 or 50), 0)
    turtle.pendown()
    try: turtle.begin_fill()
    except: pass
    spiral((i > 0) and 9 or 30, (i > 0) and 90 or 36, (i > 0) and (1,2,3,4,5,6,7,8,9) or (1,2,3))
    try: turtle.end_fill()
    except: pass
except MemoryError as e: print(e)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Belle amélioration ici aussi,
KhiCAS
remplit enfin correctement la forme de droite magré sa complexité !

Exemple B4 : Pavage d'une lagogne

Go to top

Partons maintenant à la pêche avec un script très hautement impressionnant par rapport aux contraintes de
heap
des
TI-83 Premium CE
et compatibles ; ici nous sommes vraiment sur le fil de la limite des possibilités concernant ces modèles.

Voici donc une lagogne littéralement pavée de poissons :
Code: Select all
from math import sqrt
from ttl_fix import *

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(255)
turtle.pencolor((0,0,0))

a=16

try:
  j = 0
  while -5 < j < 4:
    col = ((0,0,255),(255,0,0),(255,180,0))[j%3]
    i = 0
    while -2 + (j % 2) < i < 2:
      for c in range(3):
        turtle.penup()
        turtle.goto(sqrt(3)*3*a*(i*2-(j%2)), 3*a*j)
        turtle.setheading(-30 + 120*c)
        turtle.pendown()
        turtle.fillcolor(col)
        turtle.begin_fill()
        for k in range(-17, 18):
          l = a*sqrt(7)
          tf = ((1,141.787), (0,l), (1,-100.893), (0,a), (1,120), (0,a/2), [1,-120], [0,-a], [0,a], [1,120], (0,a/2), (1,60), (0,a), (1,-120), (0,a), (1,100.893), (0,l), [1,-40.893])[abs(k)]
          if k==6 or k==9 or k==17: tf[1] -= 180
          elif k==7 or k==8: tf[1] *= -1
          (turtle.forward, turtle.left)[tf[0]](tf[1])
        turtle.end_fill()
        turtle.forward(6*a)
        turtle.backward(5*a)
        turtle.penup()
        turtle.right(90)
        l = a*sqrt(3)/6
        for k in range(2):
          turtle.forward(l)
          turtle.pencolor((255,255,255))
          turtle.dot(a//4)
          turtle.pencolor((0,0,0))
          turtle.dot(a//8)
          turtle.backward(l)
          turtle.left(180)
      i = -i + (i <= 0)
    j = -j - (j >= 0)
except Exception as e: print(e)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Formidable ici aussi, les poissons se comportent enfin correctement sous
KhiCAS
pour réaliser la pavage !
Petits détails toutefois non spécifiques à cet exemple, lorsque l'on fait défiler le tracé obtenu :
  • les affichages effectués sur la barre de titre/état en haut d'écran
    (18 premières lignes de pixels)
    ne sont pas nettoyés correctement lors des rafraichissements
  • les formes ne sont bizarrement pas remplies correctement dans une bande correspondant aux 42 premières lignes de pixels

Exemple B4 : ♫ Le tournesol, le tournesol, ... ♫

Go to top

15452Terminons enfin avec un exemple absolument bluffant de réalisme pour du
turtle
, nous allons faire pousser un tournesol devant toi :
Code: Select all
from math import pi, sin, cos, sqrt
from ttl_fix import *

def spiral():
  phi = (1+sqrt(5))/2
  a  =0
  r = 0
  dr = 0.15
  turtle.penup()
  for i in range(300):
    turtle.forward(r)
    turtle.pencolor((0,0,0))
    try: turtle.dot(3)
    except: pass
    turtle.pencolor((205,133,63))
    try: turtle.dot(2)
    except: pass
    turtle.goto(0,0)
    turtle.setheading(0)
    a+=360/phi
    turtle.right(a)
    if a>=360:
      r+=dr
      a-=360   

def feuille(core,a):
    try: turtle.begin_fill()
    except: pass
    turtle.right(a/2)
    turtle.forward(core)
    turtle.left(a)
    turtle.forward(core)
    turtle.left(180-a)
    turtle.forward(core)
    turtle.left(a)
    turtle.forward(core)
    try: turtle.end_fill()
    except: pass

turtle.speed(0)
turtle.colormode(255)
turtle.pencolor((30,144,255))
try: turtle.dot(320)
except: pass

d=25
core=40
turtle.pencolor((160,82,45))
try: turtle.dot(40)
except: pass

c=((255,215,0),(255,255,0))

for i in range(2):
  turtle.color(c[0], c[i])
  for h in range(10*i,370,20):
    r=h * pi / 180
    x=d*cos(r)
    y=d*sin(r)
    turtle.penup()
    turtle.goto(x,y)
    turtle.pendown()
    turtle.setheading(h)
    feuille(core,32)

spiral()

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

nouveau
KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II

ancien
KhiCAS
NumWorks
TI-Nspire CX II CX


Excellent, les graines dans le cœur sont enfin délimitées correctement sous
KhiCAS
! :bj:





C) 13 autres exemples comparatifs

Go to top




Exemple C1 : La dalle aux ammonites

Go to top

C'est donc parti pour quelques exemples afin d'approfondir les améliorations de la nouvelle bibliothèque
turtle
pour
TI-83 Premium CE Edition Python
et compatibles, ainsi que les points forts et faibles par rapport aux autres modèles de calculatrices.

Précisons que les problèmes récurrents ne seront pas systématiquement réévoqués sur chaque exemple.

Un petit peu au Nord de Digne-les-bains en rive droite de la Bléone se trouve la dalle aux ammonites. Comme il est strictement interdit d'en prélever, voici de quoi en reproduire une sur ta calculatrice :
Code: Select all
from ttl_fix import *
from math import pi

turtle.speed(0)
turtle.pencolor((0,0,0))
turtle.pendown()
turtle.pensize(1)

turtle.goto(0,-8)
x,y = turtle.pos()
turtle.left(115)
for i in range(132):
  turtle.forward(10)
  try:
    h = turtle.towards(x,y)
    turtle.setheading(h)
  except: pass
  d=10*pi
  turtle.forward(d)
  turtle.backward(d)
  turtle.right(90)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C2 : L'escargot de lumière

Go to top

Si tu es dans le Sud de la France tu sais qu'il ne pleut pas souvent
(par contre, quand il pleut... il pleut !)
. Alors voici pour toi un escargot bariolé :
Code: Select all
from math import exp
from ttl_fix import *

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(1.0)

turtle.penup()
turtle.goto(0, -20)
turtle.pendown()
turtle.right(90)
for i in range(20):
  c = [exp(-.5 * ((i - k) / 12)**2) for k in (6, 18, 30)]
  cb = [v/2 for v in c]
  turtle.color(cb, c)
  try: turtle.begin_fill()
  except: pass
  turtle.circle(27 + i)
  try: turtle.end_fill()
  except: pass
  turtle.right(10)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C3 : Le triangle de Penrose

Go to top

Tu n'as jamais touché à un triangle de
Penrose
? Et bien voici de quoi en afficher le plan dans ta calculatrice, tu n'auras plus qu'à l'imprimer en 3D, si tu arrives à comprendre où est le devant et l'arrière : ;)
Code: Select all
from math import sqrt
from ttl_fix import *

def hook(a, c):
  turtle.penup()
  turtle.goto(0,-15)
  turtle.setheading(a)
  turtle.forward((l - 4*b) / sqrt(3))
  turtle.right(150)
  turtle.pendown()
  lf = ((turtle.left, 60),[turtle.forward,b],(turtle.left,120),(turtle.forward,l-b),[turtle.right,120],[turtle.forward,l-3*b])
  try:
    turtle.fillcolor(c)
    turtle.begin_fill()
  except: pass
  for k in range(-len(lf) + 1, len(lf)):
    tf = lf[abs(k)]
    if k == 1: tf[1] = l
    elif k == 4: tf[0] = turtle.left
    elif k == 5: tf[1] = b
    tf[0](tf[1])
  try: turtle.end_fill()
  except: pass
 
turtle.speed(0)
turtle.pensize(2)
turtle.colormode(255)

l=180
b=23

for i in range(112):
  turtle.pencolor(232 - int(i * 23 / 11), 249 - int(i * 29 / 55), 255)
  turtle.penup()
  turtle.goto(-192, 111 - 2*i)
  turtle.pendown()
  turtle.forward(384)

turtle.pencolor((0,0,0))
turtle.pensize(1)

hook(330, (255,255,0))
hook(90, (0,0,255))
hook(210, (255,0,0))

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C4 : La courtepointe de Mamie

Go to top

Voici maintenant la courtepointe brodée avec amour et soin par Mamie :
Code: Select all
from ttl_fix import *

def rotate_list(l):
  l[1:],l[0] = l[0:-1],l[-1]

def poly_reg_a(l, a):
  h0 = turtle.heading()
  while True:
    turtle.forward(l)
    turtle.left(a)
    if abs(h0 - turtle.heading()) < .1:
      break

turtle.hideturtle()
turtle.speed(0)
turtle.pensize(1)
turtle.colormode(255)

c = [191, 127, 0]
cf = [127, 255, 0]
i = 0
while i > -3:
  j = 0
  while j > -2:
    turtle.penup()
    turtle.goto((i - 1)*88, (j - 1)*85 + 28)
    turtle.pendown()
    turtle.color(c, cf)
    try: turtle.begin_fill()
    except: pass
    poly_reg_a(80, 140)
    try: turtle.end_fill()
    except: pass
    rotate_list(c)
    rotate_list(cf)
    j = -j + (j <= 0)
  i = -i + (i <= 0)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C5 : Les vitraux rhombiques

Go to top

Voici maintenant une belle rosace rhombique pour décorer le bâtiment de ton choix.

Nous utilisons ici la méthode
.dot()
permettant de remplir un disque de diamètre donné, afin de générer de quoi avoir une couleur de fond d'écran sur nos calculatrices, suffit-il juste de lui spécifier un diamètre suffisamment grand :
Code: Select all
from ttl_fix import *

turtle.speed(0)
turtle.colormode(255)
turtle.pencolor((0,0,255))
turtle.dot(320)
turtle.pencolor((0,0,0))
turtle.pensize(2)
col = ((255,0,0),(255,255,0),(0,255,0),(255,255,255),(255,0,255))
a=60

for i in range(10):
  c = col[i%5]
  turtle.color(c, c)
  turtle.begin_fill()
  for j in range(5):
    turtle.forward(a)
    turtle.right(72)
  turtle.end_fill()
  turtle.right(36)

for i in range(10):
  c = [v//3 for v in col[i%5]]
  turtle.pencolor(c)
  for j in range(5):
    turtle.forward(a)
    turtle.right(72)
  turtle.right(36)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Par rapport au fond bleu, notons que c'est bel et bien
KhiCAS
qui adopte le comportement correct. Selon le standard
turtle
, la méthode
.dot()
attend en paramètre le diamètre du disque à tracer. Ce sont les modèles
Texas Instruments
qui le considèrent à tort comme un rayon et remplissent alors tout l'écran.

