T1-83 Plus System Routines

Third Release — Jan. 25, 2002

System Routines

Important Information

Texas Instruments makes no warranty, either expressed or implied, including but not limited
to any implied warranties of merchantability and fitness for a particular purpose, regarding
any programs or book materials and makes such materials available solely on an “as-is”
basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or
consequential damages in connection with or arising out of the purchase or use of these
materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of
action, shall not exceed the purchase price of this product. Moreover, Texas Instruments

shall not be liable for any claim of any kind whatsoever against the use of these materials by
any other party.

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines

Contents:
1. System Routines — Display]
2. System Routines — Edit|
3. System Routines — Error]
4. System Routines — Floating Point Stack|
5. [System Routines — Graphing and Drawing]
6. System Routines — Interrupt|
7. System Routines — |0|
8. ISystem Routines — Keyboard)|
9. [System Routines — List]

10. System Routines — Math|

11. System Routines — Matrix|

12. System Routines — Memory|

13. System Routines — Parser]

14. System Routines — Screen|

15. System Routines — Statistics|

16. System Routines — Utility|

TI-83 Plus Developer Guide

Third Release January 25, 2002

System Routines

17. System Routines — Miscellaneous|

IReference List — System Routines|

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines

Overview

System
Routines

Entry point
name:

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

The following is the format in which each of the entry points will appear. The
entry points are listed alphabetically by category.

Name used to identify the routine.

Each entry point is identified by function into a category.

Brief description of usage/purpose. How the routine works and additional
information about the input.

Setup values in processor registers.
Setup values in processor flags (F register).

OPX, stack or RAM locations initial conditions affecting results.

Return information in processor registers.
Return information in process flags.
Return information in OPX, stack, or RAM.

Processor registers whose initial values may be modified, so caller is
responsible for preserving.

RAM space needed, where applicable.

Description of appropriate usage context, limitations, and any other useful
information, side effects, assumptions, etc.

An example of how to set up initial conditions and use the routine.

NOTE () indicate indirection

TI-83 Plus Developer Guide

Third Release January 25, 2002

System Routines - Display

System Routines —
Display

2T Y A=T 0 AS]) RRR 1-1
(O TTod &S] o] 11 = Vo PPN 1-2
ClEAIROWo 1-3
@[X4 I SRS 1-4
CITLCDFUIL. ...ttt e e e e e e e e e e et e e e e e e e e e e nnnaeeaeeeaeens 1-5
CITOP2S ..ttt ettt e e e e e e et e et e e e e e e e e e e e e e e e e n i araaaeen 1-6
CIrS I e 1-7
CIFSCINFUIL. ... 1-8
CIFTXESNA ..o 1-9
(D17 0] B o] = TSP 1-10
DS o] | 1-11
(D170 = 1A [0 = o 1= P 1-12
Displaylmage (CONtNUE)oiiii i 1-13
D 1] 01 P PPE 1-14
ErASEEOL ... i et 1-15
FOIMBASE ...t e et e et e e e e 1-16
FormBase (CONLINUEM)oouiiiiii e e 1-17
0] 401 D101 o] PR 1-18
FOrmDCPIX (CONLINUEA).......coiiiiieii e e s 1-19
FOIMEREAI ... e e e e e e e e e e e e e e e e aeas 1-20
FOMMREAL. ... eaeas 1-21
[0 T= To | o= 11 1= o 1-22
(0T To [o] o) SRR 1-23
[N =Y T 1-24
L0 1011010 18 = o] 1-25
| (S PPPRE 1-26

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines - Display

1 111/ >V o 1-27
PUIP S ..t e e e aaaaeea e araaaaes 1-28
U1 SR (oo a1 (] TV T=T o) P 1-29
PULPSB ...ttt ettt et e e e e e e et e e e e e e e e et e e e e e e e e e n i aaaraaaeeas 1-30
PULPSB (CONLINUE) ...ueieeeieeeeee e e e e e e 1-31
£ RSP 1-32
U RS (o]o] 1 11 aTU =T) I 1-33
VL) S 1] o TP 1-34
ST (o1 (= D1 o RSP 1-35
U]] 1 T Lo 3 TR 1-36
U]] 1 T Lo o TR 1-37
SAVEDISP .. i r s 1-38
SEINOMM_VAISeiieieieiectie ettt ste ettt e te e te e ereessaesteeteenneas
1Y 0 L A = o 1-40
SSHNGLENGIN....ee e 1-41
R 111, - T o 1-42
VPULS ittt ettt e e e e e e ettt et e e e e e e e et r e e e e e e e e e annrraraaeaaeeeaaanns 1-43
VPULS (CONLINUEA) ..ooviiiiii e e e e e e e e e 1-44
VP UESIN .ottt e e ettt ettt e e e e e e ettt e e e e e e e s e s b eeeeaeeesesnnsaeneneeeeeeeaannns 1-45
VPULSN (CONLINUE) ...uiiieii e e s e e e e e e e e e e 1-46

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines - Display

Bit_VertSplit

Category: Display
Description: Tests if the TI-83 Plus is set to G-T (graph-table) display mode.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: NZ =1 if G-T mode is set
Others: None
Registers None
destroyed:
Remarks: Applications may want to reset the 83+ to full screen mode if graphing

functionality is used. In G-T mode the screen is split vertically with 1/2 being
the graph screen and the other the table display.

Example: B_CALL Bit_VertSplit ; test for G T node
JR NZ, Screen_is_Split ; jump if G T node

TI-83 Plus Developer Guide 1-1 Third Release January 25, 2002

System Routines - Display

CheckSplitFlag

Category: Display
Description: Checks if either horizontal or G-T split screen modes are active.
Inputs:

Registers: None

Flags: grfSplitOverride, (1Y + sGrFlags) = 1 to ignore split mode settings
This flag is set to make system routines draw to the full screen even when in
a split screen mode.

Others: None
Outputs:
Registers: None

Flags: Z =1 if no split screen mode is active
= 0 if a split screen mode is active

Others: None

Registers None

destroyed:

Remarks:

Example: B _CALL CheckSpl i t Fl ag

TI-83 Plus Developer Guide 1-2 Third Release January 25, 2002

System Routines - Display

ClearRow

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers

destroyed:

Remarks:

Example:

Display

Clears eight consecutive LCD display drive rows.

A = LCD display driver row coordinate (0x80 — OxBF)
None

None

None
None

Eight pixel rows cleared
Driver left in X increment mode

A, B, DE

This routine requires A to be in LCD display driver row (X) coordinates,
which have a valid range between 0x80 — OxBF, with the top pixel row equal
to 0x80 and the bottom pixel row equal to OxBF. Passing in a value for A
outside this range will cause unpredictable results and probably a lockup.
This routine erases eight consecutive rows, so if you pass in A = 0x88, the
9th — 16th pixel rows from the top of the display are erased. If you pass in a
value between 0xB9 — OxBF, the erased rows wrap back to the top of the
display. In normal usage, if you are erasing a line of large text, the A value
should be a multiple of 0x08.

TI-83 Plus Developer Guide

1-3

Third Release January 25, 2002

System Routines - Display

CIrLCD

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display
Clears the display.

None

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen.

grfSplit, (IY + sGrFlags) = 1 if horizontal split mode set

vertSplit, (IY + sGrFlags) = 1 if graph-table split mode set
grfSplitOverride, (1Y + sGrFlags) = 1 to ignore split modes

None

None
None
None
All

This routine only acts on the display, not the textShadow.
Clear the display using the current split settings:

B_CALL drLcD

TI-83 Plus Developer Guide

1-4

Third Release January 25, 2002

System Routines - Display

ClrLCDFull

Category: Display
Description: Clears the display ignoring any split screen settings.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: Entire display is cleared.
Registers All
destroyed:
Remarks:
Example: B_CALL C r LCDFul |

TI-83 Plus Developer Guide 1-5 Third Release January 25, 2002

System Routines - Display

ClrOP2S

Category: Display
Description: Sets the floating-point number in OP2 to be positive.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None

Others: None

Registers

destroyed: None

Remarks:

Example: B_CALL arorP2s

TI-83 Plus Developer Guide 1-6 Third Release January 25, 2002

System Routines - Display

ClrScrn

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Clears the display. If textShadow is in use clears it also.

None
appTextSave,(lY + appFlags) = 1 if the textShadow is to be cleared also

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this turn off the split screen modes.
See ForceFullScreen.

grfSplit, (IY + sGrFlags) = 1 if horizontal split mode set
vertSplit, (IY + sGrFlags) = 1 if graph-table split mode set
grfSplitOverride, (1Y + sGrFlags) = 1 to ignore split modes

None

None

None

Display and possibly textShadow cleared.
All

B CALL CrsScrn

TI-83 Plus Developer Guide

1-7

Third Release January 25, 2002

System Routines - Display

ClrScrnFull

Category: Display

Description: Clears the display entirely ignoring split screen settings. If textShadow is in
use clears it also.

Inputs:
Registers: None
Flags: appTextSave, (IY + appFlags) = 1 if the textShadow is to be cleared also
Others: None
Outputs:
Registers: None
Flags: None

Others: Display and possibly textShadow cleared.

Registers All

destroyed:

Remarks:

Example: B_CALL d rScrnFul |

TI-83 Plus Developer Guide 1-8 Third Release January 25, 2002

System Routines - Display

ClrTxtShd

Category: Display
Description: Clears the textShadow buffer.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: textShadow set to spaces.
Flags: None
Others: None
Registers BC, DE, HL
destroyed:
Remarks: ClIrScrn falls into this routine which zeros out 128 bytes starting at

textShadow (one byte for each 5 x 7 screen position (8 rows x16 columns)).

Example:

TI-83 Plus Developer Guide 1-9 Third Release January 25, 2002

System Routines - Display

DispDone

Category: Display
Description: Displays Done on text screen.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None

Others: None

Registers HL

destroyed:

Remarks:

Example: B_CALL Di spDone

TI-83 Plus Developer Guide 1-10 Third Release January 25, 2002

System Routines - Display

DispHL

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Converts the contents of HL to a decimal and writes it to the screen at
current cursor position. The string displayed is always 5 characters and right
justified. The large 5x7 font is used.

HL = two-byte value to convert
None

None

None
None

String displayed. (OP1) = start of five character decimal number string, right
justified.

AF, DE, HL

If the string does not fit on the current display row then it is truncated at the
screen’s edge.

Set HL = 357 and display it starting in row 0 column O.

LD HL, O

LD (cur Row) , HL ; set cursor position
LD HL, 357

B _CALL Di spHL

RET

what will be displayed is " 357", which has two leading spaces.

TI-83 Plus Developer Guide

1-11

Third Release January 25, 2002

System Routines - Display

Displaylmage

Category: Display
Description: Displays a bitmap image stored in RAM.
Inputs:

Registers: HL = pointer to image structure
Height of image in pixels — one-byte
Width of image in pixels — one-byte
Image data by rows

The first byte contains the data for the first eight-pixels of the first row. Bit 7
is the left-most pixel of the first row.
Each new row starts on a byte boundary.

There may be unused bits in the last byte of each row if the image is not a
multiple of eight in width.

DE = location on screen to place the upper left corner of the image.
(row, column)

(0,0) = upper left corner of the screen.

The image can be oriented off of the screen: ffh = -1. The only restriction is
that the image cannot be entirely off screen.

1 if image drawn to display only.
0 if image drawn to display and graph buffer.

Flags: plotLoc, (IY + plotFlags)

bufferOnly, (IY + plotFlags) 1 if image drawn to graph buffer only.

This flag overrides the plotLoc flag.
Others: None

Outputs:
Registers: None
Flags: None

Others: Screen, graph buffer
RAM locations @ ioPrompt - ioPrompt + 7

Registers All
destroyed:

Remarks:

(continued)

TI-83 Plus Developer Guide 1-12 Third Release January 25, 2002

System Routines - Display

Displaylmage (continued)

Example: Display an image three-pixels high by 17 pixels wide at position (0,0) to the
display only.
LD HL, | mageDat a ; pointer to bitnap
LD DE, OP1
LD BC, 11
LD R ; copy inmge data to
. RAM
LD HL, OP1 ; pointer to image
LD DE, 0 ; position of upper
: left corner
SET pl ot Loc, (1 Y+pl ot FI ags)
B CALL Di spl ayl mage
| mageDat a:
DB 3,17 ; height, width
DB 80h, 3eh, 10h ; rowl, only bit 7
; of the last byte
: is used
DB 11h, 35h, Oh ;. row 2
DB of f h, 01h, 10h ; row 3

TI-83 Plus Developer Guide 1-13 Third Release January 25, 2002

System Routines - Display

DispOP1A
Category: Display
Description: Displays a floating-point number using either small variable width or large

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

5x7 font. The value is rounded to the current “fix” setting (on the mode
screen) before it is displayed.

