Algèbre

```
✓ \bigoplus_{i=1}^{p} E_i \Leftrightarrow \forall k \in [1, p-1], (\bigoplus_{i=1}^{k} E_i) \cap E_{k+1} = \{0_E\} \Leftrightarrow D\'{e}composition unique}
✓ p projecteur

p projection de base Im(p), direction Ker(p)
```

p projection de base Im(p), direction Ker(p) Im(p) + Ker(p) = E $Im(p) = Ker(n - Id_r) = Ker(Id_r - p)$

$$lm(p) = Ker(p - Id_E) = Ker(Id_E)$$

 $rg(p) = tr(p)$

✓ H hyperplan ⇔ H noyau d'une forme linéaire non nulle

$$\forall i, E_i \text{ stable} \Leftrightarrow \text{Mat}_{\mathcal{B}}(u) \text{ diagonale par blocs. } \mathcal{B} \text{ adapt\'ee } \grave{a} \oplus_i E_i$$

 \checkmark u diagonalisable $\Leftrightarrow igg\{$ 3 polynôme anulateur de u scindé à racines simples

$$\checkmark$$
 u trigonalisable $\Leftrightarrow \begin{cases} \chi_u \text{ scind\'e} \\ \exists \text{ polyn\^ome anulateur de } u \text{ scind\'e} \end{cases}$

Bilinéarité

 $p_F + p_{F^{\perp}} = Id_F$

Produit scalaire

Norme

$$Sym\acute{e}trie: \varphi(x,y)=\varphi(y,x)$$

Positivité :
$$\varphi(x,x) \ge 0$$

Définie positivité : $\varphi(x,x) > 0$

$$Séparation: N(x) = 0 \Leftrightarrow x = 0_{e}$$

Inégalité triangulaire :
$$N(x + y) \le N(x) + N(y)$$

$$Homog\acute{e}n\acute{e}it\acute{e}:N(\lambda x)=|\lambda|\cdot N(x)$$

$$\begin{split} s_F &= I d_E - 2 p_{F^\perp} \\ s_{F^\perp} &= - s_F \end{split}$$

s symétrie ortho
$$\Leftrightarrow$$
 s endo ortho et s \circ s = Id_E

 $\checkmark \quad u \; endo \; sym\'etrique \Rightarrow \left\{ \begin{array}{l} Valeurs \; propres \; r\'eelles \\ u \; diagonalisable \\ u \; admet \; une \; BON \; de \; vect \; propres \end{array} \right.$