Exemple C6 : Les roses par 12

Go to top

Voici maintenant une rose, cette fois-ci sur un fond d'écran en dégradé radial. Nous utiliserons pour cela cette fois-ci une boucle de
.dot()
:
Code: Select all
from math import pi, sin, cos, sqrt
from ttl_fix import *

def rpoly(c, n):
  a=360/n
  for k in range(n):
    turtle.forward(c)
    turtle.left(a)
def carre(c): rpoly(c, 4)

turtle.speed(0)
turtle.colormode(255)
turtle.penup()

r=80
alpha=(15 * pi / 180)

for i in range(320):
  c=int(255/320*i)
  turtle.pencolor(c,c,c)
  try: turtle.dot(320-i)
  except: pass

turtle.goto(20,-76)
turtle.color((255,255,255),(0,0,0))

for i in range(4):
  a=r*sin(alpha)*2
  d=a/sqrt(2)
  turtle.pendown()
  for i in range(12):
    turtle.right(15)
    try: turtle.begin_fill()
    except: pass
    carre(d)
    try: turtle.end_fill()
    except: pass
    turtle.left(45)
    turtle.penup()
    turtle.forward(a)
    turtle.pendown()
  turtle.penup()
  turtle.left(75)
  turtle.forward(d)
  turtle.right(60)
  r=r*cos(alpha)-a/2

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Sur la taille du disque de fond d'écran et comme déjà dit, c'est ici encore
KhiCAS
qui fait comme il faut.

Exemple C7 : Les triangles de Sierpiński

Go to top

Revenons aux fractales et à la récursivité avec les
triangles de Sierpiński
. As-tu déjà réussi à les compter ? Et bien voici de quoi commencer sur ta calculatrice :
Code: Select all
from ttl_fix import *

def sierp(n, l):
  if n == 0:
    for i in range (0, 3):
      turtle.forward(l)
      turtle.left(120)
  if n > 0:
    sierp(n - 1, l / 2)
    turtle.forward(l / 2)
    sierp(n - 1, l / 2)
    turtle.backward(l / 2)
    turtle.left(60)
    turtle.forward(l / 2)
    turtle.right(60)
    sierp(n - 1, l / 2)
    turtle.left(60)
    turtle.backward(l / 2)
    turtle.right(60)

turtle.colormode(255)
turtle.speed(0)
turtle.pensize(1)

turtle.penup()
turtle.goto(-110, -95)
turtle.pendown()
turtle.pencolor((255,0,0))
sierp(6, 220)
turtle.penup()
turtle.forward(400)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C8 : Sous le soleil exactement

Go to top

Plaçons-nous maintenant
sous le soleil exactement
, profitant ainsi de toutes les couleurs de la lumière blanche :
Code: Select all
from math import exp
from ttl_fix import *

def rpoly(c, n):
  a=360/n
  for k in range(n):
    turtle.forward(c)
    turtle.left(a)
def carre(c): rpoly(c, 4)

turtle.speed(0)
turtle.pensize(1)
turtle.colormode(1.0)

n = 36
for i in range(n):
  k=.4 + 4*i/255
  cp = [.7*exp(-.5 * ((n - i - k) / (n / 3))**2) for k in (6, 18, 30)]
  turtle.pencolor(cp)
  try:
    turtle.fillcolor((k,k,0))
    turtle.begin_fill()
  except: pass
  carre(60)
  try: turtle.end_fill()
  except: pass
  turtle.right(360 / n)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C9 : Le labyrinthe du Minotaure

Go to top

Explorons maintenant dans la labyrinthe du Minotaure :
Code: Select all
from ttl_fix import *

turtle.speed(0)
turtle.colormode(255)
turtle.pendown()

turtle.right(48)
turtle.pencolor((0,0,0))
for i in range(98):
  turtle.forward(2*i)
  turtle.left(90.5)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C10 : Le carreau de carreaux

Go to top

Code: Select all
from math import sqrt
from ttl_fix import *

def rotate_list(l):
  l[1:],l[0] = l[0:-1],l[-1]

def reg_poly(l, n):
  for i in range(n):
    turtle.forward(l)
    turtle.left(360/n)

def square(l):
  reg_poly(l, 4)

turtle.colormode(255)
turtle.pencolor(0,0,0)
turtle.speed(0)

turtle.pensize(3)
d=190
c=[0,255,127]
turtle.penup()
turtle.goto(-d/2,-d/2)
turtle.setheading(0)
turtle.pendown()
for i in range(8):
  try:
    turtle.fillcolor(tuple(c))
    turtle.begin_fill()
  except: pass
  square(d)
  try:
    turtle.end_fill()
  except: pass
  turtle.penup()
  turtle.forward(d/2)
  turtle.left(45)
  turtle.pendown()
  d/=sqrt(2)
  rotate_list(c)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Exemple C11 : Les étoiles jumelles

Go to top

Code: Select all
try: # TI-83 Premium CE
  from ti_system import disp_clr
  disp_clr()
except: pass
from ttl_fix import *

def rpoly(c, n):
  a=360/n
  for k in range(n):
    turtle.forward(c)
    turtle.left(a)

def rosace(c, n1, a, n2):
  try: turtle.begin_fill()
  except: pass
  for i in range(n2):
    turtle.left(a)
    rpoly(c, n1)
  try: turtle.end_fill()
  except: pass

turtle.colormode(255)
turtle.pencolor((0,0,0))

try: turtle.dot(320)
except: pass
turtle.color((255,255,255),(255,255,0))
turtle.speed(0)
turtle.pensize(1)
try:
  for i in range(-1, 2, 2):
    turtle.penup()
    turtle.goto(80*i, 0)
    turtle.pendown()
    rosace((i > 0) and 21 or 30, (i > 0) and 12 or 8, 30, 12)
    turtle.pensize(2)
    turtle.pencolor((0,0,255))
except MemoryError as e: print(e)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II


Sur la taille du disque de fond d'écran, c'est à nouveau ici
KhiCAS
qui a raison et pas
TI
.

Exemple C12 : La toile de l'araignée

Go to top

Suivons maintenant le fil de l'araignée :
Code: Select all
from ttl_fix import *

def spiral(a,b):
  turtle.pencolor((0,0,0))
  try: turtle.dot(320)
  except: pass
  turtle.pencolor((255,255,0))
  for i in range(189):
    for j in range(6):
      turtle.forward(i/a)
      turtle.left(23)
    turtle.left(b)
    try: turtle.dot(2)
    except: pass
   
turtle.speed(0)
turtle.colormode(255)
turtle.pensize(1)

a=17
b=194

spiral(a,b)

try: turtle.show() #TI-83 Premium CE
except: pass


TI-83PCE/84+CE
turtle

TI-Nspire CX II
turtle

Casio
Graph 90+E

KhiCAS
NumWorks
TI-Nspire CX II CX

TI-83PCE/84+CE
ce_turtl

NumWorks

Casio
Graph 35+E II





Conclusion

Go to top

Selon notre outil de tests,
KhiCAS
pour
TI-Nspire CX
et
NumWorks N0110
est bien mieux conforme au standard
Python-turtle
que l'ensemble des solutions
turtle
officielles, et semble en conséquence bien mieux se comporter en pratique sur une majorité de nos exemples. nous semble offrir à ce jour la meilleure bibliothèque
Python turtle
toutes solutions confondues.

Les méthodes de remplissage, absentes des implémentations officielles de
Casio
et
NumWorks
t'ouvrent la porte à de formidables progrès.

Les progrès témoignent d'un soin minutieux apporté par
Bernard Parisse
, et vu que tout semble parfait maintenant il va nous falloir tenter d'inventer de nouveaux exemples piégeux... :P




Téléchargements

Go to top


TI-z80 Bêta-test micro:bit v2.5.1 pour 83 Premium CE + drone Tello

New postby critor » 18 Apr 2022, 17:10

12212Depuis des années maintenant,
Texas Instruments
réalise de gros efforts pour rendre la programmation de ses calculatrices accessible à tous et toutes. Le constructeur a prêté une attention toute particulière aux plus jeunes et non initiés, souhaitant leur permettre de créer tous les projets imaginables sans avoir à se concentrer sur des difficultés annexes. :)

Nous pouvions déjà citer l'interface , le robot pilotable , la grille programmable ou encore l'adaptateur
TI-SensorLink
pour capteurs analogiques
Vernier
.
Tous ces éléments ont de plus l'avantage d'être utilisables directement avec le langage
Python
des calculatrices concernées, faisant de l'écosystème
Texas Instruments
le seul
Python
connecté ! :bj:

Un superbe support pour les enseignements scientifiques au lycée surtout maintenant que tous partagent le même langage de programmation, notamment en
SNT
, spécialité
NSI
,
SI
et
Physique-Chimie
, avec le gros avantage de la mobilité. En effet, les programmes produits et données collectées restent présents dans la calculatrice apportée par chaque élève à chaque cours, ce qui allège la charge logistique de l'enseignant. Données et algorithmes pourront donc être traités / travaillés à la prochaine séance, en devoir à la maison ou même de façon transdisciplinaire en collaboration avec un autre enseignant ! :D

129591295812957Et depuis la rentrée 2020 dernière grande révolution en date, plus besoin de t'équiper en
TI-Innovator
pour bénéficier de ces formidables avantages. En effet, la
TI-83 Premium CE Edition Python
française s'est vu rajouter la gestion du nanoordinateur programmable en
Python
dont tu étais peut-être déjà équipé·e ! :bj:

La carte
micro:bit
est initialement un projet lancé par la
BBC
(
B
ritish
B
roadcasting
C
orporation)
, le groupe audiovisuel public britannique, accompagné de nombre de partenaires dont
ARM
,
Microsoft
et
Samsung
. Elle fut distribuée gratuitement à un million d'élèves britanniques de 11 et 12 ans.

Le nom rend hommage au précédent succès du groupe dans ce domaine, le microordinateur à vocation pédagogique
BBC Micro
des années 1980, l'équivalent britannique de par son adoption à nos microordinateurs
Thomson MO5
et
TO7
inondant écoles, collèges et lycées à la fin de cette décennie dans le cadre du plan
IPT
(
I
nformatique
P
our
T
ous)
.
12277Les cartes
micro:bit
utilisent un connecteur
micro-USB
et ta calculatrice un
mini-USB
.

Pour relier les deux une solution est d'adjoindre un adaptateur
mini-USB
.

1296512964Pour moins d'encombrement, tu as aussi la solution d'utiliser un câble direct, au choix :
  • USB micro-B
    mâle ↔
    USB mini-A
    mâle
  • USB micro-B
    mâle ↔
    USB mini-B OTG
    mâle

1296212961La carte
micro:bit
dans ses versions 1 est programmable en
Python
et présentait initialement les caractéristiques et capacités suivantes :
  • processeur
    32 bits ARM Cortex-M0
    cadencé à
    16 MHz
  • mémoire de stockage
    Flash
    d'une capacité de
    256 Kio
  • mémoire de travail
    RAM
    d'une capacité de
    16 Kio
    permettant un
    heap (tas)
    Python
    de
    10,048 Ko
  • un afficheur, grille programmable de 5×5= 25 diodes rouges adressables, bien adapté pour l'affichage de motifs éventuellement animés ou encore de texte défilant
  • nombre de capteurs intégrés :
    • capteur de luminosité
      (lié aux diodes)
    • capteur de température
      (sur le processeur)
    • 2 boutons poussoirs
      A
      et
      B
      programmables de part et d'autre, comme sur les premières manettes et consoles de jeux portables de chez
      Nintendo
    • accéléromètre 3D, permettant de détecter les variations d'accélération et par conséquence diverses actions : secouer, pencher, chute libre, ...
    • boussole magnétique 3D, pour détecter cette fois-ci les champs magnétiques
  • connectivité
    Bluetooth 4.0
    basse énergie 2,4 GHz maître/esclave

134501296113451Depuis début 2021 est disponible la nouvelle carte
micro:bit v2
.