ACC = maximum number of digits to format for displaying

textinverse, (Y + textFlags) = 1 for reverse video

textEraseBelow, (Y + textFlags) = 1 to erase line below character
textWrite, (IY + sGrFlags) = 1 to write to graph buffer not display
fracDrawLFont, (1Y + fontFlags) = 1 to use large font, not small font

(penCol) = pen column to display at
(penRow) = pen row to display at

None
None
None
All

OP1, OP2, OP3, OP4

Displaying stops if the right edge of the screen is reached.

TI-83 Plus Developer Guide

1-14

Third Release January 25, 2002

System Routines - Display

EraseEOL

Category: Display
Description: Erases screen to end of line.
Inputs:

Registers: None

Flags: None
Others: curRow, curCol point to screen position.
Outputs:

Registers: None
Flags: None

Others: None

Registers None, saves registers beforehand.
destroyed:
Remarks: curRow, curCol are also saved and restored.

If the sEditRunning, (IY + apiFlg3) flag is set (sfont running).

Example: LD HL, 0801h ; curRow = 1, curCol = 8
LD (cur Row) , HL
LD A'H
B _CALL Put C
LD Al
B _CALL Put C
B CALL Er aseEQL : clear to end of line

TI-83 Plus Developer Guide 1-15 Third Release January 25, 2002

System Routines - Display

FormBase
Category: Display
Description: Converts a RealObj (single floating-point number) in OP1 into a displayable

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Ram Used:
Remarks:

string.

Use the current mode settings SCI, ENG, NORMAL and FIX setting to
format the string.

The output can also be formatted as a fraction or a Degrees, Minutes,
Seconds (DMS) number.

None

To use the current format settings:
(Flags + fmtFlags) copies to (Flags + fmtOverride)
To override the current settings, modify the following flags:

Resetting the next two flags sets NORMAL display mode.
fmtExponent, (fmtOverride) = 1 for scientific display mode
fmtEng, (fmtOverride) = 1 for engineering display mode

Setting the next three flags will signify DMS formatting.
fmtBin, (fmtOverride)
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

Setting the next two flags will signify Fraction formatting.
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

(fmtDigits) = OFFh for FLOAT, no fix setting
=0 — 9 if fix setting is specified
OP1 = value to format.

BC = length of string

None

String returned in RAM starting in OP3, and is O terminated
All

OP1 - OP6

If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width
entered and the current fix setting.

(continued)

TI-83 Plus Developer Guide

1-16

Third Release January 25, 2002

System Routines - Display

FormBase (continued)

Example: Generate a random number and display it at the current cursor position. Use
all the current format settings except force SCI formatting.
B CALL Random : OP1 = random nunber
LD A (1Y+fmt Fl ags) ; get current fornmat
; settings
RES fmt Eng, A
SET f mt Exponent, A : override current and
; set SCI formatting
LD (1'Y+Hf nt Override), A ; set override flags
B CALL For nBase ; generate the string
LD HL, OP3 ; start of string
B CALL Put S ; display string

TI-83 Plus Developer Guide 1-17 Third Release January 25, 2002

System Routines - Display

FormDCplx

Category: Display

Description: Converts a CplxObj (pair of floating-point numbers) in OP1/OP2 into a
displayable string.

Use the current mode settings SCI, ENG, NORMAL, FIX setting, and
complex number display format to format the string.

The output can also be formatted as a fraction or a Degrees, Minutes,
Seconds (DMS) number.

Inputs:
Registers: None

Flags: To use the current format settings:
(Flags + fmtFlags) copies to (Flags + fmtOverride)

To override the current settings, modify the following flags:

Resetting the next two flags sets the NORMAL display mode.
fmtExponent, (fmtOverride) = 1 for scientific display mode
fmtEng, (fmtOverride) = 1 for engineering display mode

These flags control the formatting of complex numbers.
rectMode, (fmtOverride) = 1 for rectangular complex display
fmtEng, (fmtOverride) = 1 for polar complex display

Setting the next three flags will signify DMS formatting.
fmtBin, (fmtOverride)
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

Setting the next two flags will signify Fraction formatting.
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

Others: (fmtDigits) = OFFh for FLOAT, no fix setting
= 0 - 9if fix setting is specified
OP1 = value to format
Outputs:
Registers: BC = length of string
Flags: None
Others: String returned in RAM starting in (fmtString), and is O terminated.

Registers All
destroyed:

RAM used: OP1 - OP6
(continued)

TI-83 Plus Developer Guide 1-18 Third Release January 25, 2002

System Routines - Display

FormDCplx (continued)

Remarks: If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width
entered and the current fix setting.

Example: Generate a random complex number and display it at the current cursor
position. Use all the current format settings except force SCI formatting.
B CALL Random : OP1 = random nunber
RST r PushReal O1 ;. save
B CALL Random : OP1 = random nunber
B CALL PopReal O2 ; OP2 = 2nd part of
; floating-point nunber
LD A (1 Y+t Fl ags) ; get current format
; settings
RES fnt Eng, A
SET Fnt Exponent, A : override current and
; set SCI formatting
LD (1'Y+Hf nt Override), A ; set override flags
B CALL For nDCpl x ; generate the string
LD HL, fmt String ; start of string
B CALL Put S ; display string
TI-83 Plus Developer Guide 1-19 Third Release January 25, 2002

System Routines - Display

FormEReal
Category: Display
Description: Converts a RealObj (single floating-point number) in OP1 into a displayable
string.
This routine will ignore all format settings.
Specify the maximum width allowed for the string generated.
Inputs:
Registers: ACC = maximum width of output, minimum of six
Flags: None
Others: OP1 = value to format
Outputs:
Registers: BC = length of string
Flags: None
Others: String returned in RAM starting in OP3, and is 0 terminated.
Registers All
destroyed:
RAM used: OP1 - OP6
Remarks: If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width
entered and the current fix setting.
Example: Generate a random number and display it with a maximum of six characters

at the current cursor position. Ignore all format settings when generating the
string to display.

B CALL Random OP1 = random nunber
LD A 6 max width to format value with
B CALL For nEReal generate the string
LD HL, OP3 start of string
B CALL Put S di splay string
TI-83 Plus Developer Guide 1-20 Third Release January 25, 2002

System Routines - Display

FormReal

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Display

Converts a RealObj (single floating-point number) in OP1 into a displayable
string.

Specify the maximum width allowed for the string generated.

ACC = maximum width of output, minimum of six

fmtExponent, (fmtFlags) = 1 for scientific display mode
fmtEng, (fmtFlags) = 1 for engineering display mode

If both of the above flags are reset, then NORMAL display mode.

(fmtDigits) = OFFh for FLOAT, no fix setting
=0 — 9 if fix setting is specified

OP1 = value to format

BC = length of string

None

String returned in RAM starting in OP3, and is 0 terminated.
All

OP1 - OP6

If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width
entered and the current fix setting.

Generate a random number and display it with a maximum of six characters
at the current cursor position.

B _CALL Random ; OP1 = random nunber
LD A 6 ; max width to format value with
B _CALL For mReal ; generate the string
LD HL, OP3 ; start of string
B _CALL Put S ; display string
TI-83 Plus Developer Guide 1-21 Third Release January 25, 2002

System Routines - Display

LoadPattern
Category: Display
Description: Loads the font pattern for a character to RAM. Also includes the characters
width in pixels. This will work for both variable width and 5x7 fonts.
Inputs:
Registers: ACC = character equate
Flags: fracDrawLFont, (1Y + fontFlags) = 1 to use Large 5x7 font
= 0 to use variable width font
Others: None
Outputs:
Registers: None
Flags: None
Others: For large 5x7 font: RAM @ IFont_record = width of character, seven-byte
font
For variable width font: RAM @ sFont_record = width of character, seven-
byte font
The first byte of the font is the pixel mapping for the top row and each
subsequent byte is the next row.
The LSB of each byte represents the right most pixel of a row.
Registers All
destroyed:
RAM used:
Remarks: If fracDrawLFont is set, it must be reset.
Example:

TI-83 Plus Developer Guide

1-22

Third Release January 25, 2002

System Routines - Display

Load SFont
Category: Display
Description: Copies small font attributes to RAM for a particular display character.
Inputs:
Registers: HL = offset into small font table
Flags: None
Others: None
Outputs:
Registers: HL = pointer to sFont_record RAM
Flags: None
Others: sFont_record...sFont_record + 7 = font
Registers DE, HL
destroyed:
Remarks: This might be useful, if you wish to write your own LoadPattern or VPutMap
routine for displaying small display characters. The system character fonts
(large and small) use eight-bytes per character.
To convert a character number to a table offset, multiply the number by
eight.
Example: Find the width of the small display character f:
LD A'F
LD L, A
LD H 0
ADD HL, HL * 2 turn character into an
of f set.
ADD HL, HL x4
ADD HL, HL * 8 multiply by 8 to get
tabl e of fset.
B CALL Load_SFont sFont _record =
03, 00, 02, 04, 06, 04, 04, 00
LD A (HL) 1st byte is width
TI-83 Plus Developer Guide 1-23 Third Release January 25, 2002

System Routines - Display

NewLine

Category: Display
Description: Move cursor to beginning of next line and scroll the display if necessary.
Inputs:

Registers: None

Flags: appAutoScroll, (IY+appFlags) = 1 to automatically scroll display
Others: None
Outputs:
Registers: None
Flags: textScrolled, (IY+textFlags) = 1 if display scrolled
Others: (curRow) is incremented if display does not scroll.
(curCol) = 0.
Registers All
destroyed:
Remarks: Presumes that (winTop) has been previously initialized to the top of the

window and (winBtm) has been initialized to the bottom of the window. (eg..
usually winBtm = 8 and winTop = 0. In horizontal split screen, winTop = 4).

Reset the appAutoScroll (I'Y+appFlags) flag to avoid scrolling the screen if
on the bottom line. But if doing so, curRow may be incremented to an
invalid state (eg, row 8 or above), so this condition needs to be checked and
curRow re-initialized if you use this flag.

Example:

TI-83 Plus Developer Guide 1-24 Third Release January 25, 2002

System Routines - Display

OutputExpr
Category: Display
Description: Converts a numeric value, string or equation, into a string and displays it

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

using the large 5x7 font. This routine should be used with the split screen
setting to set to FullScreen.

H = column number to display at: e.g., 0...15
L = row number to display at: e.g., 0...7

textinverse, (1Y + textFlags) = 1 to display in reverse video
appTextSave, (IY + appFlags) = 1 to write character to textShadow also

OP1/0OP2 = what to display:
Floating-point number in OP1
Complex number in OP1/OP2
A variable name in OP1 of type: complex, list (real/complex), matrix,
string, equation.

None
None

System errors can be generated, See the Error Handlers section in Chapter
2.

String output to display.
All

Previous cursor setting is restored to curRow and curCol. Output will wrap to
next line if complete string does not fit on a single line. Output will stop at
bottom of screen.

Output the contents of matrix variable [A] at cursor location row 2, column 3.

LD HL, mat Ananme
RST r Mov9ToOP1 ; OP1 = matrix [A] nane
AppOnErr Catch_Error ; install error handler
LD HL, 3*256+2 : row 2 colum 3
B _CALL Qut put Expr
AppOFfErr
Catch_Error:
RET

TI-83 Plus Developer Guide 1-25 Third Release January 25, 2002

System Routines - Display

PutC

Category: Display
Description: Displays a character and advance cursor.
Inputs:

Registers: A = character to display

Flags: textinverse, (IY+textFlags): 0 = normal character; 1 = invert character
Others: curRow, curCol = display row and column values
Outputs:

Registers: None
Flags: None

Others: curRow, curCol Updated

Registers None
destroyed:
Remarks: This routine calls PutMap to do the character display.

This may cause a screen scroll if on the bottom line.

Example: LD HL, 0801h ; curRow = 1, curCol = 8
LD (cur Row) , HL
LD A"H
B _CALL Put C
LD At
B _CALL Put C

; (PutS might be nore useful for multiple characters)

TI-83 Plus Developer Guide 1-26 Third Release January 25, 2002

System Routines - Display

PutMap

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Display

Displays a character in the large font without affecting cursor position.

ACC = character to display, see TI83plus.inc

textinverse, (1Y + textFlags) = 1 to display in reverse video

appTextSave, (IY + appFlags) = 1 to write char to textShadow also

preClrForMode, (1Y + newDispF) = 1 to preclear the character space before
writing

This is done when toggling between inverted and uninverted.

(curRow) = home screen row to display in, 0-7

(curCol) = home screen column to display in, 0-15

None
None
None
None
See: PutC.
Display char C in row 3 column 4:
LD HL, 4* 256+3
LD (cur Row) , HL : set curRow & cur Col
LD A'C
B_CALL Put Map

TI-83 Plus Developer Guide 1-27 Third Release January 25, 2002

System Routines - Display

PutPS

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:
Registers

destroyed:

Remarks:

Display

Displays a string with a leading length byte residing in RAM, at the current
cursor position, and stops at the bottom of the display. This routine uses the
large 5x7 font.

HL = pointer to length byte of string followed by the string

textinverse, (IY + textFlags) = 1 to display in reverse video

appAutoScroll, (IY + appFlags) = 1 to scroll if need to display past the
bottom of the display.

appTextSave, (IY + appFlags) = 1 to write character to textShadow also.

preClrForMode, (1Y + newDispF) = 1 to preclear the character space before
writing. This is done when toggling
between inverted and noninverted.

(curRow) = cursor row position, (0 —7)
(curCol) = cursor column position, (0 — 15)

None

Carry = 1 if entire string was displayed
Carry = 0 if string did not fit in the display

curRow and curCol are updated to the position after the last character
displayed.

All but DE

It is recommended that this routine be placed in-line so that strings can be
displayed from an application without copying them to RAM first. See the
Display Routines section in Chapter 2 for further information.

(continued)

TI-83 Plus Developer Guide

1-28

Third Release January 25, 2002

System Routines - Display

PUtPS (continued)

Example: Put PS:

LD A (HL) ; A =length of string
I NC HL
oR A
RET z ; IF LENGTH IS 0 RET

Put PS10:
LD A (HL) ; get a character of string nane
I NC HL

Put PS20:
B CALL Put C ; display one character of string

Put PS30:
LD A, (cur Row)
LD CA
LD A (wi nBtm
cP C ; 1S CURSOR OFF SCREEN ?
RET z ; RET | F YES
DINZ Put PS10 ; display rest of string
RET

TI-83 Plus Developer Guide 1-29 Third Release January 25, 2002

System Routines - Display

PutPSB

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:
Registers

destroyed:

Remarks:

Display

Displays a string with a leading length byte residing in RAM, at the current
cursor position, and stops at the right edge of the display. Ignores leading
spaces. This routine uses the large 5x7 font.

HL = pointer to length byte of string followed by the string

textinverse, (IY + textFlags) = 1 to display in reverse video
appTextSave, (IY + appFlags) = 1 to write character to textShadow also.

preClrForMode, (1Y + newDispF) = 1 to preclear the character space before
writing. This is done when toggling
between inverted and noninverted.

(curRow) = cursor row position, (0 — 7)
(curCol) = cursor column position, (0 — 15)

None

Carry = 1 if entire string was displayed
Carry = 0 if string did not fit in the display

curRow and curCol are updated to the position after the last character
displayed.

All but DE

It is recommended that this routine be placed in-line so that strings can be
displayed from an application without copying them to RAM first. See the
Display Routines section in Chapter 2 for further information.

(continued)

TI-83 Plus Developer Guide

1-30

Third Release January 25, 2002

System Routines - Display

PutPSB (continued)

Example: Put PSB:
LD A (HL) A = length of string
LD B, A
I NC HL
R A
RET z IF LENGTH IS 0 RET
LD A (HL)
cP ¢
JR Z, Put PSB30
JR Put PSB20
Put PSB10:
LD A, (curCol) get colum to print string
cP 15 | ast col um?
JR C, Put PSB15 no, do regular PutC
LD A (HL) get a character of string name
B CALL Put Map out put character without newine
JR Put PSB30
Put PSB15:
LD A (H) get a character of the string
Put PSB20:
B CALL Put C di spl ay one character of string
Put PSB30:
I NC HL
DINZ Put PSB10 di splay rest of string
RET
TI-83 Plus Developer Guide 1-31 Third Release January 25, 2002

System Routines - Display

PutS

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:
Registers

destroyed:

Remarks:

Display

Displays a zero (0) terminated string residing in RAM at the current cursor
position. This routine uses the large 5x7 font.

HL = pointer to start of string

textinverse, (1Y + textFlags) = 1 to display in reverse video

appAutoScroll, (IY + appFlags) = 1 to scroll if need to display past the
bottom of the display.

appTextSave, (IY + appFlags) = 1 to write character to textShadow also.

preClrForMode, (1Y + newDispF) = 1 to preclear the character space before
writing. This is done when toggling
between inverted and noninverted.

(curRow) = cursor row position, (0 —7)
(curCol) = cursor column position, (0 — 15)

None

Carry = 1 if entire string was displayed
Carry = 0 if string did not fit in the display

curRow and curCol are updated to the position after the last character
displayed.

HL

To avoid having to copy strings from an application to RAM before using this
routine, it is much more efficient to place this routine inside of the
application. By doing so, the application can display strings without first
having to copy to RAM.

(continued)

TI-83 Plus Developer Guide

1-32

Third Release January 25, 2002

System Routines - Display

PUtS (continued)

Example: Put S:
PUSH BC
PUSH AF
LD A, (Wi nBtm
LD B, A B = bottom!line of w ndow
Put S10:
LD A (HL) get a character of string name
I NC HL
oR A end of string?
SCF indicate entire string was
di spl ayed
JR Z, Put S20 yes --->
B CALL Put C di spl ay one character of string
LD A, (cur Row) check cursor position
cP B off end of wi ndow?
JR C, Put S10 no, display rest of string
Put S20:
POP BC restore A (but not F)
LD A B
POP BC restore BC
RET
TI-83 Plus Developer Guide 1-33 Third Release January 25, 2002

System Routines - Display

PutTokString

Category: Display
Description: Displays the string for a token at the current cursor location.
Inputs:
Registers: DE = token value. If a one-byte token then D = 0, E = token.
Flags: None

Others: (curRow) = home screen row to display in, 0 - 7
(curCol) = home screen column to display in, 0 - 5

Outputs:
Registers: None
Flags: None

Others: String displayed with wrapping.

Registers All
destroyed:
Remarks:
Example: Display the string for the Sin(token at the current cursor location:
LD D, 0
LD E, tSin : DE = token
B CALL Put TokStri ng ; get its string and displ ay

it.

TI-83 Plus Developer Guide 1-34 Third Release January 25, 2002

System Routines - Display

RestoreDisp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Display

Displays one to 64 rows of the display starting with the top row.

HL = pointer to ROM/RAM of the data for the first row to display, from left to
right. This is followed by the remaining row’s data. Each row is stored
in 12-bytes, the first column is bit seven of the first byte for each row.

B = number of pixel rows to be displayed

None

None

None

None

Data written to the display.

Interrupts are disabled, turn them back on if needed.

All

curXRow — 1 byte

Copy the first 10 lines of the graph buffer to the display.

LD
LD

B_CALL

El

HL, pl ot SScr een ; start of buffer
B, 10 ; 10 rows to display

Rest oreDi sp

re-enable interrupts

TI-83 Plus Developer Guide

1-35 Third Release January 25, 2002

System Routines - Display

RunIndicOff

Category: Display
Description: Turns off run indicator.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: indicRun, (IY+indicFlags) =0
Others: None

Registers Flag register

destroyed:

Remarks:

Example: B_CALL Runl ndi cOF

TI-83 Plus Developer Guide 1-36 Third Release January 25, 2002

System Routines - Display

RunindicOn

Category: Display
Description: Turns on run indicator.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: indicRun, (IY+indicFlags) = 1
Others: None

Registers

destroyed:

Remarks:

Example: B_CALL Runl ndi cOn

TI-83 Plus Developer Guide 1-37 Third Release January 25, 2002

System Routines - Display

SaveDisp

Category: Display
Description: Copies a bit image of the current display to RAM.
Inputs:

Registers: HL = pointer to RAM location to save the image — the bit image of the
display is 768 bytes in size.

Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: Contents of display written to RAM. Interrupts are disabled.
Registers All
destroyed:
RAM used: curXRow
Remarks: Split screen modes are ignored, the entire display is copied.
Example: Copy the current display to the graph backup buffer, plotSScreen.
LD HL, pl ot SScr een
B CALL SaveDi sp
RET

TI-83 Plus Developer Guide 1-38 Third Release January 25, 2002

System Routines - Display

SetNorm_Vals

Category: Display
Description: Sets display attributes to full screen mode.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: Display attributes set to full screen. Allows for full screen drawing and text
displaying.
Registers All
destroyed:
Remarks: This routine should only be used in combination with the setting of

appropriate system flags that control the screen split settings. See the
Display and Split Screen Modes sections in Chapter 2 for further
information.

Example:

TI-83 Plus Developer Guide 1-39 Third Release January 25, 2002

System Routines - Display

SFont_Len

Category: Display

Description: Returns the width, in pixels, a character would use if displayed using the
small variable width font.

Inputs:

Registers: HL = offset into the font look-up table. This is generated by multiplying the
character equate of a character by eight.

Flags: None

Others: None

Outputs:
Registers: ACC = number of pixels needed to display the character using the small
font.
Flags: None

Others: None

Registers All B

destroyed:

Remarks:

Example: Return the width in pixels of the small font character:
LD HL, Scol on*8 ; conmpute offset
B CALL SFont _Len

TI-83 Plus Developer Guide 1-40 Third Release January 25, 2002

System Routines - Display

SStringLength

Category: Display

Description: Returns the width in pixels a string would use if displayed using the small
variable width font.

Inputs:

Registers: HL = pointer to the string, with the first byte being the number of characters
in the string. The string must reside in RAM.

Flags: None

Others: None

Outputs:
Registers: ACC and B = number of pixels needed to display the string using the small
font.
Flags: None
Others: None
Registers All but HL
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 1-41 Third Release January 25, 2002

System Routines - Display

VPutMap
Category: Display
Description: Displays a character at the current pen location. Uses either the variable
width font or the large 5x7 font.
The advantage to displaying the large font with this routine instead of the
PutC routine is the character can be placed at any location on the screen.
With PutC routine, the characters can only be displayed in the 8 row by 16
column grid specified by (curRow) and (curCol).
Inputs:
Registers: ACC = character to display
Flags: textinverse, (Y + textFlags) = 1 for reverse video
textEraseBelow, (Y + textFlags) = 1 to erase line below character applies to
variable width font only
textWrite, (IY + sGrFlags) = 1 to write to graph buffer instead of the display
fracDrawLFont, (1Y + fontFlags) = 1 to use large font, not small font
Others: (penCal) = pen column to display at
(penRow) = pen row to display at
Outputs:
Registers: None
Flags: None
Others: CA (carry) = 1 if could not fit in screen
Registers All but BC and HL
destroyed:
Remarks: Pen location (0,0) is the upper left corner of the display.
The formatting flags are normally reset. An application should make sure
that these flags are managed properly during execution and reset before
returning to normal system operation.
Example: Draw the character C at pen location (0,0):
LD HL, 0
LD (penCol), HL ; set penRow and penCol
LD A'C
B_CALL VPut Map
TI-83 Plus Developer Guide 1-42 Third Release January 25, 2002

System Routines - Display

VPutS

Category:

Description:

Inputs:
Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Display

Displays a zero (0) terminated string at the current pen location. Uses either
the variable width font or the large 5x7 font.

The advantage to displaying the large font with this routine instead of the
PutS routine is the string can be placed at any location on the screen. With
the PutS routine, the string can only be displayed in the 8 row by 16 column
grid specified by (curRow) and (curCol).

HL = pointer to 0 terminated string in RAM.

1 for reverse video

1 to erase line below character

1 to write to graph buffer not display
1 use 5x7 font

0 use variable width font (default)

textinverse, (Y + textFlags)
textEraseBelow, (Y + textFlags)
textWrite, (IY + sGrFlags)
fracDrawLFont, (1Y + fontFlags)

(penCol) = pen column to display at
(penRow) = pen row to display at

None

None

CA =1 if could not fit on the row of the screen entirely
HL

Pen location (0,0) is the upper left corner of the display. If fracDrawLFont is
set, it must be reset. It is recommended that the following routine be placed
in-line so that strings can be displayed from an application without copying
them to RAM first. See the Display Routines section in Chapter 2 for further
information.

(continued)

TI-83 Plus Developer Guide 1-43 Third Release January 25, 2002

System Routines - Display

VPutS (continued)

VPut S:
PUSH AF
PUSH DE
PUSH I X
VPut S10:
LD A (HL) ; get a character of string nane
I NC HL
R A ; end of string?
JR Z, Vput S20 ; yes --->
B CALL VPut Map ; display one character of string
JR NC, VPutS10 ; display rest of string IF FITS
Vput S20:
POP I X
POP DE
POP AF
RET
Example: Display Hello world in variable width font at the current pen location.
LD HL, Hel | ostr
LD DE, OP1
LD BC, 14
LD R ; copy string to RAM
LD HL, OP1
B _CALL VPut S
RET
Hel | ostr:
DB "Hello World", 0

TI-83 Plus Developer Guide

1-44

Third Release January 25, 2002

System Routines - Display

VPUtSN

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Display

Displays a string of known length at the current pen location. Uses either the
variable width font or the large 5x7 font.

The advantage to displaying the large font with this routine instead of the
PutS routine, is the string can be placed at any location on the screen. With
the PutS routine, the string can only be displayed in the 8 row by 16 column
grid specified by (curRow) and (curCol).