Elle utilise un tout nouveau microcontrôleur, le
nRF52833
, toujours de chez
Nordic Semiconductor
. Cette fois-ci nous avons des spécifications qui devraient nous permettre de respirer :
  • processeur
    32 bits ARM Cortex-M0
    cadencé à
    64 MHz
    au lieu de
    16 MHz
    soit 4 fois plus rapide ! :bj:
  • mémoire de stockage
    Flash
    d'une capacité de
    512 Kio
    au lieu de
    256 Kio
    soit 2 fois plus grande ! :bj:
  • mémoire de travail
    RAM
    d'une capacité de
    128 Kio
    au lieu de
    16 Kio
    soit 8 fois plus grande, permettant un
    heap (tas)
    Python
    de
    64,512 Ko
    ! :bj:

Elle apporte sur cette même face plusieurs nouveautés ou changements :
  • ajout d'un haut-parleur
  • ajout d'un microphone MEMs
  • bouton poussoir qui ne sert plus seulement à la réinitialisation
    (reset)
    , mais permet désormais également d'éteindre la carte
    (appui long)
    et de la rallumer
    (appui court)
  • l'antenne
    Bluetooth
    qui devient compatible
    BLE Bluetooth 5.0
    , contre seulement
    4.0
    auparavant
1344912962D'autres nouveautés ou changements sont également présents sur l'autre face :
  • ajout d'une diode DEL indiquant l'état du microphone
  • ajout d'un bouton tactile sur le logo
    micro:bit
    , voici pourquoi il perd sa couleur au profit de contacts métalliques

13453Expliquons brièvement la composition de la solution de connectivité
BBC micro:bit
de
Texas Instruments
, ainsi que son fonctionnement.

Le solution se compose d'une part d'un fichier
TI-Runtime
unique à copier sur la carte
micro:bit
v1
ou
v2
et qui lui permet d'être pilotée par la calculatrice. La bonne installation du fichier est aisément vérifiable, puisque faisant afficher à la carte le logo
Texas Instruments
.

La solution a un principe de fonctionnement très simple, mais non moins ingénieux pour autant. La carte
micro:bit
étant justement programmable en
Python
, une fois le
TI-Runtime
installé elle se met alors à écouter les commandes
Python
envoyées depuis la calculatrice et à les exécuter.

Depuis ta calculatrice, tu peux envoyer n'importe quelle commande
Python
à ta carte
micro:bit
et profiter pleinement de ses capacités grâce à la fonction
ti_hub.send()
, à condition d'encadrer la commande des bons caractères de contrôle. Voici une fonction
mb_run()
en ce sens :

14956
Code: Select all
from ti_hub import *

def mb_run(code):
  send('\x05') # enter paste mode (Ctrl-E)
  send(code)
  send('\x04') # exit paste mode (Ctrl-D)

Pour afficher par exemple
Pac-Man
, il te suffit d'appeler mb_run("display.show(Image.PACMAN)"), conformément à la documentation du .

Toutefois en pratique dans le contexte scolaire, cette façon de faire n'était pas idéale. Elle rajoutait un niveau d'imbrication : tu devais produire du code
Python
qui lui-même devait construire le code
Python
à envoyer et exécuter par la carte
micro:bit
, une marche sans doute un peu haute pour bien des élèves débutants.


Et bien justement,
Texas Instruments
est loin de s'être arrêté là. Sa solution de connectivité comporte également des bibliothèques
Python
additionnelles à charger sur ta calculatrice, au choix en Français ou Anglais, et rajoutant alors des menus permettant de faire appel plus simplement aux éléments correspondants sur la carte
micro:bit
. 11 bibliothèques étaient disponibles dans la dernière version, facilitant ainsi l'utilisation de certaines bibliothèques du :
  • microbit
    (générale, permet d'accéder aux menus des autres bibliothèques)
  • mb_audio
    (effets sonores - accessible via le menu
    Audio
    )
  • mb_butns
    (boutons
    A
    ,
    B
    et tactile intégrés - accessible via le menu
    Buttons
    ou
    Boutons
    )
  • mb_disp
    (afficheur à 5×5=25 LEDs rouges intégré - accessible via le menu
    Display
    ou
    Affichage
    )
  • mb_grove
    (capteurs et actionneurs
    Grove
    à rajouter - accessible via le menu
    Grove Devices
    )
  • mb_log
    (enregistrement de données - accessible via le menu
    Data logging
    ou
    Enregistrement de données
    )
  • mb_mic
    (micro intégré - accessible via le menu
    Microphone
    )
  • mb_music
    (haut-parleur à rajouter sur
    micro:bit v1
    ou intégré sur
    micro:bit v2
    - accessible via le menu
    Music
    ou
    Musique
    )
  • mb_neopx
    (rubans de LEDs programmables à rajouter - accessible via le menu
    NeoPixel
    )
  • mb_notes
    (notes de musique - accessible via le menu
    Music
    ou
    Musique
    )
  • mb_pins
    (contacts programmables intégrés - accessible via le menu
    Input/output pins
    ou
    Broches entrée/sortie
    )
  • mb_radio
    (communication radio intégrée - accessible via le menu
    Radio
    )
  • mb_sensr
    (capteurs intégrés : boussole, accéléromètre, température - accessible via le menu
    Sensors and gestures
    ou
    Capteurs et gestes
    )




Texas Instruments
et l'espace, c'est une grande histoire qui ne date pas d'hier. Outre les calculatrices qui ont accompagné les missions spatiales, on peut citer une collaboration de longue date avec la
Nasa
, l'agence spatiale américaine, et nombre de projets et événements ont été conçus dans ce cadre.

Dès le début du siècle
Texas Instruments
nous faisait rêver de faire débarquer des
rovers
sur
Mars
et les piloter à l'aide de nos calculatrices.

Si nous avons enfin le pilotable par calculatrice aujourd'hui, fallait-il déjà commencer par décoller avant d'espérer pouvoir un jour atteindre
Mars
.

Or lors de la dernière mise à jour en fouillant le
TI-Runtime 2.4.0
, nous avions découvert des traces de fonctions destinées à la configuration d'un drone
Tello
.

Ces fonctions n'étaient toutefois pas exposées et n'étaient donc a priori pas utilisables depuis la calculatrice.


Et bien voici aujourd'hui le grand jour.

Texas Instruments
te fait l'honneur de t'inviter à un bêta-test public de la prochaine mise à jour de sa solution
micro:bit
pour
TI-83 Premium CE Edition Python
et compatibles, avec support du drone
Tello
! :bj:








1) Eléments et versions

Go to top

Le pack d'aujourd'hui nous apporte deux éléments:
  • D'une part, nous avons une mise à jour en version
    2.5.1
    du
    TI-Runtime
    pour les
    micro:bit v2
    . Toutefois en pratique, en interrogeant la carte
    micro:bit
    avec microbit.runtime_version() après mise à jour cette dernière continue à rétourner l'ancienne version
    2.4.0
    .
  • D'autre nous avons une nouvelle bibliothèques
    Python
    tello
    , en version
    2.5
    .
Nous allons de suite creuser le nouveau
TI-Runtime
pour vérifier qu'il n'y a pas eu d'erreur, et ensuite te présenter la bibliothèque
TELLO
.




2) Changements TI-Runtime

Go to top

Ici pas de menu fouillable depuis la calculatrice pour connaître les fonctions utilisables, mais on peut procéder autrement. On peut en effet ouvrir directement le fichier sur pour pouvoir lire son code source :
Code: Select all
from microbit import *
from machine import freq, reset, time_pulse_us
from time import ticks_us, sleep_ms
from utime import sleep_us

# ------------------------------------------- Tello Drone -----------------------------------------------------------

#tello="TELLO-9EF498"
TX_pin = 'pin1' # yellow grove wire
RX_pin = 'pin15' # white grove wire
is_connected = False

def tello_read(cmd,TX=TX_pin,RX=RX_pin):
  try:
    uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
    uart.read()
    udp_len=len(cmd)
    uart.write('AT+CIPSEND=0,' + str(udp_len) + ',"192.168.10.1",8889\r\n')
    sleep (100)
    uart.read()
    udp = bytes(cmd, 'utf-8')
    uart.write(udp+"\r\n")
    sleep(100)
    timeout = 1
    timer = 0
    while not(uart.any()):
        sleep(1)
        timer += .001
        if timer > timeout:
            status = 'Error: timeout'
            break
    msg = str(uart.read())
    start=msg.find(':')
    end = msg.find('\\r\\n',start)
    msg = msg[start+1:end]
    if msg.find('Non')!=-1:
        msg = '0'
    uart.init(baudrate=115200)
    return(msg)
  except:
    uart.init(baudrate=115200)
    return(False)

def tello_control(cmd,TX=TX_pin,RX=RX_pin):
  try:
    timeout = 10
    uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
    uart.read()
    udp_len=len(cmd)
    uart.write('AT+CIPSEND=0,' + str(udp_len) + ',"192.168.10.1",8889\r\n')
    sleep(100)
    uart.read()
    udp = bytes(cmd, 'utf-8')
    uart.write(udp)
    timer = 0
    sleep(100)
    while not(uart.any()):
        sleep(1)
        timer += .001
        if timer > timeout:
            status ='Error: timeout'
            break
    msg = str(uart.read())
    if msg.find('SEND OK')==-1:
      uart.init(baudrate=115200)
      return (False)
    sleep(100)
    uart.read()
    timer = 0
    while not(uart.any()):
        sleep(1)
        timer += .001
        if timer > timeout:
            status = 'Error: timeout'
            break
    sleep(100)
    msg = str(uart.read())
    start=msg.find('\\r\\n+IPD')

    if msg.find('ok',start)!=-1:
        status = "ok"
    uart.init(baudrate=115200)
    #print("ok")
    #sleep(100)
    #print("ok")
    #sleep(100)
    return(status)
  except:
    uart.init(baudrate=115200)
    return(False)

def tello_connect(ssid,pswd="",TX=TX_pin,RX=RX_pin):
  #display.show(ti)
  try:
    timeout = 30
    global TX_pin
    global RX_pin
    TX_pin=locals()[TX]
    RX_pin=locals()[RX]
    uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
    #uart.write('AT+CWQAP\r\n')
    uart.write('AT+RST\r\n')
    #uart.write('AT+RESTORE\r\n')
    uart.write('AT+RFPOWER=30\r\n')
    uart.write('AT+CWMODE=3\r\n')
    uart.read()
    #sleep(100)
    the_ap ='AT+CWJAP=' + '"' + ssid +'"' + "," + '"' + pswd +'"\r\n'
    uart.write(the_ap + '\r\n')
    is_connected = False
    timer = 0
    sleep(100)
    while is_connected == False:
      timer = 0
      while not(uart.any()):
        sleep(1)
        timer += .002
        if timer > timeout:
            tello_AT('AT+RST\r\n')
            reset()
      msg = str(uart.read())
      if msg.find("WIFI GOT IP") !=-1:
        is_connected = True
    uart.write('AT+CIFSR\r\n')
    sleep(100)
    timer = 0
    while not(uart.any()):
      sleep(1)
      timer >.002
      if timer == timeout:
          tello_AT('AT+RST')
          reset()
    msg = str(uart.read())
    if msg.find("192.168.10") !=-1:
        status = 'got IP'
    uart.write('AT+CIPMUX=1\r\n')
    sleep(100)
    msg = uart.read()
    uart.write('AT+CIPSTART=0,"UDP","192.168.10.1",8889,8889,2\r\n')
    sleep(100)
    msg = uart.read()
    sleep(100)
    cmd='command'
    udp_len=len(cmd)
    uart.write('AT+CIPSEND=0,' + str(udp_len) + ',"192.168.10.1",8889\r\n')
    sleep(200)
    uart.read()
    udp = bytes(cmd, 'utf-8')
    uart.write(udp)
    msg = str(uart.read())
    if msg.find('SEND OK')==-1 and status =='got IP':
        status = "Tello Connected"
        display.show(Image.HAPPY)
    else:
        status = "Tello not responding"
        display.show(Image.SAD)
        uart.init(baudrate=115200)
        return (False)
    uart.init(baudrate=115200)
    #print(status)
    return(status)
  except:
    uart.init(baudrate=115200)
    display.show(Image.SAD)
    return(False)