HL = pointer to first character of string in RAM
B = number of characters to display

1 for reverse video

1 to erase line below character

1 to write to graph buffer not display
1 use 5x7 font

0 use variable width font (default)

textinverse, (Y + textFlags)
textEraseBelow, (Y + textFlags)
textWrite, (IY + sGrFlags)
fracDrawLFont, (1Y + fontFlags)

(penCol) = pen column to display at
(penRow) = pen row to display at

None

None

CA =1 if could not fit on the row of the screen entirely
HL

Pen location (0,0) is the upper left corner of the display. If fracDrawLFont is
set, it must be reset. It is recommended that the following routine be placed
in-line so that strings can be displayed from an application without copying
them to RAM first. See the Display Routines section in Chapter 2 for further
information.

(continued)

TI-83 Plus Developer Guide 1-45 Third Release January 25, 2002

System Routines - Display

VPUtSN (continued)

VPut SN
PUSH AF
PUSH DE
PUSH I X
PP10:
LD A (HL) ; get a character of string nane
I NC HL
B CALL VPut Map ; display one character of string
JR C, PP11 ; JUMP I F NO ROOM ON LI NE
DINZ PP10 ; display rest of string
PP11:
POP I X
POP DE
POP AF
RET
Example: Display Hello world in variable width font at the current pen location.
LD HL, Hel | ostr
LD DE, OP1
LD BC, 14
LD R ; copy string to RAM
LD HL, OP1
LD B, 11 ; length of string
B _CALL VPut SN
RET
Hel |l ostr:
DB "Hel l o Worl d"

TI-83 Plus Developer Guide

1-46 Third Release January 25, 2002

System Routines - Edit

System Routines —
Edit

ClOSEEAItBUT ...t 2-1
ClOSEEAItBUINORcciiiiiiicee e 2-2
([0 1= o [=o [U USPPPPRRTII 2-3
(O8] £=T0] @] 1 PSPPI 2-4
(G101 £ 1 (] o TP PPPPPTRUPPPIN 2-5
D1 o =X RSP 2-6
(£ o 111 = 1 0] o1 /2SRRI 2-7
SN 0353 11 o TSR 2-8
REIEASEBUITEI ...t 2-9

TI-83 Plus Developer's Guide Third Release January 25, 2002

System Routines — Edit

CloseEditBuf

Category: Edit
Description: Close and deletes edit buffer without parsing.
Inputs:
Registers: None
Flags: editOpen, (IY + editFlags) set if open
Others: None
Outputs:
Registers: None
Flags: None
Others: Adjusts free RAM pointers

Registers All
destroyed:
Remarks: See CloseEditBufNoR for example.

TI-83 Plus Developer Guide 2-1 Third Release January 25, 2002

System Routines — Edit

CloseEditBufNoR

Category: Edit
Description:
Inputs:

Registers: None

Closes edit buffer, but does not delete it.

Flags: editOpen, (IY + editFlags) set if open

Others: None
Outputs:
Registers: None
Flags: None
Others:
Registers All
destroyed:
Remarks:

Adjusts free RAM pointers

An edit session allocates all available RAM, but generally only a portion of that
RAM is actually used.

This routine is used to free up any extra RAM after an edit is finished and

before the parser is invoked to evaluate the input.

Same as:
B CALL CanAl phl ns cancel al pha and insert
node
B CALL Cl oseEdi t Equ return edit buffer to
user nenory
RET
Example: ;
B CALL | sEdi t Enpty is edit buffer enmpty?
JR NZ, Not Enpty no
B CALL Cl oseEdi t Buf close & del ete buffer
wi t hout parsing
RET
Not Enpt y:
B CALL Cl oseEdi t Buf NoR cl ose but do not delete
CALL At Nane Name of edit buffer
B CALL Par sel np parse. result -> OP1
store result
B CALL Rel easeBuf f er throw away edit buffer.
RET
At Nane:
LD HL, '@
LD A, Equbj
LD (OoP1), A
LD (OP1+1), HL
XOR A
LD (OP1+3), A
RET
TI-83 Plus Developer Guide 2-2 Third Release January 25, 2002

System Routines — Edit

CloseEditEqu

Category: Edit
Description: Returns any unused portion of an edit buffer to memory.
Inputs:

Registers: None

Flags: editOpen,(IY+editFlags) = 1 if edit buffer is open
Others: None
Outputs:

Registers: None
Flags: None

Others: Adjusts free RAM pointers.

Registers All
destroyed:
Remarks: See also: CloseEditBufNoR

TI-83 Plus Developer Guide 2-3 Third Release January 25, 2002

System Routines — Edit

CursorOff

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Edit

Turns off the cursor if it is turned on and disable blinking.

None

curOn, (IY + curFlags) = 1 if cursor is currently on.

appCurGraphic, (IY + appFlags) = 1 if the graphic cursor

This mode should not be set by an application.

appCurWord, (1Y + appFlags) = 1 if a full word cursor
This mode should not be set by an application.

If a normal edit cursor:

(curRow), (curCol) = cursor location
(curUnder) = character the cursor is covering

If a graphic cursor:

(curGX), (curGY) = center pixel location of cursor
(curGStyle) = which graph cursor is active

If a full word cursor:

These are specific to the current context and entries are made in-line in the

cursor blink routine.

None

curOn, (1Y + curFlags) = is reset
curAble, (IY + curFlags) = is reset to disable future blinking

None
All

TI-83 Plus Developer Guide

2-4

Third Release January 25, 2002

System Routines — Edit

CursorOn

Category: Edit
Description: Enables cursor blinking and show the cursor.
Inputs:

Registers: None

Flags: curLock, (IY + curFlags) = 1 if cursor is locked disabled, the cursor
cannot be turned on to blink.

appCurGraphic, (IY + appFlags) = 1 if the graphic cursor
This mode should not be set by an application.

appCurWord, (1Y + appFlags) = 1 if a full word cursor
This mode should not be set by an application.

Others: If a normal edit cursor:
(curRow), (curCol) = cursor location

If a graphic cursor:
(curGX), (curGY) = center pixel location of cursor
(curGStyle) = which graph cursor is active

If a full word cursor:
These are specific to the current context and entries are made in-line in the
cursor blink routine.

Outputs:
Registers: None
Flags: curOn, (IY + curFlags) = is set
curAble, (IY + curFlags) = is set to enable future blinking
Others: (curUnder) = character the cursor is covering
Registers All
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 2-5 Third Release January 25, 2002

System Routines — Edit

DispEOL

Category: Edit
Description: Displays edit buffer to End of Line.
Inputs:

Registers: None

Flags: None

Others: editBuffer pointers

Outputs:
Registers: Display modified
Flags: None
Others: None
Registers AF, BC, DE, HL
destroyed:
Remarks: Displays buffer from editTail to editBtm or until the end of the line is reached. If

the buffer is finished before reaching the end of line, then EraseEOL is called
to erase to the end of the line. Current curCol value is saved and restored by

this routine; it is not modified. Since this routine only displays to the end of the
current line, curRow is not modified.

Example:

TI-83 Plus Developer Guide 2-6 Third Release January 25, 2002

System Routines — Edit

ISEditEmpty

Category: Edit

Description: Tests if the Edit Buffer is empty. This is accomplished by confirming (editTail)
equals (editBtm) AND (editCursor) equals (editTop).

Inputs:

Registers: None

Flags: None
Others: editTop, editCursor, editTail and editBtm pointer values must be valid - the edit
session must be active.
Outputs:
Registers: None
Flags: Z =1 (edit buffer is empty)
=0 (edit buffer is not empty)
Others: None
Registers A, DE, HL
destroyed:
Remarks: This module is essentially a B_Call to isAtBtm followed by a B_Call to
isAtTop.

Refer to isAtTop, isAtBtm modules for additional operational details.

Example:

TI-83 Plus Developer Guide 2-7 Third Release January 25, 2002

System Routines — Edit

KeyToString

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Edit

Converts key to a string value.

DE = key

D = 0 if a one-byte key

None

None

HL = keyToStrRam (keyForStr + 1)

None

keyForStr initialized to string

AF, BC, DE, HL

Keys are converted to tokens (if possible) and the token string copied to the
keyForStr RAM area (18 bytes).

HL points to the length byte of the string (in keyToStrRam).

See TI83plus.inc for key and token values.

To display the string for the Continue key:

LD

LD
B_CALL

B_CALL

B_CALL

D0

E, kCont
KeyToString

Put PSB

Er aseEQL

keyToStrRam would appear as follows:

08h, 43h, 6Fh, 6Eh, 74h, 69h, 6Eh, 75h, 65h

; "Continue" is a one byte key,
;. so set to O.

; "Continue"

; convert to string: HL points

; to keyToStrRam

; display string preceded by a

length byte...

: erase the rest of the line if

need be.

(Length of string is eight bytes, followed by the ASCII characters Continue.)

See TI83plus.inc or Appendix B for the TI-83 Plus character set values.

TI-83 Plus Developer Guide

2-8

Third Release January 25, 2002

System Routines — Edit

ReleaseBuffer

Category: Edit
Description: Deletes numeric edit buffer.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers All
destroyed:
Remarks: After evaluation and an edit buffer is no longer needed, it is important to delete

that buffer so that it doesn’t take up unnecessary RAM.

This routine can be included as part of an evaluation routine (if the buffer does
not need to be redisplayed or edited), or as part of a putaway routine as you
are leaving a context and returning back to the system.

See CloseEditBufNoR for example.

Example:

TI-83 Plus Developer Guide 2-9 Third Release January 25, 2002

System Routines - Error

System Routines —
Error

N 0 10 = | 3-1
EITBAOGUESS ..ot et e e e e et e e e e et eeeetb e e e e et e e e earans 3-2
EFTBIEAK ...ttt ettt ettt e et e ettt e et e e eaes
EFTD _OPL 0 ittt n e e e e e e e rns 3-4
ErfD _OPL LE ..ottt e e e e e e et e e e e e e e e e e eanaaaaans 3-5
EFrD_OPLNOL_R ..ot e e e e e 3-6
EITD_OPLNOIPOSciiiiii et e e e e e e e e e 3-7
ErrD_OPLNOPOSINT. ..ottt e e e e eer s 3-8
== W 1Y/ 0 3-9
T =T 05 o] o [TR 3-10
ErrDIMMISMALCH ... e e e e e eeeaaaaaas 3-11
EFTDIVBYO.... .o 3-12
g To] 1= 1 o [RPN 3-13
Lol =T 0] o PP 3-14
0177 o PP 3-15
(T = 100 o 1T 3-16
I 00 1 U UPPPTPRR 3-17
= 1Y [=T o gL PRSPPI 3-18
EFTNON_REAIo e a e 3-19
N\ o] a1 =T | TPt 3-20
ErrNOTENOUGNIMEIM ...oiiiiiii et e e e e e e e e e 3-21
(@Y= 1 [0TSR 3-22
ErrSIGNCRANGE e e e 3-23
ErrSINQUIAIMAL.......ccoo i 3-24
) = | P 3-25
] =11 d (0] APPSR 3-26
Y/ 1 7= PSP 3-27
o 0101 1 = || R 3-28
ErrUNAEfINEd.o e e e e e e e e e e 3-29
N 0 3-30
N1 =l 0 N o 3-31

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines - Error

ErrArgument

Category: Error
Description: Jumps to system error handler routine with the message ERR: ARGUMENT.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None

Registers
destroyed:

Remarks:

Example: B_JUWP Er r Ar gunent

TI-83 Plus Developer Guide 3-1 Third Release January 25, 2002

System Routines — Error

Jumps to system error handler routine with the message ERR: BAD GUESS.

ErrBadGuess
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUWP

Er r BadGuess

TI-83 Plus Developer Guide

3-2

Third Release January 25, 2002

System Routines — Error

ErrBreak

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: BREAK.

None
None

None

None

None

None

B_JUWP

Err Break

TI-83 Plus Developer Guide

3-3

Third Release January 25, 2002

System Routines — Error

If OP1 = 0.0, domain error system will take over with message ERR: DOMAIN.

ErrD_OP1 0O
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers A
destroyed:
Remarks:
Example: B_JUWP

ErrD OP1_ 0

TI-83 Plus Developer Guide

3-4

Third Release January 25, 2002

System Routines — Error

ErrD_ OP1 LE O

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If OP1 0 (not positive), domain error system will take over with message

ERR: DOMAIN.

None
None

None

None
None
None
A

B_JUWP ErrD OP1_LE O

TI-83 Plus Developer Guide

3-5

Third Release January 25, 2002

System Routines — Error

ErrD_OP1Not R

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If OP1 is not real, domain error system will take over with message

ERR: DOMAIN.

None
None

None

None
None
None
A

B_JUWP ErrD OP1Not R

TI-83 Plus Developer Guide

3-6

Third Release January 25, 2002

System Routines — Error

ErrD_OP1NotPos

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If OP1 is not positive, domain error system will take over with message

ERR: DOMAIN.

None
None

None

None
None
None
A

B _JUWP Err D_OP1Not Pos

TI-83 Plus Developer Guide

3-7

Third Release January 25, 2002

System Routines — Error

ErrD_OP1NotPosint

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If OP1 is not positive integer, domain error system will take over with message

ERR: DOMAIN.

None
None

None

None
None
None
A

B _JUWP Err D_OP1Not Posl nt

TI-83 Plus Developer Guide

3-8

Third Release January 25, 2002

System Routines — Error

Jumps to system error handler routine with the message ERR: DATA TYPE.

ErrDataType
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUWP

Er r Dat aType

TI-83 Plus Developer Guide

3-9

Third Release January 25, 2002

System Routines — Error

ErrDimension

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: INVALID DIM.

None
None

None

None

None

None

B_JUWP

Err Di nensi on

TI-83 Plus Developer Guide

3-10

Third Release January 25, 2002

System Routines — Error

ErrDimMismatch

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: DIM

MISMATCH.

None
None

None

None
None

None

B _JUWP ErrDi M smat ch

TI-83 Plus Developer Guide

3-11

Third Release January 25, 2002

System Routines — Error

Jumps to system error handler routine with the message ERR: DIVIDE BY 0.

ErrDivByO
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUWP

Er r Di vByO

TI-83 Plus Developer Guide

3-12

Third Release January 25, 2002

System Routines — Error

Jumps to system error handler routine with the message ERR: DOMAIN.

ErrDomain
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUWP

Er r Domai n

TI-83 Plus Developer Guide

3-13

Third Release January 25, 2002

System Routines — Error

Errincrement

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: INCREMENT.

None
None

None

None

None

None

B_JUWP

Errl ncrenment

TI-83 Plus Developer Guide

3-14

Third Release January 25, 2002

System Routines — Error

Errinvalid

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: INVALID.

None
None

None

None

None

None

B_JUWP

Errlnvalid

TI-83 Plus Developer Guide

3-15

Third Release January 25, 2002

System Routines — Error

Errlterations

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: ITERATIONS.

None
None

None

None

None

None

B_JUWP

Errlterations

TI-83 Plus Developer Guide

3-16

Third Release January 25, 2002

System Routines — Error

Jumps to system error handler routine with the message ERR: IN XMIT.

ErrLinkXmit
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUWP

ErrLi nkXm t

TI-83 Plus Developer Guide

3-17

Third Release January 25, 2002

System Routines — Error

Jumps to system error handler routine with the message ERR: MEMORY.

ErrMemory
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUWP

Err Menory

TI-83 Plus Developer Guide

3-18

Third Release January 25, 2002

System Routines — Error

ErrNon_Real

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

In Real mode, the result of a calculation yielded a complex result. This error is
not returned during graphing. The TI-83 Plus allows for undefined values on a

graph.

None
None

None

None
None

None

The error system will take over and report the error to the screen. Any
application that was executing at that time will be aborted.

B _JUWP Er r Non_Real

TI-83 Plus Developer Guide

3-19

Third Release January 25, 2002

System Routines — Error

Errors if nonreal input to command error. System will take over with message
ERR: DATA TYPE.

B = number of arguments to check.

Arguments on Floating Point Stack.

Error if nonreal input to command.

Screen will have data type error menu.

ErrNonReal
Category: Error
Description:
Inputs:
Registers:
Flags: None
Others:
Outputs:
Registers: None
Flags: None
Others:
Registers A, B
destroyed:
Remarks:
Example: B_JUWP

Er r NonReal

TI-83 Plus Developer Guide

3-20

Third Release January 25, 2002

System Routines — Error

ErrNotEnoughMem

Category: Error

Description:

ERR: MEMORY.

Inputs:
Registers: HL = number of bytes needed.
Flags: None
Others: None

Outputs:
Registers: DE = Amount of memory requested.
Flags: CA =1 if not enough room.
Others: None

Registers

destroyed:

Remarks:

Example: B_JUWP Er r Not EnoughMem

If not enough memory, memory error system will take over with message

TI-83 Plus Developer Guide 3-2 1

Third Release January 25, 2002

System Routines — Error

ErrOverflow

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: OVERFLOW.

None
None

None

None

None

None

B_JUWP

ErrOverfl ow

TI-83 Plus Developer Guide

3-22

Third Release January 25, 2002

System Routines — Error

ErrSignChange

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: NO SIGN

CHANGE.

None
None

None

None

None

None

B_JUWP

Er r Si gnChange

TI-83 Plus Developer Guide

3-23

Third Release January 25, 2002

System Routines — Error

ErrSingularMat

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: SINGULARITY.

None
None

None

None

None

None

B_JUWP

Er r Si ngul ar Mvat

TI-83 Plus Developer Guide

3-24

Third Release January 25, 2002

System Routines — Error

ErrStat

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: STAT.

None
None

None

None

None

None

B_JUWP

Err St at

TI-83 Plus Developer Guide

3-25

Third Release January 25, 2002

System Routines — Error

ErrStatPlot

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: STATPLOT.

None
None

None

None

None

None

B_JUWP

Err St at Pl ot

TI-83 Plus Developer Guide

3-26

Third Release January 25, 2002

System Routines — Error

Jumps to system error handler routine with the message ERR: SYNTAX.

ErrSyntax
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUWP

Err Synt ax

TI-83 Plus Developer Guide

3-27

Third Release January 25, 2002

System Routines — Error

ErrTolTooSmall

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with message ERR: TOL NOT MET.

None
None

None

None

None

None

B_JUWP

Err Tol TooSnwal |

TI-83 Plus Developer Guide

3-28

Third Release January 25, 2002

System Routines — Error

ErrUndefined

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: UNDEFINED.

None
None

None

None

None

None

B_JUWP

Err Undef i ned

TI-83 Plus Developer Guide

3-29

Third Release January 25, 2002

System Routines — Error

JError

Category: Error

Description: Entry point into system error routine. This entry is almost always used in
conjunction with an error exception handler.

After an error exception handler is tripped and control is returned to an
application, the application may choose to modify the error by changing the
error to another or most likely removing the GoTo option. This entry point is
where the application would B_JUMP to continue on with the error after
modifying it.

See the Error Handers section in Chapter 2.
Inputs:

Registers: ACC bits (0 — 6) = error code
ACC bit (7) = 0 for no GoTo option
ACC bit (7) = 1 for allowing a GoTo option

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: (errNo) = error code (one-byte)

System error is displayed or another error.
Exception handler is tripped and the error is suppressed.

Registers All
destroyed:

Remarks:

Example:

TI-83 Plus Developer Guide 3-30 Third Release January 25, 2002

System Routines — Error

JErrorNo

Category: Error

Description: Same as JError except the error code is stored in the byte (errNo).

Remarks: See JError.

TI-83 Plus Developer Guide 3-31 Third Release January 25, 2002

System Routines — Floating Point Stack

System Routines —
Floating Point Stack

PN Lo od ol = T
YN Lo Tod = 3 T
CPYSEACK .

CpyO1ToFPST, CpyO1ToFPS1, CpyO1ToFPS2, CpyO1ToFPS3,
CpyO1ToFPS4, CpyO1ToFPS5, CpyO1ToFPS6, CpyO1ToFPS7
CpyO2ToFPST, CpyO2ToFPS1, CpyO2ToFPS2, CpyO2ToFPS3,
CpyO2ToFPS4, CpyO3ToFPST, CpyO3ToFPS1, CpyO3ToFPS2,

CpyO5ToFPS1, CpyO5TOFPS3, CpyO6TOFPST, CpyOBTOFPS2 ...

CpyTolFPST, CpyTolFPS1, CpyTolFPS2, CpyTolFPS3, CpyTolFPS4,
CpyTolFPS5, CpyTolFPS6, CpyTolFPS7, CpyTolFPS8, CpyTolFPS9,
CpyTolFPS10, CpyTolFPS11, CpyTo2FPST, CpyTo2FPS1, CpyTo2FPS2,
CpyTo2FPS3, CpyTo2FPS4, CpyTo2FPS5, CpyTo2FPS6, CpyTo2FPS7,
CpyTo2FPS8, CpyTo3FPST, CpyTo3FPS1, CpyTo3FPS2, CpyTo4FPST,

CpyTo5FPST, CpyTo6FPST, CpyTo6FPS2, CpyTO6FPS3 ...
(80} 10t P
(80} 10 s 0
L0 0}V 10
L8 0}V 10 s
(0)V 015 7= Lod QR
0] 0111/ [@4'0])@ X R U
POPOP1, POPOP3, POPOPS ...t e e e eean
POPREAL. ... e

PopRealO1, PopRealO2, PopRealO3, PopRealO4, PopRealO5, PopRealO6

PushMCPpIXO1, PUShMCPIXO3 ... e e e e e aanees
PUShOP1, PUSNOPS, PUSNHOPS ...
PUSKHREAL ... oo e e e e et e e e e e e e e s e e e ebaeees

PushRealO1, PushRealO2, PushRealO3, PushRealO4, PushRealO5,

PUSNREAIOG ... e e

TI-83 Plus Developer Guide

Third Release January 25, 2002

System Routines — Floating Point Stack

AllocFPS

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Allocates space on the Floating Point Stack by specifying a number of

nine-byte entries.

HL = number of entries to allocate

None

None

None

None

If no memory error, the new entries are allocated on the end of the FPS.
FPST = last new entry allocated.

All

No initialization of the allocated entries is done. See section on Floating Point

Stack.

TI-83 Plus Developer Guide

4-1

Third Release January 25, 2002

System Routines — Floating Point Stack

AllocFPS1
Category: Floating Point Stack
Description: Allocates space on the Floating Point Stack by specifying a number of bytes,
THIS MUST BE A MULTIPLE OF NINE.
Inputs:
Registers: HL = number of bytes to allocate — a multiple of nine.
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: If no memory error, the new entries are allocated on the end of the FPS.
FPST = last new entry allocated.
Registers All
destroyed:
Remarks: No check is made for the number of bytes being a multiple of nine. No
initialization of the allocated entries is done. See section on Floating Point
Stack.
Example:

TI-83 Plus Developer Guide

4-2

Third Release January 25, 2002

System Routines — Floating Point Stack

CpyStack

Category:

Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes from one of the systems nine-byte stacks, FPS and ES.
Only the FPS (Floating Point Stack) is documented for application use. This
routine should be used in the manner described in the example.

C = number of bytes from the next free byte in the stack back to the entry
copying from. This will always be a multiple of nine.

HL = address of next free byte for the stack, for the FPS the address is stored
in the bytes (FPS).

DE = pointer to the nine-bytes of RAM to copy the entry to.
None

None

HL = pointer to byte after the entry just copied from.
DE=DE +9

None
Nine bytes copied to the RAM from the stack entry.
All

See Floating Point Stack documentation.
Copy from FPS10 to OP2.

LD HL, (FPS) ; copy to FPS

LD DE, (OP2) ; start of 9 bytes to copy to
; FPS10

LD C (10+1)*9 ; C = offset back to FPS10,
; 11*9 bytes

B CALL Cpy St ack ; copy to OP2 from FPS10

TI-83 Plus Developer Guide 4-3 Third Release January 25, 2002

System Routines — Floating Point Stack

CpyO1lToFPST, CpyO1ToFPS1, CpyO1ToFPS2,
CpyO1ToFPS3, CpyO1ToFPS4, CpyO1ToFPS5,
CpyO1ToFPS6, CpyO1ToFPS7, CpyO2ToFPST,
CpyO2ToFPS1, CpyO2ToFPS2, CpyO2ToFPS3,
CpyO2ToFPS4, CpyO3ToFPST, CpyO3ToFPS1,
CpyO3ToFPS2, CpyO5ToFPS1, CpyO5ToFPS3,
CpyO6ToFPST, CpyO6ToFPS2

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

This description covers a group of routines that copies a single nine-byte OP
register (OP1 — OP6), to an entry on the Floating Point Stack (FPS).
For example, CpyO1ToFPS2: OP1 is copied to (FPS2).

None
None

OP register = 9 bytes to copy to FPS entry
For example, CpyO1ToFPS2: OP1 = nine-bytes to copy

DE = FPS entry following the one copied to
For example, CpyO1ToFPS2: DE = address of FPS1

HL = OP register + 9
For example, CpyO1ToFPS2: HL=0P1 +9

None

OP register = copy of the nine-byte FPS entry
For example, CpyTolFPS2: OP1 = FPS2 entry

All
The OP register is written to.

These routines do not allocate or deallocate entries. See entry point
CpyToStack. See entry point CpyTolFPST. See Floating Point Stack section
of Chapter 2.