def discover_tello(TX_pin,RX_pin):
  count = 0
  uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
  uart.write('AT+CWLAPOPT=1,2\r\n')
  while count < 15:
    uart.write('AT+CWLAP\r\n')
    while not(uart.any()):
      sleep(10)
    uart.read()     
    sleep(1000)
    msg = str(uart.read())
    start=msg.find('TELLO')
    if start != -1:
      end = msg.find('"',start)
      msg = msg[start:end]
      uart.init(baudrate=115200)
      return(msg)
    else:
      count += 1
  uart.init(baudrate=115200)
  return(False)
 
def write_tello_setup(ssid,tx,rx,number):
  try:
    cfg=open('tello.cfg','w')
    cfg.write(ssid + "@" + tx + "$" + rx + "%" +  number)
    cfg.close()
    return(True)
  except:
    print (False)

def read_tello_setup():
  cfg=open('tello.cfg','r')
  msg = cfg.read()
  d1 = msg.find('@')
  d2 = msg.find('$')
  d3 = msg.find('%')
  ssid = msg[:d1]
  tx = msg[d1+1:d2]
  rx = msg[d2+1:d3]
  number = msg[d3+1:]
  display.show(number)
  return ssid, tx,rx, number
 
# ------------------------------------------- ultrasonic ranger -----------------------------------------------------------

def ranger(pin=pin0,time = True):
  timeout_us=30000     
  pin.write_digital(0)
  sleep_us(2)
  pin.write_digital(1)
  sleep_us(10)
  pin.write_digital(0)
  pin.read_digital()
  duration = time_pulse_us(pin, 1, timeout_us)/1e6 # t_echo in seconds 
  distance = 343 * duration/2 * 100
  if time:
    return duration
  else:
    return distance

# ------------------------------------------- pulse timer ----------------------------------------------------------------
def time_pulses(pin,pulses):
    try:
        pin.read_digital()
        # wait for one trigger pulse
        while not pin.read_digital():
            pass
        while pin.read_digital():
            pass
        while not pin.read_digital():
            pass
        # begin timing pulses
        t0=ticks_us()
        for n in range(pulses-1):
            while (not pin.read_digital()):
                pass
            while pin.read_digital():
                pass
        tf=ticks_us()
        pulses_time = (tf-t0)/1000000
        return(str(pulses_time))
    except:
        pass

def time_H_to_L(pin):
        pin.read_digital()
        while (pin.read_digital()):
            pass
        t0=ticks_us()
        while not (pin.read_digital()):
            pass
        tf=ticks_us()
        pulse_time = (tf-t0)/1000000
        return(str(pulse_time))

def time_L_to_H(pin):
        pin.read_digital()
        while not (pin0.read_digital()):
            pass
        t0=ticks_us()
        while (pin.read_digital()):
            pass
        tf=ticks_us()
        pulse_time = (tf-t0)/1000000
        return(str(pulse_time))
       

# -------------------------------------------BME280 Barometric Pressure -----------------------------------------------------------
class BME280():
  def __init__(self):
    self.ready = False
    self.IDRegister  = 0xD0         
    self.CTRL_HUM    = 0xF2                 
    self.CTRL_MEAS   = 0xF4         
    self.CONFIG      = 0xF5       
    self.t_fine      = 0
    self.dig_T1      = 0
    self.dig_T2      = 0
    self.dig_T3      = 0
    self.dig_P1      = 0   
    self.dig_P2      = 0   
    self.dig_P3      = 0   
    self.dig_P4      = 0   
    self.dig_P5      = 0 
    self.dig_P6      = 0
    self.dig_P7      = 0 
    self.dig_P8      = 0
    self.dig_P9      = 0
    self.dig_H1      = 0                         
    self.dig_H2      = 0
    self.dig_H3      = 0
    self.dig_H4      = 0
    self.dig_H5      = 0
    self.dig_H6      = 0
    self.TRAW      = 0
    self.PRAW      = 0
    self.HRAW      = 0
    self.ConfigurationData           = bytearray(6)
    self.CalData00_25                = bytearray(25)
    self.CalData00_25BaseAddress     = bytearray(1)
    self.CalData00_25BaseAddress[0]  = 0x88
    self.CalData26_41                = bytearray(7)
    self.CalData26_41BaseAddress     = bytearray(1)
    self.CalData26_41BaseAddress[0]  = 0xE1
    self.RawSensorData               = bytearray(8)
    self.RawSensorDataBaseAddress    = bytearray(1)
    self.RawSensorDataBaseAddress[0] = 0xF7
   
  def init(self):
    try:
      IDAddress     = bytearray(1)
      IDAddress[0]  = self.IDRegister
      i2c.write(0x76, IDAddress, repeat = False)
      id = i2c.read(0x76, 1, repeat = False)
      i2c.write(0x76, self.CalData00_25BaseAddress, repeat = False)   
      self.CalData00_25 = i2c.read(0x76, 25, repeat = False)
      i2c.write(0x76, self.CalData26_41BaseAddress, repeat = False)   
      self.CalData26_41 = i2c.read(0x76, 7, repeat = False)
      self.dig_T1 = self.BuildU16(self.CalData00_25[1], self.CalData00_25[0])     
      self.dig_T2 = self.BuildS16(self.CalData00_25[3], self.CalData00_25[2])     
      self.dig_T3 = self.BuildS16(self.CalData00_25[5], self.CalData00_25[4])     
      self.dig_P1 = self.BuildU16(self.CalData00_25[7], self.CalData00_25[6])     
      self.dig_P2 = self.BuildS16(self.CalData00_25[9], self.CalData00_25[8])     
      self.dig_P3 = self.BuildS16(self.CalData00_25[11], self.CalData00_25[10])   
      self.dig_P4 = self.BuildS16(self.CalData00_25[13], self.CalData00_25[12])   
      self.dig_P5 = self.BuildS16(self.CalData00_25[15], self.CalData00_25[14])   
      self.dig_P6 = self.BuildS16(self.CalData00_25[17], self.CalData00_25[16])   
      self.dig_P7 = self.BuildS16(self.CalData00_25[19], self.CalData00_25[18])   
      self.dig_P8 = self.BuildS16(self.CalData00_25[21], self.CalData00_25[20])
      self.dig_P9 = self.BuildS16(self.CalData00_25[23], self.CalData00_25[22])
      self.dig_H1 = self.CalData00_25[24]                           
      self.dig_H2 = self.BuildS16(self.CalData26_41[1],self.CalData26_41[0])
      self.dig_H3 = self.CalData26_41[2]
      self.dig_H4 = (self.BuildS8(self.CalData26_41[3]) << 4) | (self.CalData26_41[4] & 0x0F)
      self.dig_H5 = (self.BuildS8(self.CalData26_41[5]) << 4) | ((self.CalData26_41[4] >> 4) & 0x0F)
      self.dig_H6 = self.BuildS8(self.CalData26_41[6])
      self.ConfigurationData[0] = self.CTRL_HUM       
      self.ConfigurationData[1] = 0b00000101     
      self.ConfigurationData[2] = self.CTRL_MEAS       
      self.ConfigurationData[3] = 0b10110111
      self.ConfigurationData[4] = self.CONFIG     
      self.ConfigurationData[5] = 0b01000000       
      i2c.write(0x76,self.ConfigurationData, repeat=False)
      sleep(100)
      self.ready = True
    except:
      pass

  def BuildS16(self,msb, lsb):
      sval = ((msb << 8) | lsb)
      if sval > 32767: 
          sval -= 65536
      return sval
         
  def BuildU16(self,msb, lsb):
      return ((msb << 8) |lsb)


  def BuildS8(self,b):
      if b > 127:
          return (b-256)
      else:
          return b
         
  def CalculateTemperature(self):   
      self.t_fine
      Traw = float(self.TRAW)
      v1 = (Traw/ 16384.0 - float(self.dig_T1) / 1024.0) * float(self.dig_T2)
      v2 = ((Traw / 131072.0 - float(self.dig_T1) / 8192.0) * (
      Traw / 131072.0 - float(self.dig_T1) / 8192.0)) * float(self.dig_T3)
      self.t_fine = int(v1 + v2)
      T = (v1 + v2) / 5120.0
      return T

  def CalculatePressure(self):
      Praw = float(self.PRAW)
      v1 = float(self.t_fine) / 2.0 - 64000.0
      v2 = v1 * v1 * float(self.dig_P6) / 32768.0
      v2 = v2 + v1 * float(self.dig_P5) * 2.0
      v2 = v2 / 4.0 + float(self.dig_P4) * 65536.0
      v1 = (float(self.dig_P3) * v1 * v1 / 524288.0 + float(self.dig_P2) * v1) / 524288.0
      v1 = (1.0 + v1 / 32768.0) * float(self.dig_P1)
      if v1 == 0:
          return 0
      p  = 1048576.0 - Praw
      p  = ((p - v2 / 4096.0) * 6250.0) / v1
      v1 = float(self.dig_P9) * p * p / 2147483648.0
      v2 = p * float(self.dig_P8) / 32768.0
      p  = p + (v1 + v2 + float(self.dig_P7)) / 16.0
      return p
     
  def CalculateHumidity(self):
      self.t_fine
      Hraw = float(self.HRAW)
      h = float(self.t_fine) - 76800.0
      h = (Hraw - (float(self.dig_H4) * 64.0 + float(self.dig_H5) / 16384.0 * h)) * (
          float(self.dig_H2) / 65536.0 * (1.0 + float(self.dig_H6) / 67108864.0 * h * (
          1.0 + float(self.dig_H3) / 67108864.0 * h)))
      h = h * (1.0 - float(self.dig_H1) * h / 524288.0)
      if h > 100:
          h = 100
      elif h < 0:
          h = 0
      return h

  def read(self):
    if self.ready:
      try:
        i2c.write(0x76, self.RawSensorDataBaseAddress, repeat = False)
        sleep(100)
        self.RawSensorData = i2c.read(0x76, 8, repeat = False)
        sleep(100)
        self.TRAW = ((self.RawSensorData[3] << 16) | (self.RawSensorData[4] << 8) | self.RawSensorData[5]) >> 4
        self.PRAW = ((self.RawSensorData[0] << 16) | (self.RawSensorData[1] << 8) | self.RawSensorData[2]) >> 4
        self.HRAW = (self.RawSensorData[6] << 8)   | self.RawSensorData[7]
        return self.CalculateTemperature(),self.CalculatePressure(),self.CalculateHumidity()
      except:
        pass
    else:
      self.init()
      if self.ready:
        return (self.read())
      else:
       return None
# -------------------------------------------DHT20 Temperature and Humidity -----------------------------------------------------------
       
class DHT20():
  def __init__(self):
    self.ready = False
   
  def init(self):
    try:
      i2c.write(0x38, bytes([0xa8,0x00,0x00]))
      sleep_ms(100)
      i2c.write(0x38, bytes([0xbe,0x08,0x00]))
      sleep(100)
      self.ready = True
    except:
      pass   
   
  def read(self):
    if self.ready:
      try:
        i2c.write(0x38, bytes([0xac,0x33,0x00]))
        sleep(100)
        raw = i2c.read(0x38, 7, True)
        sleep(100)
        data = []
        for i in raw[:]:
          data.append(i)
        temperature = 0
        temperature = (temperature | data[3]) << 8
        temperature = (temperature | data[4]) << 8
        temperature = temperature | data[5]
        temperature = temperature & 0xfffff
        temperature = (temperature * 200 * 10 / 1024 / 1024 - 500)/10
        humidity = 0
        humidity = (humidity | data[1]) << 8
        humidity = (humidity | data[2]) << 8
        humidity = humidity | data[3]
        humidity = humidity >> 4
        humidity = (humidity * 100 * 10 / 1024 / 1024)/10   
        return temperature, humidity
      except:
        pass
    else:
      self.init()
      if self.ready:
        return (self.read())
      else:
       return None