TI-83 Plus Developer Guide

4-4

Third Release January 25, 2002

System Routines — Floating Point Stack

CpyTolFPST, CpyTolFPS1, CpyTolFPS2,
CpyTolFPS3, CpyTolFPS4, CpyTolFPS5,
CpyTolFPS6, CpyTolFPS7, CpyTolFPSS,
CpyTolFPS9, CpyTolFPS10, CpyTolFPS11,
CpyTo2FPST, CpyTo2FPS1, CpyTo2FPS2,
CpyTo2FPS3, CpyTo2FPS4, CpyTo2FPS5,
CpyTo2FPS6, CpyTo2FPS7, CpyTo2FPSS,
CpyTo3FPST, CpyTo3FPS1, CpyTo3FPS2,
CpyTo4FPST, CpyToSFPST, CpyTo6FPST,
CpyTo6FPS2, CpyTo6FPS3

Category: Floating Point Stack

Description: This description covers a group of routines that copies a single nine-byte entry
from the Floating Point Stack (FPS), to one of the OP registers (OP1 — OP6).
For example, CpyTolFPS2: (FPS2) is copied to OP1.

Inputs:
Registers: None

Flags: None
Others: None
Outputs:

Registers: HL = FPS entry following one copied
For example, CpyTolFPS2: HL = address of FPS1

DE = OP register + 9
For example, CpyTolFPS2: DE = OP1 + 9

Flags: None

Others: OP register = copy of the nine-byte FPS entry
For example, CpyTolFPS2: OP1 = FPS2 entry

Registers All

destroyed: The OP register is written to.

Remarks: These routines do not allocate or deallocate entries. See entry point
CpyStack. See entry point CpyO1ToFPST. See Floating Point Stack section
of Chapter 2.

Example:

TI-83 Plus Developer Guide 4-5 Third Release January 25, 2002

System Routines — Floating Point Stack

CpyToFPST
Category: Floating Point Stack
Description: Copies nine-bytes from RAM/ROM to FPST, Floating Point Stack top entry.
Input:
Registers: DE = address of nine-bytes to copy to FPST
Flags: None
Others: None
Output:

Registers: HL = input DE + 9
DE = (FPS), next free byte on the stack

Flags: None
Others: None
Registers All
destroyed:
Remarks: See Floating Point Stack documentation.
Example:

TI-83 Plus Developer Guide 4-6 Third Release January 25, 2002

System Routines — Floating Point Stack

CpyToFPS1

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes from RAM/ROM to FPS1, Floating Point Stack top entry -1.

DE = address of nine-bytes to copy to FPS1
None

None

HL = input DE + 9
DE = pointer to FPST entry

None
None
All

See Floating Point Stack documentation.

TI-83 Plus Developer Guide 4-7

Third Release January 25, 2002

System Routines — Floating Point Stack

CpyToFPS2

Category: Floating Point Stack
Description: Copies nine-bytes from RAM/ROM to FPS2, Floating Point Stack top entry -2.
Input:
Registers: DE = address of nine-bytes to copy to FPS2
Flags: None
Others: None
Output:

Registers: HL = input DE + 9
DE = pointer to FPS1 entry

Flags: None
Others: None
Registers All
destroyed:
Remarks: See Floating Point Stack documentation.
Example:

TI-83 Plus Developer Guide 4-8 Third Release January 25, 2002

System Routines — Floating Point Stack

CpyToFPS3

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes from RAM/ROM to FPS3, Floating Point Stack top entry -3.

DE = address of nine-bytes to copy to FPS3
None

None

HL = input DE + 9
DE = pointer to FPS2 entry

None
None
All

See Floating Point Stack documentation.

TI-83 Plus Developer Guide 4-9

Third Release January 25, 2002

System Routines — Floating Point Stack

CpyToStack

Category: Floating Point Stack
Description: Copies nine-bytes to one of the systems nine-byte stacks, FPS and ES. Only
the FPS (Floating Point Stack) is documented for application use. This routine
should be used in the manner described in the example.
Input:
Registers: C = number of bytes from the next free byte in the stack back to the entry
copying to. This will always be a multiple of nine.
HL = address of next free byte for the stack, for the FPS the address is stored
in the bytes (FPS).
DE = pointer to the nine-bytes to copy to the stack.
Flags: None
Others: None
Output:
Registers: HL = pointer to byte after the entry just copied to.
DE=DE+9
Flags: None
Others: Nine-bytes copied to the stack entry.
Registers All
destroyed:
Remarks: See Floating Point Stack documentation.
Example: Copy from OP2 to FPS10.
LD HL, (FPS) ; copy to FPS
LD DE, (OP2) ; start of 9 bytes to copy to
FPS10
LD C (10+1)*9 ; C = offset back to FPS10,
; 11*9 bytes
B CALL CpyToStack ; copy to FPS10
TI-83 Plus Developer Guide 4-10 Third Release January 25, 2002

System Routines — Floating Point Stack

PopMCplxO1
Category: Floating Point Stack
Description: Pops a complex value from the FPS (FPS1 = real part; FPST = imaginary
part). No checks are made on the data that is popped from the stack.
Inputs:
Registers: None
Flags: None
Others: FPS1 = real part of complex number
FPST = imaginary part of complex number
Outputs:
Registers: None
Flags: None
Others: OPL1 contains 9 bytes of data from FPS1
OP2 contains 9 bytes of data from FPST
Registers All
destroyed:
Remarks: This routine will remove 18 bytes of data from the FPS regardless of the data
type.
See PopRealO1, PopOP1. See the Floating Point Stack section.
Example:

TI-83 Plus Developer Guide 4-11 Third Release January 25, 2002

System Routines — Floating Point Stack

PopOP1,

Category:

Description:

Input:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:
RAM used:

Remarks:

Example:

PopOP3, PopOP5

Floating Point Stack

This description covers three entry points that are similar. The description is
given for PopOPL1. The inputs/outputs are the same for the other two routines
replacing OP1/OP2 with either OP3/OP4 or OP5/OP6.

These routines will pop either one or two floating-point numbers off of the top
of the FPS. They are used to either pop a real or a complex value off of the top
of the FPS without knowing in advance whether a real or a complex value is
on the top of the stack.

The top entry (FPST) is popped into OP1. The sign byte of the popped value in
OPL1 is checked for CplxObj. If it is complex, OP1 is moved to OP2 and the
new FPST is popped into OP1. If it is not complex, the floating-point number
popped into OP1 is left there.

None
None

None

None
None

If the data type of FPST = RealObj then OP1 = FPST

If the data type of FPST = CpIxObj then OP1 = FPS1,

the real part of the complex value

OP2 = FPST, the imaginary part of the complex value.

All

OP1/0OP2 or OP3/0P4 or OP5/0OP6 depending on which of the routines is
used.

When using this routine make sure that the FPST entry is not a complex
variable name. If it is, it will be interpreted as a complex value causing two
floating-point numbers to be popped from the FPS. See PopRealO1 and
PopMcplxO1. See Floating Point Stack section.

TI-83 Plus Developer Guide 4-12 Third Release January 25, 2002

System Routines — Floating Point Stack

PopReal

Category: Floating Point Stack

Description: Pops the last entry FPST, off of the FPS to an input RAM location. No matter
what the data in FPST is only nine (9) bytes are popped off of the stack.

Inputs:
Registers: DE = pointer to RAM location to pop FPST into

Flags: None

Others: None
Outputs:

Registers: DE=DE +9

Flags: None

Others: The nine-byte entry FPST is removed from the FPS and copied to the
nine-bytes starting at address DE.

Registers All but the ACC
destroyed:
Remarks: The entry is removed from the FPS shrinking the size of the FPS by

nine-bytes. See the Floating Point Stack section.

Example:

TI-83 Plus Developer Guide 4-13 Third Release January 25, 2002

System Routines — Floating Point Stack

PopRealOl, PopRealO2, PopRealO3, PopRealO4,
PopRealO5, PopRealO6

Category: Floating Point Stack

Description: This description covers six entry points that are similar. The description is
given for PopRealO1. The inputs/outputs are the same for the other five
routines replacing OP1 with either OP2, OP3, OP4, OP5 or OP6.

Pops the last entry FPST, off of the FPS to OP1. No matter what the data in
FPST is, only nine (9) bytes are popped off of the stack.

Inputs:
Registers: None

Flags: None
Others: None
Outputs:

Registers: None
Flags: None

Others: The nine-byte entry FPST is removed from the FPS and copied to the
nine-bytes starting at address OP1.

Registers

destroyed:

Remarks: The entry is removed from the FPS shrinking the size of the FPS by
nine-bytes. See PopOP1. See the Floating Point Stack section.

Example:

TI-83 Plus Developer Guide 4-14 Third Release January 25, 2002

System Routines — Floating Point Stack

PushMCplxO1, PushMCplIxO3

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

PushMCplxO1 pushes a complex value onto the FPS (OPL1 = real part; OP2 =
imaginary part). No checks are made on the data that is put onto the stack.
PushMCplx0O3 accomplishes the same task, except inputs are OP3 and OP4.

None

None

(OP1)...(OP1+8) and (OP2)...(OP2+8) contain 18 bytes of data to be pushed.
None

None

FPS1 = 9 bytes from OP1

FPST =9 bytes from OP2

All

Memory error if not enough free RAM.
See PushRealO1, PushOP1. See the Floating Point Stack section.

TI-83 Plus Developer Guide

4-15

Third Release January 25, 2002

System Routines — Floating Point Stack

PushOP1, PushOP3, PushOP5

Category:

Description:

Input:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Floating Point Stack

This description covers three entry points that are similar. The description is
given for PushOP1. The inputs/outputs are the same for the other two routines
replacing OP1/OP2 with either OP3/OP4 or OP5/OP6.

These routines will push either one or two floating-point numbers onto the
FPS. It is used to either push a real or a complex value onto the FPS without
knowing in advance whether a real or a complex value is being pushed onto
the stack.

The sign byte of OP1 is checked for CpIxOb;. If it is Complex, OP1 is pushed
on to the stack and the OP2 is pushed onto the stack. If it is not complex, the
floating-point number in OP1 is only pushed onto the stack.

None
None

None

None
None

If the data type of OP1 = RealObj then FPST = OP1

If the data type of OP1 = CpIxObj then FPS1 = OP1,
the real part of the complex value

FPST = OP2, the imaginary part of the complex value.

All

None

When using this routine make sure that the OP1 is not a complex variable
name. If it is it will be interpreted as a complex value causing two floating-point
numbers to be pushed onto the FPS. See PushRealO1, PushMcpIxO1l. See
the Floating Point Stack section.

TI-83 Plus Developer Guide 4-16 Third Release January 25, 2002

System Routines — Floating Point Stack

PushReal

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Pushes a new entry onto the FPS and copy the nine-bytes at address HL into
the new entry. No checks are made on the data that is put onto the stack.

HL = pointer to nine-bytes to push onto the FPS
None

None

HL=HL+9

None

FPST = nine-bytes at HL pushed onto the stack
All

The previous FPST is now entry FPS1. See PushRealO1, PushOP1. See the
Floating Point Stack section.

TI-83 Plus Developer Guide 4-17 Third Release January 25, 2002

System Routines — Floating Point Stack

PushRealO1, PushRealO2, PushRealO3, PushRealO4,
PushRealO5, PushRealO6

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

This description covers six entry points that are similar. The description is
given for PushRealO1. The inputs/outputs are the same for the other five
routines replacing OP1 with either OP2, OP3, OP4, OP5 or OP6.

Pushes a new entry onto the FPS and copy the nine-bytes at OP1 into the new
entry. No checks are made on the data that is put onto the stack.

None
None
OP1 = nine-bytes to push onto the FPS

None
None
FPST = nine-bytes at OP1 pushed onto the stack

The previous FPST is now entry FPS1. See PushReal, PushOP1. See the
Floating Point Stack section.