# -------------------------------------------SGP30 VOC and CO2 -----------------------------------------------------------

class SGP30:
  def __init__(self):
    self.ready = False
   
  def init(self):
    try:
      i2c.write(0x58,bytes([0x36, 0x82]))
      self.iaq_init()
      self.ready = True
    except:
      pass 
   
  def TVOC(self):
    return self.iaq_measure()[1]
   
  def baseline_TVOC(self):
    return self.get_iaq_baseline()[1]
   
  def eCO2(self):
    return self.iaq_measure()[0]
   
  def baseline_eCO2(self):
    return self.get_iaq_baseline()[0]
   
  def iaq_init(self):
    self.run(['iaq_init',[0x20,0x03],0,10])
   
  def iaq_measure(self):
    return self.run(['iaq_measure',[0x20,0x08],2,50])
   
  def get_iaq_baseline(self):
    return self.run(['iaq_get_baseline',[0x20,0x15],2,10])
   
  def set_iaq_baseline(self,eCO2,TVOC):
    if eCO2==0 and TVOC==0:raise RuntimeError('Invalid baseline')
    b=[]
    for i in [TVOC,eCO2]:
      a=[i>>8,i&0xFF]
      a.append(self.g_crc(a))
      b+=a
    self.run(['iaq_set_baseline',[0x20,0x1e]+b,0,10])
   
  def set_iaq_humidity(self,PM3):
    b=[]
    for i in [int(PM3*256)]:
      a=[i>>8,i&0xFF]
      a.append(self.g_crc(a))
      b+=a
    self.run(['iaq_set_humidity',[0x20,0x61]+b,0,10])
   
  def run(self,profile):
    n,cmd,s,d=profile
    return self.get(cmd,d,s)
   
  def get(self,cmd,d,rs):
    i2c.write(0x58,bytearray(cmd))
    sleep(d)
    if not rs:return None
    cr=i2c.read(0x58,rs*3)
    o=[]
    for i in range(rs):
      w=[cr[3*i],cr[3*i+1]]
      c=cr[3*i+2]
      if self.g_crc(w)!=c:raise RuntimeError('CRC Error')
      o.append(w[0]<<8|w[1])
    return o
   
  def g_crc(self,data):
    c=0xFF
    for byte in data:
      c^=byte
      for _ in range(8):
        if c&0x80:c=(c<<1)^0x31
        else:c<<=1
    return c&0xFF
 
  def read(self):
    if self.ready:
      try:
        return self.eCO2(), self.TVOC()
      except:
        pass
    else:
      self.init()
      if self.ready:
        return (self.read())
      else:
       return None

# ------------------------------------------- start up -----------------------------------------------------------

def ismb():
  return(True)
 
def get_version():
    print ("TI-Runtime Version 2.4.0")
   
bme280 = BME280()
dht20 = DHT20()
sgp30 = SGP30()
ti = Image("05500:""05595:""55555:""05550:""00500")
display.show(ti)
Code: Select all
from microbit import *
from machine import freq, reset, time_pulse_us
from time import ticks_us, sleep_ms
from utime import sleep_us

tello="TELLO-9EF498"
TX_pin = pin2 # white grove wire
RX_pin = pin1 # yellow grove wire
ssid = "3227 Ridge Road"
pswd="7209909589"

# ------------------------------------------- Tello Drone -----------------------------------------------------------


is_connected = False
 
def tello_read(cmd,TX=TX_pin,RX=RX_pin):
  try:
    uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
    uart.read()
    udp_len=len(cmd)
    uart.write('AT+CIPSEND=0,' + str(udp_len) + ',"192.168.10.1",8889\r\n')
    sleep (100)
    uart.read()
    udp = bytes(cmd, 'utf-8')
    uart.write(udp+"\r\n")
    sleep(100)
    timeout = 1
    timer = 0
    while not(uart.any()):
        sleep(1)
        timer += .001
        if timer > timeout:
            status = 'Error: timeout'
            break
    msg = str(uart.read())
    start=msg.find(':')
    end = msg.find('\\r\\n',start)
    msg = msg[start+1:end]
    if msg.find('Non')!=-1:
        msg = '0'
    uart.init(baudrate=115200)
    return(msg)
  except:
    uart.init(baudrate=115200)
    return(False)

def tello_control(cmd,TX=TX_pin,RX=RX_pin):
  try:
    timeout = 10
    uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
    uart.read()
    udp_len=len(cmd)
    uart.write('AT+CIPSEND=0,' + str(udp_len) + ',"192.168.10.1",8889\r\n')
    sleep(100)
    uart.read()
    udp = bytes(cmd, 'utf-8')
    uart.write(udp)
    timer = 0
    sleep(100)
    while not(uart.any()):
        sleep(1)
        timer += .001
        if timer > timeout:
            status ='Error: timeout'
            break
    msg = str(uart.read())
    if msg.find('SEND OK')==-1:
      uart.init(baudrate=115200)
      return (False)
    sleep(100)
    uart.read()
    timer = 0
    while not(uart.any()):
        sleep(1)
        timer += .001
        if timer > timeout:
            status = 'Error: timeout'
            break
    sleep(100)
    msg = str(uart.read())
    start=msg.find('\\r\\n+IPD')

    if msg.find('ok',start)!=-1:
        status = "ok"
    uart.init(baudrate=115200)
    #print("ok")
    #sleep(100)
    #print("ok")
    #sleep(100)
    return(status)
  except:
    uart.init(baudrate=115200)
    return(False)

def tello_connect(ssid,pswd="",TX=TX_pin,RX=RX_pin):
  #display.show(ti)
  # when the configuration is read, global TX and RX should be updated
  try:
    timeout = 30
    global TX_pin
    global RX_pin
    TX_pin=locals()[TX]
    RX_pin=locals()[RX]
    uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
    #uart.write('AT+CWQAP\r\n')
    uart.write('AT+RST\r\n')
    #uart.write('AT+RESTORE\r\n')
    uart.write('AT+RFPOWER=30\r\n')
    uart.write('AT+CWMODE=3\r\n')
    uart.read()
    #sleep(100)
    the_ap ='AT+CWJAP=' + '"' + ssid +'"' + "," + '"' + pswd +'"\r\n'
    uart.write(the_ap + '\r\n')
    is_connected = False
    timer = 0
    sleep(100)
    while is_connected == False:
      timer = 0
      while not(uart.any()):
        sleep(1)
        timer += .002
        if timer > timeout:
            tello_AT('AT+RST\r\n')
            reset()
      msg = str(uart.read())
      if msg.find("WIFI GOT IP") !=-1:
        is_connected = True
    uart.write('AT+CIFSR\r\n')
    sleep(100)
    timer = 0
    while not(uart.any()):
      sleep(1)
      timer >.002
      if timer == timeout:
          tello_AT('AT+RST')
          reset()
    msg = str(uart.read())
    if msg.find("192.168.10") !=-1:
        status = 'got IP'
    uart.write('AT+CIPMUX=1\r\n')
    sleep(100)
    msg = uart.read()
    uart.write('AT+CIPSTART=0,"UDP","192.168.10.1",8889,8889,2\r\n')
    sleep(100)
    msg = uart.read()
    sleep(100)
    cmd='command'
    udp_len=len(cmd)
    uart.write('AT+CIPSEND=0,' + str(udp_len) + ',"192.168.10.1",8889\r\n')
    sleep(200)
    uart.read()
    udp = bytes(cmd, 'utf-8')
    uart.write(udp)
    msg = str(uart.read())
    if msg.find('SEND OK')==-1 and status =='got IP':
        status = "Tello Connected"
        display.show(Image.YES)
    else:
        status = "Tello not responding"
        display.show(Image.NO)
        uart.init(baudrate=115200)
        return (False)
    uart.init(baudrate=115200)
    #print(status)
    return(status)
  except:
    uart.init(baudrate=115200)
    display.show(Image.NO)
    return(False)

def discover_tello(TX_pin,RX_pin):
  count = 0
  uart.init(baudrate=115200,tx=TX_pin,rx=RX_pin)
  uart.write('AT+CWLAPOPT=1,2\r\n')
  while count < 30:
    uart.write('AT+CWLAP\r\n')
    while not(uart.any()):
      sleep(10)
    uart.read()     
    sleep(1000)
    msg = str(uart.read())
    start=msg.find('TELLO')
    if start != -1:
      end = msg.find('"',start)
      msg = msg[start:end]
      uart.init(baudrate=115200)
      return(msg)
    else:
      count += 1
  uart.init(baudrate=115200)
  return(False)
 
def write_tello_setup(ssid,tx,rx,number):
  try:
    cfg=open('tello.cfg','w')
    cfg.write(ssid + "@" + tx + "$" + rx + "%" +  number)
    cfg.close()
    return(True)
  except:
    print (False)

def read_tello_setup():
  try:
    cfg=open('tello.cfg','r')
    msg = cfg.read()
    d1 = msg.find('@')
    d2 = msg.find('$')
    d3 = msg.find('%')
    ssid = msg[:d1]
    tx = msg[d1+1:d2]
    rx = msg[d2+1:d3]
    number = msg[d3+1:]
    display.show(number)
    return ssid, tx,rx, number
  except:
    return False


# ------------------------------------------- ultrasonic ranger -----------------------------------------------------------

def ranger(pin=pin0,time = True):
  timeout_us=30000     
  pin.write_digital(0)
  sleep_us(2)
  pin.write_digital(1)
  sleep_us(10)
  pin.write_digital(0)
  pin.read_digital()
  duration = time_pulse_us(pin, 1, timeout_us)/1e6 # t_echo in seconds 
  distance = 343 * duration/2 * 100
  if time:
    return duration
  else:
    return distance

# ------------------------------------------- pulse timer ----------------------------------------------------------------
def time_pulses(pin,pulses):
    try:
        pin.read_digital()
        # wait for one trigger pulse
        while not pin.read_digital():
            pass
        while pin.read_digital():
            pass
        while not pin.read_digital():
            pass
        # begin timing pulses
        t0=ticks_us()
        for n in range(pulses-1):
            while (not pin.read_digital()):
                pass
            while pin.read_digital():
                pass
        tf=ticks_us()
        pulses_time = (tf-t0)/1000000
        return(str(pulses_time))
    except:
        pass

def time_H_to_L(pin):
        pin.read_digital()
        while (pin.read_digital()):
            pass
        t0=ticks_us()
        while not (pin.read_digital()):
            pass
        tf=ticks_us()
        pulse_time = (tf-t0)/1000000
        return(str(pulse_time))

def time_L_to_H(pin):
        pin.read_digital()
        while not (pin0.read_digital()):
            pass
        t0=ticks_us()
        while (pin.read_digital()):
            pass
        tf=ticks_us()
        pulse_time = (tf-t0)/1000000
        return(str(pulse_time))
       

# -------------------------------------------BME280 Barometric Pressure -----------------------------------------------------------
class BME280():
  def __init__(self):
    self.ready = False
    self.IDRegister  = 0xD0         
    self.CTRL_HUM    = 0xF2                 
    self.CTRL_MEAS   = 0xF4         
    self.CONFIG      = 0xF5       
    self.t_fine      = 0
    self.dig_T1      = 0
    self.dig_T2      = 0
    self.dig_T3      = 0
    self.dig_P1      = 0   
    self.dig_P2      = 0   
    self.dig_P3      = 0   
    self.dig_P4      = 0   
    self.dig_P5      = 0 
    self.dig_P6      = 0
    self.dig_P7      = 0 
    self.dig_P8      = 0
    self.dig_P9      = 0
    self.dig_H1      = 0                         
    self.dig_H2      = 0
    self.dig_H3      = 0
    self.dig_H4      = 0
    self.dig_H5      = 0
    self.dig_H6      = 0
    self.TRAW      = 0
    self.PRAW      = 0
    self.HRAW      = 0
    self.ConfigurationData           = bytearray(6)
    self.CalData00_25                = bytearray(25)
    self.CalData00_25BaseAddress     = bytearray(1)
    self.CalData00_25BaseAddress[0]  = 0x88
    self.CalData26_41                = bytearray(7)
    self.CalData26_41BaseAddress     = bytearray(1)
    self.CalData26_41BaseAddress[0]  = 0xE1
    self.RawSensorData               = bytearray(8)
    self.RawSensorDataBaseAddress    = bytearray(1)
    self.RawSensorDataBaseAddress[0] = 0xF7
   
  def init(self):
    try:
      IDAddress     = bytearray(1)
      IDAddress[0]  = self.IDRegister
      i2c.write(0x76, IDAddress, repeat = False)
      id = i2c.read(0x76, 1, repeat = False)
      i2c.write(0x76, self.CalData00_25BaseAddress, repeat = False)   
      self.CalData00_25 = i2c.read(0x76, 25, repeat = False)
      i2c.write(0x76, self.CalData26_41BaseAddress, repeat = False)   
      self.CalData26_41 = i2c.read(0x76, 7, repeat = False)
      self.dig_T1 = self.BuildU16(self.CalData00_25[1], self.CalData00_25[0])     
      self.dig_T2 = self.BuildS16(self.CalData00_25[3], self.CalData00_25[2])     
      self.dig_T3 = self.BuildS16(self.CalData00_25[5], self.CalData00_25[4])     
      self.dig_P1 = self.BuildU16(self.CalData00_25[7], self.CalData00_25[6])     
      self.dig_P2 = self.BuildS16(self.CalData00_25[9], self.CalData00_25[8])     
      self.dig_P3 = self.BuildS16(self.CalData00_25[11], self.CalData00_25[10])   
      self.dig_P4 = self.BuildS16(self.CalData00_25[13], self.CalData00_25[12])   
      self.dig_P5 = self.BuildS16(self.CalData00_25[15], self.CalData00_25[14])   
      self.dig_P6 = self.BuildS16(self.CalData00_25[17], self.CalData00_25[16])   
      self.dig_P7 = self.BuildS16(self.CalData00_25[19], self.CalData00_25[18])   
      self.dig_P8 = self.BuildS16(self.CalData00_25[21], self.CalData00_25[20])
      self.dig_P9 = self.BuildS16(self.CalData00_25[23], self.CalData00_25[22])
      self.dig_H1 = self.CalData00_25[24]                           
      self.dig_H2 = self.BuildS16(self.CalData26_41[1],self.CalData26_41[0])
      self.dig_H3 = self.CalData26_41[2]
      self.dig_H4 = (self.BuildS8(self.CalData26_41[3]) << 4) | (self.CalData26_41[4] & 0x0F)
      self.dig_H5 = (self.BuildS8(self.CalData26_41[5]) << 4) | ((self.CalData26_41[4] >> 4) & 0x0F)
      self.dig_H6 = self.BuildS8(self.CalData26_41[6])
      self.ConfigurationData[0] = self.CTRL_HUM       
      self.ConfigurationData[1] = 0b00000101     
      self.ConfigurationData[2] = self.CTRL_MEAS       
      self.ConfigurationData[3] = 0b10110111
      self.ConfigurationData[4] = self.CONFIG     
      self.ConfigurationData[5] = 0b01000000       
      i2c.write(0x76,self.ConfigurationData, repeat=False)
      sleep(100)
      self.ready = True
    except:
      pass

  def BuildS16(self,msb, lsb):
      sval = ((msb << 8) | lsb)
      if sval > 32767: 
          sval -= 65536
      return sval
         
  def BuildU16(self,msb, lsb):
      return ((msb << 8) |lsb)


  def BuildS8(self,b):
      if b > 127:
          return (b-256)
      else:
          return b
         
  def CalculateTemperature(self):   
      self.t_fine
      Traw = float(self.TRAW)
      v1 = (Traw/ 16384.0 - float(self.dig_T1) / 1024.0) * float(self.dig_T2)
      v2 = ((Traw / 131072.0 - float(self.dig_T1) / 8192.0) * (
      Traw / 131072.0 - float(self.dig_T1) / 8192.0)) * float(self.dig_T3)
      self.t_fine = int(v1 + v2)
      T = (v1 + v2) / 5120.0
      return T

  def CalculatePressure(self):
      Praw = float(self.PRAW)
      v1 = float(self.t_fine) / 2.0 - 64000.0
      v2 = v1 * v1 * float(self.dig_P6) / 32768.0
      v2 = v2 + v1 * float(self.dig_P5) * 2.0
      v2 = v2 / 4.0 + float(self.dig_P4) * 65536.0
      v1 = (float(self.dig_P3) * v1 * v1 / 524288.0 + float(self.dig_P2) * v1) / 524288.0
      v1 = (1.0 + v1 / 32768.0) * float(self.dig_P1)
      if v1 == 0:
          return 0
      p  = 1048576.0 - Praw
      p  = ((p - v2 / 4096.0) * 6250.0) / v1
      v1 = float(self.dig_P9) * p * p / 2147483648.0
      v2 = p * float(self.dig_P8) / 32768.0
      p  = p + (v1 + v2 + float(self.dig_P7)) / 16.0
      return p
     
  def CalculateHumidity(self):
      self.t_fine
      Hraw = float(self.HRAW)
      h = float(self.t_fine) - 76800.0
      h = (Hraw - (float(self.dig_H4) * 64.0 + float(self.dig_H5) / 16384.0 * h)) * (
          float(self.dig_H2) / 65536.0 * (1.0 + float(self.dig_H6) / 67108864.0 * h * (
          1.0 + float(self.dig_H3) / 67108864.0 * h)))
      h = h * (1.0 - float(self.dig_H1) * h / 524288.0)
      if h > 100:
          h = 100
      elif h < 0:
          h = 0
      return h

  def read(self):
    if self.ready:
      try:
        i2c.write(0x76, self.RawSensorDataBaseAddress, repeat = False)
        sleep(100)
        self.RawSensorData = i2c.read(0x76, 8, repeat = False)
        sleep(100)
        self.TRAW = ((self.RawSensorData[3] << 16) | (self.RawSensorData[4] << 8) | self.RawSensorData[5]) >> 4
        self.PRAW = ((self.RawSensorData[0] << 16) | (self.RawSensorData[1] << 8) | self.RawSensorData[2]) >> 4
        self.HRAW = (self.RawSensorData[6] << 8)   | self.RawSensorData[7]
        return self.CalculateTemperature(),self.CalculatePressure(),self.CalculateHumidity()
      except:
        pass
    else:
      self.init()
      if self.ready:
        return (self.read())
      else:
       return None
# -------------------------------------------DHT20 Temperature and Humidity -----------------------------------------------------------
       
class DHT20():
  def __init__(self):
    self.ready = False
   
  def init(self):
    try:
      i2c.write(0x38, bytes([0xa8,0x00,0x00]))
      sleep_ms(100)
      i2c.write(0x38, bytes([0xbe,0x08,0x00]))
      sleep(100)
      self.ready = True
    except:
      pass   
   
  def read(self):
    if self.ready:
      try:
        i2c.write(0x38, bytes([0xac,0x33,0x00]))
        sleep(100)
        raw = i2c.read(0x38, 7, True)
        sleep(100)
        data = []
        for i in raw[:]:
          data.append(i)
        temperature = 0
        temperature = (temperature | data[3]) << 8
        temperature = (temperature | data[4]) << 8
        temperature = temperature | data[5]
        temperature = temperature & 0xfffff
        temperature = (temperature * 200 * 10 / 1024 / 1024 - 500)/10
        humidity = 0
        humidity = (humidity | data[1]) << 8
        humidity = (humidity | data[2]) << 8
        humidity = humidity | data[3]
        humidity = humidity >> 4
        humidity = (humidity * 100 * 10 / 1024 / 1024)/10   
        return temperature, humidity
      except:
        pass
    else:
      self.init()
      if self.ready:
        return (self.read())
      else:
       return None