TI-83 Plus Developer Guide

4-18

Third Release January 25, 2002

System Routines — Graphing and Drawing

System Routines —
Graphing and Drawing

AL B e —————————————————————————— 5-1
2 T | T 5-2
BUIC DY e 5-3
L] o] 4 1 1 o 1 5-4
CircCmd (CONTINUE) ...ttt 5-5
(O 1= = 15 LT 5-6
LN ettt ettt ettt ettt ne
CLINE (CONTINUE) ..ttt 5-8
L I = PPN 5-9
CLINES (CONTINUEM) ...ttt 5-10
(O (€] =T 0] 0] 2 (=] T TP PP PP PUPPPPPPPPPPPPPP 5-11
Lo T o | 5-12
CPOINE (CONTINUET) ... 5-13
(O o 1 | 1 T 5-14
CPOINIS (CONTINUET) ...ttt 5-15
D= 1 T T U 5-16
DarkLing (CONLINUE)........ccooiiiiiiiiiee e 5-17
D = 14 | R 5-18
DarkPnt (CONTINUEA)ooeiiiiiieeee e 5-19
ISP et 5-20
D - 1YL oSS 5-21
DrawCirC2 (CONLINUET)coeeiiieieeeeeee e 5-22
D = 1YL 1 o R 5-23
o LY =T o 1 = o o [PR 5-24
B o\ =Tt A = To] (o L= (O [T T PR 5-25
= LY oY LT 1 = o] {0 - U 5-26
111 o 5-27

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines — Graphing and Drawing

FIlIRECE (CONLINUEM)ceiiiiiei e e e e e e e e e e eaaaaaaas 5-28
11T =T o (= 1= o PP 5-29
FillRectPattern (CONtINUE).........ooiuiiiiiii e e e e e 5-30
GIBUTCIT .t e e e e e e e e e e e e e e e e a e e e s 5-31
L] 1= 101 o)Y 5-32
(€] 0] 0[O 1 (o2 5-33
HOMZCMA. .. 5-34
12701 o LS PPPP PP 5-35
12700 T To £]| PP 5-36
0 TP 5-37
ILINE (CONLINUE) ...ttt ettt et e et e e et e e e eaae e e eaae e e enteeesnaeeeeneeeaas 5-38
INVCIMA <. 5-39
INVEITRECT ...ttt e et e e et et e e e e et e e e eeban e eeeeees 5-40
L4 £ = PR 5-41
IPOINT .. 5-42
[0]) a (oo] 4111 U T=To) U 5-43
LINECMA ... 5-44
LineCmd (CONLINUE)......uuuueii e e e e e e e et e e e e e e e e enaaaaaas 5-45
[D1 o € ¢] ISP 5-46
PIXEIT ST .. 5-47
POINCMA ... 5-48
PointCmd (CONLINUEA)uuuei e e e e 5-49
POINTON. ... 5-50
REGIAPN .. a 5-51
SEEAIIPIOLS ..ttt 5-52
SEIFUNCM . ettt e et e e e e e e e e s 5-53
SEIPAIM. .. e 5-54
SEIPOIM ..t e e e e e e e e e e a i araaaeaaaaanns 5-55
S = Y= 0 | 5-56
SetThIGIaPRDIAW ... e e e e 5-57
TANLNE e et e a e e e naa s 5-58
0@ =SSP 5-59

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Graphing and Drawing

LU I 1= 1 T U 5-61
LY 7= (4 2 1 o SRR 5-62
VEIOWHLDE ... e e e e e e et e e e e e e e e e et s e eeaeeeeanes 5-63
(0 O 5-64
10 5-65
21 5-66
74 01 =T o o 1 P 5-67
74 0] | 5-68
4 0 011 0| ST PP TPPPT 5-69
ZIMPIEY ..ttt ra e e 5-70
ZIMSGUATE ... ettt e e ettt a e e et et e e eee st e e e e et e ee bbb s e e e e et e eee b b e e e e e e e eeenbba e e eeeas 5-71
pA 1 11 = £ TSP 5-72
ZIMTTIQ ettt s 5-73
WA 1 118] ST PPPTOPPT 5-74
0 To] = = T | 5-75

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines — Graphing and Drawing

AllEqQ

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

Select or deselect all graph equations in the current graph mode.

ACC = 3 to select all equations in the current graph mode
= 4 to deselect all equations in the current graph mode

Current graph mode: Y + grfModeFlags = flag byte

None

None

None

All graph equations for the current mode are selected or deselected.
All

OP1, OP2

TI-83 Plus Developer Guide 5-1 Third Release January 25, 2002

System Routines — Graphing and Drawing

BufClIr

Category: Graphing and Drawing
Description: Executes the routine GrBufClIr on a bitmap of the graph screen other than
plotSScreen, the system graph backup buffer.
Inputs:
Registers: HL = pointer to start of graph buffer to clear, 768 bytes
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: RAM cleared.
Registers All
destroyed:
Remarks: G-T and Horizontal modes will affect how much of the buffer is cleared. In
order to have the entire buffer cleared set to full screen mode.
There are two additional bit image display buffers allocated other than
plotSScreen, they start at addresses appBackUpScreen and saveSScreen.
Example: LD HL, appBackUpScr een
B CALL Buf C r ; clear backup
TI-83 Plus Developer Guide 5-2 Third Release January 25, 2002

System Routines — Graphing and Drawing

BufCpy

Category: Graphing and Drawing

Description: Executes the routine GrBufCpy on a bitmap of the graph screen other that
plotSScreen, the system graph backup buffer. The contents of the buffer are
displayed.

Inputs:
Registers: HL = pointer to start of graph buffer to display, 768 bytes
Flags: None
Others: None
Outputs:
Registers: None
Flags: None

Others: None

Registers All
destroyed:
Remarks: G-T and Horizontal modes will affect how much of the buffer is displayed. In

order to have the entire buffer displayed, set to full screen mode.

There are two additional bit image display buffers allocated other than
plotSScreen, they start at addresses appBackUpScreen and saveSScreen.

Example: LD HL, appBackUpScr een
B CALL Buf Cpy ; display backup buffer

TI-83 Plus Developer Guide 5-3 Third Release January 25, 2002

System Routines — Graphing and Drawing

CircCmd

Category: Graphing and Drawing
Description: Displays the current graph screen and draws a circle on the graph screen
given the center and the radius, relative to the current window settings.
Inputs:
Registers: None

Flags: useFastCirc, (1Y + plotFlag3) = 1 for fast circle routine that draws the circle in
sections simultaneously
useFastCirc, (1Y + plotFlag3) = 0 for normal circle routine that draws in a
circular direction

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display

Others: FPST = radius, a floating-point number
FPS1 =Y value of center, a floating-point number
FPS2 = X value of center, a floating-point number

The center specified is with respect to the current window settings.

Outputs:
Registers: None
Flags: None
Others: Current graph, and point operation are drawn to the screen and the graph

backup buffer, plotSScreen.

Inputs are removed from the Floating Point Stack.

Registers All
destroyed:
Remarks: If a zoom square is not done before using this routine the output circle will

most likely not look circular but skewed in either the X or Y axis direction.
If useFastCirc is used, the flag must be reset by the caller.

(continued)

TI-83 Plus Developer Guide 5-4 Third Release January 25, 2002

System Routines — Graphing and Drawing

CircCmd (continued)

Example: Execute a zoom standard and then draw a circle at (0,0) with radius 3 using
the alternate fast circle draw.
B CALL ZooDef aul t standard w ndow
B_CALL OP1Set 0 oP1L =0
RST r PushReal O1
RST r PushReal OL (0,0) pushed
onto FPS
B CALL OP1Set 3 radius is 3
RST r PushReal O1 3 pushed onto
FPS
SET useFast G rc, (I Y+pl ot Fl ag3) fast circle
routine
AppOnErr CrFlag set up error
handl er to clear
fast circle flag
B CALL CrcCmd
AppOF fErr renmove no error
RES useFast G rc, (I Y+pl ot Fl ag3) reset flag
RET
: cone here if error
C rFl ag:
RES useFast G rc, (I Y+pl ot Fl ag3) reset flag
B _JUWP JError No continue on with
system error
handl e
TI-83 Plus Developer Guide 5-5 Third Release January 25, 2002

System Routines — Graphing and Drawing

ClearRect

Category:
Description:
Inputs:

Registers:

Flags:

Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Clears a rectangular area on the screen (to Pixel off).

H = upper left corner pixel row

L = upper left corner pixel column
D = lower right corner pixel row

E = lower right corner pixel column

plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

None

None
None
None
All

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is upper
left corner of screen and row = 63, column = 95 is lower right corner of screen.

Area includes row and column of both coordinates.

Inputs must satisfy conditions: D >= H, E >= L.

Modifies saveSScreen RAM area.

LD HL, 0000h
LD DE, 3F5Fh
B CALL Fil | Rect
LD H 0

LD L, 48

LD D, 31

LD E, 95

B CALL Cl ear Rect
B _CALL Get Key
B_JUWP

JFor ceCnmdNoChar

Make the whol e screen
bl ack

Clear the screen's top
right quarter

Get key press

Exit app

TI-83 Plus Developer Guide 5-6

Third Release January 25, 2002

System Routines — Graphing and Drawing

CLine

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Graphing and Drawing

Draws a line between two points specified by graph coordinates. The line is
plotted according to the current window settings Xmin, Xmax, Ymin, Ymax.

The points do not need to lie within the current window settings this routine will
clip the line to the screen edges if any portion of the line goes through the
current window settings.

This routine should only be used to draw lines in reference to the window
settings.

ILine can be used to draw lines by defining points with pixel coordinates,
which will be a faster draw.

OP4 — Y1-coordinate
OP3 — X1-coordinate
OP2 — Y2-coordinate
OP1 — X2-coordinate

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen.

grfSplit, (IY + sGrFlags) = 1 if horizontal split mode set
vertSplit, (IY + sGrFlags) = 1 if graph-table split mode set
grfSplitOverride, (1Y + sGrFlags) = 1 to ignore split modes
plotLoc, (IY + plotFlags) = 1 to draw to the display only

= 0 to draw to display and plotSScreen buffer.
bufferOnly, (IY + plotFlag3) = 1 to draw to plotSScreen buffer only.

None

None
None
None
All

OP1 -0OP6

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide 5-7 Third Release January 25, 2002

System Routines — Graphing and Drawing

CLine (continued)

Example:

Draw a |ine between
the points (1.5,3)
& (4,6):

LD HL, Point _1 point to (1.5,3) in
ROM
LD DE, OP3
LD BC, 18
LD R
LD HL, Poi nt _2 point to (4,6) in
ROM
B CALL Mov9OP10P2 OP1 =4 0P2 =6
B CALL PushMCpl xO1
B CALL CLi ne draw the line
RET
Poi nt _1:
DB 0, 80h, 15h,0,0,0,0,0,0 1.5
DB 0, 80h, 30h,0,0,0,0,0,0 3
Poi nt _2:
DB 0, 80h, 40h, 0,0,0,0,0,0 4
DB 0, 80h, 60h, 0,0,0,0,0,0 6
TI-83 Plus Developer Guide 5-8 Third Release January 25, 2002

System Routines — Graphing and Drawing

CLineS

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Graphing and Drawing

Draws a line between two points specified by graph coordinates. The line is
plotted according to the current window settings Xmin, Xmax, Ymin, Ymax.

The points do not need to lie within the current window settings this routine will
clip the line to the screen edges if any portion of the line goes through the
current window settings.

This routine should only be used to draw lines in reference to the window
settings.

ILine can be used to draw lines by defining points with pixel coordinates,
which will be a faster draw.

FPS2 — Y1-coordinate
FPS3 — X1-coordinate
FPST — Y2-coordinate
FPS1 — X2-coordinate

plotLoc, (IY + plotFlags) = 1 to draw to the display only
= 0 to draw to display and plotSScreen buffer

bufferOnly, (IY + plotFlag3) 1 to draw to plotSScreen buffer only

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this turn off the split screen modes.
See ForceFullScreen.

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)

1 if horizontal split mode set
1 if graph-table split mode set
1 to ignore split modes

None

None
None
None
All

OP1 -0OP6

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide 5-9 Third Release January 25, 2002

System Routines — Graphing and Drawing

CLineS (continued)
Example:
Poi nt _1:
Poi nt _2:

LD
B_CALL
B_CALL
LD

B_CALL

B_CALL

B_CALL

B8 B

HL, Point _1
Mov9OP10P2
PushMCpl xO1
HL, Poi nt _2
Mov9OP10P2

PushMCpl xO1

CLi neS

Draw a |ine between
the points (1.5,3)
& (4,6):

point to (1.5,3) in
ROM

OP1L =1.5 0P2 = 3

push OPl and then

OP2 onto the FPS

point to (4,6) in
ROM

OP1L =4 0P2 =6
push OPl1 and then
OP2 onto the FPS

draw the line

TI-83 Plus Developer Guide

5-10

Third Release January 25, 2002

System Routines — Graphing and Drawing

ClrGraphRef

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Clears all graph reference flags in the symtable and the temporary symtable.

None
None

None

None

None

Graph reference reset

HL, DE, BC

B_CALL

C r G aphRef

TI-83 Plus Developer Guide

5-11

Third Release January 25, 2002

System Routines — Graphing and Drawing

CPoint

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing

Turns on, turns off, or inverts a point in the display specified by graph
coordinates. The point is plotted according to the current window settings:
Xmin, Xmax, Ymin, Ymax.

This routine should only be used to draw points in reference to the window
settings.

IPoint can be used to draw points by defining points with pixel coordinates,
which causes a faster draw.

ACC = what to do
0: turn point off

1: turn point on

2: invert point

G-T and HORIZ split-screen modes affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen.