# -------------------------------------------SGP30 VOC and CO2 -----------------------------------------------------------

class SGP30:
  def __init__(self):
    self.ready = False
   
  def init(self):
    try:
      i2c.write(0x58,bytes([0x36, 0x82]))
      self.iaq_init()
      self.ready = True
    except:
      pass 
   
  def TVOC(self):
    return self.iaq_measure()[1]
   
  def eCO2(self):
    return self.iaq_measure()[0]   

  def iaq_init(self):
    self.run(['iaq_init',[0x20,0x03],0,10])

  def iaq_measure(self):
    return self.run(['iaq_measure',[0x20,0x08],2,50])
     
  def baseline_TVOC(self):
    return self.get_iaq_baseline()[1]
       
  def baseline_eCO2(self):
    return self.get_iaq_baseline()[0]
   
  def get_iaq_baseline(self):
    return self.run(['iaq_get_baseline',[0x20,0x15],2,10])
   
  def set_iaq_baseline(self,eCO2,TVOC):
    if eCO2==0 and TVOC==0:raise RuntimeError('Invalid baseline')
    b=[]
    for i in [TVOC,eCO2]:
      a=[i>>8,i&0xFF]
      a.append(self.g_crc(a))
      b+=a
    self.run(['iaq_set_baseline',[0x20,0x1e]+b,0,10])
   
  def set_iaq_humidity(self,PM3):
    b=[]
    for i in [int(PM3*256)]:
      a=[i>>8,i&0xFF]
      a.append(self.g_crc(a))
      b+=a
    self.run(['iaq_set_humidity',[0x20,0x61]+b,0,10])

   
  def run(self,profile):
    n,cmd,s,d=profile
    return self.get(cmd,d,s)

 
  def get(self,cmd,d,rs):
    i2c.write(0x58,bytearray(cmd))
    sleep(d)
    if not rs:return None
    cr=i2c.read(0x58,rs*3)
    o=[]
    for i in range(rs):
      w=[cr[3*i],cr[3*i+1]]
      c=cr[3*i+2]
      if self.g_crc(w)!=c:raise RuntimeError('CRC Error')
      o.append(w[0]<<8|w[1])
    return o
   
  def g_crc(self,data):
    c=0xFF
    for byte in data:
      c^=byte
      for _ in range(8):
        if c&0x80:c=(c<<1)^0x31
        else:c<<=1
    return c&0xFF

 
  def read(self):
    if self.ready:
      try:
        return self.eCO2(), self.TVOC()
      except:
        pass
    else:
      self.init()
      if self.ready:
        return (self.read())
      else:
       return None


# ------------------------------------------- start up -----------------------------------------------------------

def ismb():
  return(True)
 
def get_version():
    print ("TI-Runtime Version 2.4.0")
   
bme280 = BME280()
dht20 = DHT20()
sgp30 = SGP30()
ti = Image("05500:""05595:""55555:""05550:""00500")
display.show(ti)

L'on constate en effet que la quasi totalité des changements concernent le support du drone
Tello
.




3) Nouvelle bibliothèque TELLO et premier script

Go to top

La bibliothèque
TELLO
une fois chargée sur ta calculatrice, est importable dans des scripts
Python
en passant par le menu des modules complémentaires. Cela t'active alors un nouveau menu
tello drone
.

Nous y retrouvons alors plusieurs onglets :
  • Fly
    pour tout ce qui concerne les contrôles dans le cadre d'un vol
  • Data
    pour interroger les capteurs intégrés au drone
    Tello
  • Maneuver
    pour quelques figures acrobatiques
  • EDU
    pour les plans de vol
  • Settings
    pour les réglages


Cela a l'air super simple non, enfantin même ? Voici donc déjà un premier script : :D
Code: Select all
from tello import *
tello.takeoff()
tello.forward(50)
d=tello.altitude()
tello.turn_left(180)
tello.forward(50)
tello.land()




4) Matériel nécessaire et premiers branchements

Go to top

Bref outre la calculatrice, que te faut-il maintenant niveau matériel pour piloter un drone
Tello
?

  1. nanoordinateur
    BBC micro:bit v2
  2. câble
    mini/micro-USB
    direct
    pour
    BBC micro:bit v2
    et calculatrice
  3. carte d'extension
    Grove
    ou
    bitmaker
  4. module
    Grove
    WiFi
    + cable
    Grove
  5. batterie externe
    USB
    + câble
    micro-USB
  6. drone
    Tello

Tu as tout le matériel entre les mains ? C'est parti pour les manipulations :

Commençons par enregistrer ton drone
Tello
si c'est sa première utilisation, étape qui ne peut se faire avec la calculatrice :
  1. Télécharge l'application de vol
    Tello
    sur ton téléphone.
  2. Allume ton drone
    Tello
    .
  3. Sur ton téléphone, recherche les points d'accès
    WiFi
    .
  4. Connecte-toi au point d'accès
    Tello
    qui devrait apparaître.
  5. Ouvre l'application et accepte l'enregistrement.
  6. Ferme l'application et déconnecte ton téléphone du point d'accès
    Tello
    .
    (attention à ce que ton téléphone n'y reste pas connecté ou ne s'y reconnecte pas tout seul, ce qui risque de perturber la communication avec la calculatrice)

Voici maintenant pour les connexions :
  1. Insère le nanoordinateur
    micro:bit v2
    dans la carte d'extension, en faisant attention au sens.
  2. Connecte la batterie
    USB
    à la carte d'extension.
  3. Connecte le module
    Grove WiFi
    au port
    P1
    de la carte d'extension.
  4. Assure-toi que la batterie
    USB
    est chargée et allumée si disposant d'un bouton.
  5. Allume la carte d'extension si disposant d'un bouton.
    (les DELs sur les
    micro:bit
    , carte d'extension et module
    WiFi
    doivent s'allumer)
  6. Connecte enfin la
    micro:bit
    à la calculatrice, puis allume cette dernière si nécessaire.
  7. Assure-toi que le drone
    Tello
    est chargé et allumé. Il va clignoter sous différentes couleurs puis se fixer sur du jaune clignotant lorsque prêt.

Et voilà, paré à décoller, tu peux enfin écrire et lancer ton premier script.




5) Lancement et tutoriel de décollage

Go to top

Dernière chose avant de te laisser voler de tes propres ailes, quand tu lances un script important le module
tello
, la calculatrice n'est pas capable de détecter la carte d'extension utilisée et va donc te demander de préciser.

Si tu préfères bricoler tes propres branchements, tu disposes également si tu préfères d'un écran de configuration avancé.

Si nécessaire, voici pour résumer tout cela un tuto-vidéo officiel en Anglais:




Téléchargements

Go to top

Décidément
Texas Instruments
, déjà
leader
incontesté des projets scientifiques sur calculatrices graphiques, se permet d'innover de façon encore plus formidable. En conséquence pour toi une toute nouvelle dimension à explorer pour des projets encore plus fantastiques ! :bj:

Merci
TI
!
:favorite:

  • TI-Runtime
    2.5.1
    pour
    BBC microbit v2
  • bibliothèque
    Python
    complémentaire

Source
:
https://resources.t3europe.eu/t3europe- ... 50b9bcfffa

NumWorks Mise à jour Phi + Omega 2.0.2 pour conformité mode examen

New postby critor » 17 Apr 2022, 17:49

La
NumWorks
était originellement un merveilleux projet de calculatrice graphique ouverte, rompant radicalement avec les usages des constructeurs historiques.

Le développement tiers a pu s'y hisser à un niveau jamais atteint sur la concurrence et permettre l'émergence d'un projet formidable,
Omega
par et ses non moins illustres collaborateurs.

Il s'agissait d'un
firmware
alternatif pour ta calculatrice
NumWorks
. Basé sur le code source du
firmware
officiel
Epsilon
comme la licence libre l'autorisait à l'époque,
Omega
avait pour but de regrouper et mettre en avant les meilleures contributions au code d'
Epsilon
, en incluant cette fois-ci celles laissées de côté par le constructeur.

Difficile de tout citer ici mais voici déjà par exemple quelques-uns des fantastiques ajouts d'
Omega
. La
NumWorks
travaille en interne sur des arbres de calcul, mais les bridait donc artificiellement pour n'accepter que des valeurs numériques.
Omega
ré-autorisait à nouveau ces arbres à utiliser des lettres / inconnues, ce qui nous redonnait ainsi un moteur de calcul littéral. De quoi même dériver, du jamais vu à seulement
80€
! :bj:
On peut aussi citer un tableau périodique des éléments, ou encore la possibilité d'avoir une bibliothèque de constantes physiques avec unités bien avant que ce ne soit disponible dans le
firmware
officiel.

12024Outre ce qu'il intégrait,
Omega
offrait également l'avantage de pouvoir installer à chaud des applications, fonctionnalité jusqu'alors absente du
firmware
officiel
Epsilon
. Plusieurs applications de très haute facture furent développées, on peut citer entre autres : :D
  • , une formidable application intégrée de Mathématiques et de Sciences par , enseignant-chercheur à l'Université de Grenoble, qui étendait gratuitement les capacités de ta calculatrice au niveau d'une
    HP Prime
    . L'application intégrait le moteur de calcul formel
    GIAC
    développé pour le logiciel
    Xcas
    du même auteur pour des possibilités en calcul encore plus étendues. Étaient également inclus un tableur ainsi qu'un un tableau périodique des éléments
    (deux applications faisant toujours à ce jour cruellement défaut au firmware officiel
    Epsilon
    )
    , ainsi qu'une bibliothèque de constantes physiques, un convertisseur d'unités, et bien d'autres choses encore. Le tout était en prime programmable en
    Python
    , avec une collection de bibliothèques importables bien plus étoffée que celle de l'application du
    firmware
    officiel, et surtout ici de façon intégrée, tes scripts
    Python
    pouvant même ici faire appel au moteur de calcul formel
    GIAC
    par l'intermédiaire de la bibliothèque
    cas
    .
  • , un émulateur de console de jeux
    Nintendo NES
    par
  • , un émulateur de console de jeux
    Nintendo GameBoy
    par
  • , un autre tableau périodique des éléments par
Un gros avantage de plus était ici que
KhiCAS
et l'ensemble des fonctionnalités rajoutées restaient accessibles en mode examen, de façon parfaitement légale et légitime en France, puisque ces fonctionnalités ne sont pas des données et venaient de plus directement intégrées à des modèles concurrents haut de gamme parfaitement autorisés. :bj:
14500Mais voilà, pour la rentrée 2021 la mise à jour d'
Epsilon
, le
firmware
officiel des calculatrices
NumWorks
, a introduit un verrouillage des modèles
N0110
.

Toute
N0110
mise à jour ou venant préchargée d'une version
16.3
ou supérieure, comprend un chargeur de démarrage censé être non effaçable, et empêchant entre autres :
  • l'installation de tout
    firmware
    non correctement signé par le constructeur, c'est-à-dire entre autres de tout
    firmware
    antérieur à la version
    16
    ainsi que de tout
    firmware
    non officiel dont
    Omega
  • l'installation d'applications persistantes en mémoire
    Flash
    (logiciel intégré de Mathématiques avec moteur ce calcul formel
    KhiCAS
    , émulateurs
    Nintendo Game Boy
    et
    NES
    , tableau périodique des éléments, ...)
NumWorks
a de plus profité de l'occasion pour révoquer sa licence libre, et interdire ainsi la réutilisation de tout code introduit à partir de la version
16
dans des
firmwares
non officiels ;
Omega
ne pouvait donc plus intégrer les dernières nouveautés. :'(

La mort dans l'âme, nous t'annoncions donc à la rentrée 2021 l'abandon en conséquence du projet de
firmware
Omega
.
Toutefois 2
forks
en ont par la suite émergé successivement, les
firmwares
par , puis .

Les utilisateurs informés qui avaient la chance d'avoir entre leurs mains des calculatrices non encore verrouillées avaient certes le choix mais restaient face à un très cruel dilemme :
  • soit mettre à jour vers le
    firmware
    Epsilon
    pour bénéficier de toutes les dernières nouveautés officielles, mais en contrepartie renoncer définitivement aux formidables ajouts des
    firmwares
    tiers
  • soit utiliser un
    firmware
    tiers, mais en contrepartie se priver des nouveautés officielles apportées à ce jour avec les versions , puis

15413Dans une actualité précédente, nous t'annoncions la sortie de
Phi
par , un des anciens de l'équipe de développement
Omega
.
Phi
est un chargeur de démarrage avec lequel il suffit d'écraser le chargeur officiel, grâce à une faille présente dans les
firmwares
Epsilon
officiels jusqu'à la version
18.2.0
.

Après plus de 6 mois d'attente
Phi
te permettait donc enfin de déverrouiller ta calculatrice. Mieux que ça, le nouveau chargeur de démarrage
Phi
était ensuite capable de lancer aussi bien les
firmwares
officiels
Epsilon
(à partir de la version
16
)
que les
firmware
tiers, à la seule condition que ces derniers aient été mis à jour pour supporter ce nouvel amorçage.

Le projet
Omega
profita justement de l'occasion pour renaître de ses cendres avec une mise à jour compatible en version
2.0.0
.

Encore mieux que ça, avec
Phi
tu n'avais même pas à choisir entre fonctionnalités officielles et tierces, tu peux avoir les deux en même temps ! :bj:
Phi
rajoute un raccourci
reset
+
4
permet de consulter l'état de la mémoire
Flash
et de mettre la calculatrice dans un mode de mise à jour protégé car interdisant la réécriture du chargeur de démarrage. Rappelons que depuis le verrouillage la mémoire
Flash
des
N0110
est partitionnée en deux moitiés égales de
4 Mio
et pouvant chacune accueillir un
firmware
. Justement à cet écran
Phi
présente la mémoire
Flash
comme découpée en 2
slots
A
et
B
de
4 Mio
chacun. Les nouveaux raccourcis
reset
+
1
et
reset
+
2
te permettent alors de basculer entre l'amorçage des deux
firmwares
présents dans chacun de ces 2
slots
. Du
multiboot
sur une calculatrice, c'est absolument sensationnel ! :#tritop#:

Sauf qu'il y avait un problème extrêmement grave avec
Phi
et
Omega 2.0.0
.

Phi
n'était pas conforme à la réglementation française du mode examen et était donc strictement interdit d'utilisation à tout examen exigeant l'activation de ce mode en France. :#non#:
Le problème était que les raccourcis
reset
+
1
et
reset
+
2
permettant de basculer entre les deux
firmwares
présents en mémoire désactivaient le mode examen et éteignaient donc la diode examen, chose aisément et rapidement détectable par les surveillants.

Certes, cela ne permettait a priori pas de tricher, vu qu'il s'agissait d'un
reset
et que cela vidait donc le contenu mémoire. Le problème est ailleurs ; c'est strictement interdit par les spécifications officielles du mode examen français. En effet le mode examen ne doit pas pouvoir être désactivé de façon autonome par les candidats, c'est-à-dire que la désactivation doit obligatoirement nécessiter un outil extérieur non présent sur leur table de composition car interdit en examen
(2ème calculatrice, ordinateur, smartphone, tablette, etc.)
.

Si tu introduisais
Phi
dans une salle d'examen en France et te faisais prendre
(parce que tu auras basculé entre deux firmwares pendant l'épreuve et oublié de réactiver immédiatement le mode examen)
, tu risquais l'ensemble des désagréments possiblement dramatiques associés à une tentative de fraude
(non fixé sur ta réussite à l'examen à la veille de l'été comme les camarades et donc rien à fêter avec eux, le jugement nécessitant du temps alors qu'en prime les rectorats sont fermés une bonne partie de l'été risque de perdre ton inscription dans l'enseignement supérieur et donc une année, jusqu'à 5 ans d'interdiction de passer tout examen y compris le permis de conduire de quoi bien te gâcher la vie, ...)
.

Les mises à jour suivantes de
Khi
puis
Upsilon
migrant vers ce nouveau mode de fonctionnement avec chargeur de démarrage, en ont profité pour traiter ce problème.

Le fonctionnement retenu était de dupliquer la configuration du mode examen dans les différents
slots
lors du basculement de
firmware
via les raccourcis
reset
+
1
et
reset
+
2
.

En théorie donc, le mode examen n'était donc plus désactivé et tu n'étais donc plus en danger.
En pratique toutefois ce n'était pas parfait.

D'une part ce n'était pas fiable à 100%. Il nous est arrivé que le mode examen se désactive lors d'une bascule entre les
firmwares
, plus précisément à la première activation suivant l'installation du
bootloader
associé. Pas réussi à date à reproduire le problème autrement ; mais comme les développeurs n'ont pas réussi à l'expliquer rien ne prouve que c'est impossible.

D'autre part, ce n'était pas gênant pour la France où seule le verrouillage du contenu mémoire préexistant est demandé en mode examen, mais dans d'autres pays le mode examen est également censé bloquer certaines fonctionnalités. Et là, la configuration dupliquée du mode examen n'était pas toujours comprise de la même façon lors du basculement entre les
firmwares
.

15451Aujourd'hui c'est enfin au tour du
firmware
Omega
d'être mis à jour afin d'améliorer la conformité avec le mode examen, mais cette fois-ci aussi bien en France que dans le monde ! :bj:

La solution retenue avec
Omega 2.0.2
diffère donc de celle de
Khi
et
Upsilon
.

15449Le
bootloader
est maintenant capable de détecter si l'un des
firmwares
installés a été passé en mode examen.

La solution est beaucoup plus radicale ; dans ce cas les raccourcis
reset
+
1
et
reset
+
2
deviennent sans effet : c'est obligatoirement le
firmware
passé en mode examen qui sera amorcé.

Tu ne peux donc plus, en mode examen, disposer à la fois :
  • des dernières fonctionnalités d'
    Epsilon
  • des fonctionnalités
    Omega
Il te faudra donc bien choisir en début d'épreuve dans quel
firmware
tu actives le mode examen.

Si tu as installé
Phi + Omega 2.0.0
sur ta machine, dans ton propre intérêt ainsi qu'afin d'éviter toute mise en danger d'un utilisateur futur à qui tu vendrais/prêterais ta calculatrice, nous te conseillons très fortement d'accepter cette restriction en mode examen et de mettre à jour vers
Omega 2.0.2
, vu que de toutes façons la vulnérabilité corrigée ne permettait déjà pas de tricher.

Attention, la vulnérabilité faisant partie du
bootloader
, il te faut obligatoirement effectuer la mise à jour avec le mode de récupération accessible via le raccourci
reset
+
6
; les mini-tutos suivent ci-dessous.

Supposons que tu dispose déjà d'une machine faisant tourner
Phi + Omega 2.0.0
ou encore les versions avec
bootloader
de
Khi
ou
Upsilon
.

C'est facile à vérifier ; il te suffit de faire
reset
+
4
. L'aspect visuel ainsi que le logo peuvent varier, mais dans tous les cas tu obtiens un écran te listant le contenu des différents
slots
.

15450Pour remplacer le
bootloader
par le nouveau c'est extrêmement simple. Il te faut :
  1. mettre la machine en mode de récupération autorisant la réécriture du
    bootloader
    avec le raccourci
    reset
    +
    6

    (raccourci à ne plus jamais utiliser sur le site officiel si tu ne veux pas te retrouver à nouveau coincé, et peut-être cette fois-ci sans retour possible :#non#:)
  2. te rendre sur le site d'
  3. cliquer sur le bouton
    Recovery
    pour charger et lancer le logiciel de récupération
  4. normalement la calculatrice se rallume automatiquement après quelques secondes ; utiliser alors le bouton
    Install Omega

Si par contre tu pars d'une calculatrice ne disposant pas encore d'un
bootloader
tiers, il suffit d'installer
Phi
qui a également été mis à jour de façon similaire à
Omega 2.0.2
.

Tutoriels d'installation
:


Installation
:

  1. Phi
  2. Omega
    ou ou

Casio Stage Casio gratuit en ligne préparation BAC printemps 2022

New postby critor » 16 Apr 2022, 20:26

Bientôt l'épreuve écrite de spécialité Mathématiques du Baccalauréat Général, très rapidement après le retour des vacances suite à la nouvelle organisation imposée par la réforme du lycée et du Baccalauréat.
Il faut donc préparer cela dès maintenant, et avec les vacances et le beau temps printanier qui arrivent simultanément, cela va peut-être être difficile.

Mais que tu sois lycéen(ne) ou enseignant(e),
Casio
se propose de t'aider en t'accompagner avec un stage de préparation en ligne, que nous t'avons déjà annoncé avant le départ de la première zone en vacances de printemps afin que le moins de personnes possible ratent l'information.
Et bien nous sommes enfin aujourd'hui à la veille du grand lancement de cet événement.

Entièrement gratuit, le stage adopte différents objectifs selon si tu es élève ou enseignant(e) :
  • pour les enseignants : comment aborder les différents thèmes mathématiques de manière simple et rapide à l’aide de la calculatrice
  • pour les élèves : se préparer avec l'aide d'un des professeurs de Mathématiques partenaires de
    Casio
    sur les principaux thèmes du programme, s'exercer avec des cas concrets issus des annales, et tu es bien évidemment bienvenu(e) peu importe ton équipement

Des journées ce mois d'avril vont être dédiées à chacun des thèmes, avec le déroulement suivant :
  • atelier pour les enseignants : 1 heure en fin de matinée, de
    10h30
    à
    11h30
  • atelier pour les élèves : 1 heure en tout début d'après-midi de
    13h30
    à
    14h30
    , afin de ne pas impacter ce que tu avais prévu pour ton après-midi

Afin de maximiser tes possibilités de participer, chaque thème sera de plus proposé sur 2 journées tombant sur différentes zones de vacances scolaires, du moins en Métropole. En voici le calendrier :
  • Fonctions & Probabilités
    :
    • Mardi 19 avril
      (zones A et B Métropole + Guyane + Saint-Martin + Saint-Barthélémy)
    • Mardi 26 avril
      (zones A et C Métropole + Guyane + Corse)
  • Programmation Python & Suites
    :
    • Jeudi 21 avril
      (zones A et B Métropole + Guyane + Saint-Martin + Saint-Barthélémy)
    • Jeudi 28 avril
      (zones A et C Métropole + Guyane + Corse)
  • Activation et désactivation du mode examen Casio
    :
    Mercredi 4 mai
Une organisation méticuleuse afin que tout-le-monde puisse participer, et que nous ne pouvons que féliciter ! :bj:

Le stage est sur inscription, mais précisons que tu n'as aucune obligation de suivre l'intégralité du stage : tu as toute liberté de sélectionner les journées auxquelles tu souhaites participer, même une seule si tu le veux ! :D

Merci
Casio
! :favorite:


Inscription
:
élèves enseignants

-
Search
-
Social
-
Featured topics
Reprise de ton ancienne fx-92 Collège ou Graph 25/35/90 à 5€. Même non fonctionnelle ou ancien modèle. Etiquette de retour fournie, pas de frais de port à payer.
Coque NumWorks édition limitée Mai 2022 à gagner.
Comparaisons des meilleurs prix pour acheter sa calculatrice !
123
-
Donations / Premium
For more contests, prizes, reviews, helping us pay the server and domains...
Donate
Discover the the advantages of a donor account !
JoinRejoignez the donors and/or premium!les donateurs et/ou premium !


Partner and ad
Notre partenaire Jarrety Calculatrices à acheter chez Calcuso
-
Stats.
589 utilisateurs:
>553 invités
>30 membres
>6 robots
Record simultané (sur 6 mois):
6892 utilisateurs (le 07/06/2017)

-
Other interesting websites
Texas Instruments Education
Global | France
 (English / Français)
Banque de programmes TI
ticalc.org
 (English)
La communauté TI-82
tout82.free.fr
 (Français)