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)
plotLoc, (IY + plotFlags)

1 if horizontal split mode set

1 if graph-table split mode set

1 to ignore split modes

1 to draw to the display only

0 to draw to display and plotSScreen
buffer

1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

OP1 — X Coordinate of point
OP2 — Y Coordinate of point

None
None

None

All

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide

5-12

Third Release January 25, 2002

System Routines — Graphing and Drawing

CPoint (continued)

Example:

Poi nt _1:

LD
B_CALL

LD
B_CALL
RET

DB
DB

HL, Point _1
Mov9OP10P2

Al
CPoi nt

Draw a point in the graph window at coordinates (1.5,3):

point to (1.5,3)
OP1L =1.5 0OP2 = 3

turn on
draw t he point

TI-83 Plus Developer Guide

5-13

Third Release January 25, 2002

System Routines — Graphing and Drawing

CPointS

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing

Turns on, turns off or inverts a point in the display specified by graph
coordinates. The point is plotted according to the current window settings:
Xmin, Xmax, Ymin, Ymax.

This routine should only be used to draw points in reference to the window
settings.

IPoint can be used to draw points by defining points with pixel coordinates,
which causes a faster draw.

ACC = what to do
0: turn point off

1: turn point on

2: invert point

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen.

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)
plotLoc, (IY + plotFlags)

1 if horizontal split mode set

1 if graph-table split mode set

1 to ignore split modes

1 to draw to the display only

0 to draw to display and plotSScreen
buffer

1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

FPS1 — X Coordinate of point
FPST — Y Coordinate of point

None
None

None

All

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide

5-14

Third Release January 25, 2002

System Routines — Graphing and Drawing

CPoINntS (continued)

Example:

Poi nt _1:

LD

B_CALL
B_CALL

LD
B_CALL
RET

Draw a point in the graph window at coordinates (1.5,3)

HL, Point _1
Mov9OP10P2
PushMCpl xO1

Al
CPoi nt S

point to (1.5,3)

in ROM

OP1L =1.5 0P2 = 3
push OP1 and then
OP2 onto the FPS

turn on
draw t he point

1.5

TI-83 Plus Developer Guide

5-15

Third Release January 25, 2002

System Routines — Graphing and Drawing

DarkLine

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing
Draws a line between two pixel points defined by their pixel coordinates.

The graph window is defined with the lower left corner of the display to be pixel
coordinate (0,0).

The system graphing routines do not normally draw in the last column and the
bottom row of the screen, column 95 and row O.

This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFig4)

X = column
Y = row

B = X-coordinate of first point — 0...94 (95) see above
C = Y-coordinate of first point — 1(0)...63

D = X-coordinate of second point — 0...94 (95)

E = Y-coordinate of second point — 1(0)...63

1 to use column 95 and row O

1 to draw to the display only

0 to draw to display and plotSScreen buffer
1 to draw to plotSScreen buffer only

fullScrnDraw, (Y + apiFlg4)
plotLoc, (IY + plotFlags)

bufferOnly, (IY + plotFlag3)

None

None
None
Line drawn where specified.

All registers are preserved.

If the draw is going to the buffer then the contents of the buffer are used to
draw the line and copied to the screen.
No clipping, X, Y points assumed to be defined on the screen.

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen.

(continued)

TI-83 Plus Developer Guide 5-16 Third Release January 25, 2002

System Routines — Graphing and Drawing

DarkLine (continued)

Example: ; Clear the screen.
; Draw a line in the display only, between pixel coordinates (25, 30)
; and (62, 50):
B CALL ClrLCD : clear the screen;
LD BC, 25*256+30 ; 1lst point, B = 25,
; C=30
LD DE, 62*256+50 ; 2nd point, D = 62,
;. E =50
SET pl ot Loc, (1 Y+pl ot Flags) ; display only
B CALL Dar kLi ne : draw the line
TI-83 Plus Developer Guide 5-17 Third Release January 25, 2002

System Routines — Graphing and Drawing

DarkPnt

Category:

Description:

Inputs:
Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers

destroyed:

Remarks:

Graphing and Drawing

Turns on a point in the display specified by graph coordinates.
The point is plotted according to the current window settings:
Xmin, Xmax, Ymin, Ymax.

This routine should only be used to draw points in reference to the window
settings.

IPoint can be used to draw points by defining points with pixel coordinates,
which causes a faster draw.

None

G-T and HORIZ split screen modes affect how this routine maps the
coordinates specified. To avoid this, turn off the split-screen modes.
See ForceFullScreen.

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)
plotLoc, (IY + plotFlags)

1 if horizontal split mode set

1 if graph-table split mode set

1 to ignore split modes

1 to draw to the display only

0 to draw to display and plotSScreen
buffer.

1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

OP1 — X Coordinate of point
OP2 — Y Coordinate of point

None
None
None
All

This routine does not copy the graph buffer to the screen or invoke a regraph,
if needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide 5-18 Third Release January 25, 2002

System Routines — Graphing and Drawing

DarkPnt (continued)

Example: Draw a point in the graph window at coordinates (1.5,3):
LD HL, Poi nt _1 ;
B CALL Mov9OOP10P2 ;
B CALL Dar kPnt :
RET

Poi nt _1:

DB 0, 80h, 15h,0,0,0,0,0,0 ;
DB 0, 80h, 30h,0,0,0,0,0,0 ;

point to (1.5, 3)
in ROM
OP1L =1.5 0P2 = 3

draw t he point

TI-83 Plus Developer Guide 5-19

Third Release January 25, 2002

System Routines — Graphing and Drawing

Disp
Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Checks if graph screen is in the display. If it is, restores the text shadow to the
screen.

None
None

None

None

shiftFlags, textFlags
curRow, curCol, winTop
All

This is intended to be used when an application uses both the home screen
and the graph screen.

Using this routine allows the application to switch between the home screen
and the graph screen without having to rebuild the home screen.

When switching to the graph screen, all of the text previously written to the
home screen should have been also written to the text shadow.

The plotLoc flag should be set when switching to the graph screen.

TI-83 Plus Developer Guide

5-20

Third Release January 25, 2002

System Routines — Graphing and Drawing

DrawCirc2
Category: Graphing and Drawing
Description: Draws a circle given the center and the radius, relative to the current window
settings.
The current graph screen is not put into the display by this routine.
This icircle routine is one of two available, and is the faster of the two.
Inputs:
Registers: None
Flags: plotLoc, (IY + plotFlags) = 1 to draw to the display only
plotLoc, (IY + plotFlags) = 0 to draw to display and buffer
bufferOnly, (IY + plotFlag3) = 1 to draw to buffer only
Others: FPST = radius, a floating-point number
FPS1 =Y value of center, a floating-point number
FPS2 = X value of center, a floating-point number
The center specified is with respect to the current window settings.
Outputs:
Registers: None
Flags: None
Others: Circle is drawn either to the display, the buffer, or both.
Inputs are removed from the Floating Point Stack.
Registers All
destroyed:
Remarks: If a zoom square is not done before using this routine the output circle will

most likely not look circular but skewed in either the X or Y axis direction.
See CircCmd. See Floating Point Stack section.

(continued)

TI-83 Plus Developer Guide

5-21

Third Release January 25, 2002

System Routines — Graphing and Drawing

DrawCirc?2 (continued)

Example: Execute a zoom standard and then draw a circle at (0,0) with radius 3.
B_CALL ZooDef aul t ; standard wi ndow
B _CALL PDspG ph ; get current graph to the
; display
B _CALL OP1Set O ; OP1L =0
RST r PushReal OL
RST rPushReal OL ; (0,0) pushed onto FPS
B CALL OP1Set 3 ; radius is 3
RST rPushReal OL ; 3 pushed onto FPS
AppOnErr circerr ; set up error handler
B _CALL DrawCirc2 ;
AppCOF fErr ; renove no error
RET
: conme here if error
Circerr:
TI-83 Plus Developer Guide 5-22 Third Release January 25, 2002

System Routines — Graphing and Drawing

DrawCmd

Category:

Description:

Inputs:
Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Graphing and Drawing

Displays the current graph screen and draws a function on it. Same as
TI1-83 Plus instruction DrawF.

None

graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be

redrawn
= 0 if graph buffer is up to date and is copied

to the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not

to the display
FPST = name of equation to evaluate and draw, with X being the independent
variable.

None
None

Current graph and function are drawn to the screen and the graph backup
buffer, plotSScreen.

FPST = name of equation drawn, this must be cleaned by the calling routine.
All

OP1 -0OP6

Errors can be generated during the draw, see Error Handlers section.
See section on Floating Point Stack

Draw Y1 on the graph screen.

LD HL, Ylnane

B CALL Mov9ToOP1 . OP1L = VY1

B CALL PushReal O1 ; push Y1 into FPST
B CALL Dr awCnd ;. draw

B CALL PopReal O1 : clean Y1 off of FPS

TI-83 Plus Developer Guide 5-23 Third Release January 25, 2002

System Routines — Graphing and Drawing

DrawRectBorder
Category: Graphing and Drawing
Description: Draws a rectangular outline on the screen.
Inputs:
Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column
Flags: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers All
destroyed:
Remarks:
of screen.
Area includes row and column of both coordinates.
Inputs must satisfy conditions: D >=H, E>=L
Modifies saveSScreen RAM area.
Example:

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner

LD HL, 0000h

LD DE, 3F5Fh

B CALL Dr awRect Bor der
B _CALL Get Key

B_JUWP JFor ceCmdNoChar

Draw an outline around
the screen

Get key press

Exit app

TI-83 Plus Developer Guide 5-24

Third Release January 25, 2002

System Routines — Graphing and Drawing

DrawRectBorderClear

Category: Graphing and Drawing

Description: Draws a rectangular outline on the screen and clears the area inside the
outline.

Inputs:

Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column

Flags: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

Others: None
Outputs:

Registers: None

Flags: None

Others: None

Registers All

destroyed:

Remarks: Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner
of screen.

Area includes row and column of both coordinates.
Inputs must satisfy conditions: D >= H, E >= L.

Modifies saveSScreen RAM area.

Example: ;

B _CALL d r LCDFul |

LD H, 32

LD L, 48

LD D, 63

LD E, 95

B CALL Fil | Rect : Bl acken the screen's
; lower right quarter

B CALL Get Key ; Get key press

LD HL, 0000h

LD DE, 3F5Fh

B CALL Dr awRect Bor der Cl ear : Draw an outline
: around the screen and
: clear inside

B CALL Get Key ; Get key press

B_JuwP JFor ceCmdNoChar ; Exit app

TI-83 Plus Developer Guide 5-25 Third Release January 25, 2002

System Routines — Graphing and Drawing

EraseRectBorder

Category: Graphing and Drawing

Description: Erases a rectangular outline on the screen (to white).

Inputs:

Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column

Flags: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

Others: None

Outputs:

Registers: None

Flags None

Others: None

Registers All

destroyed:

Remarks: Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner
of screen.
Area includes row and column of both coordinates.
Inputs must satisfy conditions: D >=H, E>=L
Modifies saveSScreen RAM area.

Example:

LD HL, 0000h

LD DE, 3F5Fh

B CALL Dr awRect Bor der : Draw an outline around the
;. screen

B CALL Get Key ; Get key press

B CALL Er aseRect Bor der : Erase an outline around
: the screen

B CALL Get Key ; Get key press

B _Juwr JForceCmdNoChar ; Exit app

TI-83 Plus Developer Guide 5-26 Third Release January 25, 2002

System Routines — Graphing and Drawing

FillRect

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing

Fills a rectangular area on the screen (to black).

H = upper left corner pixel row

L = upper left corner pixel column
D = lower right corner pixel row

E = lower right corner pixel column

plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

None

None
None
None
All

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner

of screen.

Area includes row and column of both coordinates.
Inputs must satisfy conditions: D >=H, E>=L

Modifies saveSScreen RAM area.

(continued)

TI-83 Plus Developer Guide 5-27

Third Release January 25, 2002

System Routines — Graphing and Drawing

FillRect (continued)

Example: ;

B_CALL
LD
LD
B_CALL

B_CALL

LD
LD
LD
B_CALL

B_CALL
LD
LD
B_CALL

B_CALL
B_JUWP

C r LCDFul |
HL, 1C2Ch
DE, 2232h
Fi |l | Rect

Cet Key

H 0

L,0

D, 63

E, 95

I nvert Rect

Cet Key

H, 0000h

D, 3F5Fh

I nvert Rect

Get Key
Jf or ceCmdNoChar

Cl ear the whole screen

Put bl ack square in
screen center
Get key press

Turn to white square on
bl ack backgr ound
Get key press

Return to bl ack square on
whi t e backgr ound

Get key press

Exit app

TI-83 Plus Developer Guide

5-28

Third Release January 25, 2002

System Routines — Graphing and Drawing

FillRectPattern

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing

Fills a rectangular area on the screen with a pattern.

H = upper left corner pixel row

L = upper left corner pixel column
D = lower right corner pixel row

E = lower right corner pixel column

plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

RectFillPHeight = pattern’s height in pixel rows (byte, 1 — 8)
RectFillPWidth = pattern’s width in pixel columns (byte, 1 — 8)
RectFillPattern = one-byte for each pattern pixel row

Pattern is right justified — bit 0 is right-most pixel in pattern row. First byte is
the top row of the pattern.

None
None
None
All

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is upper
left corner of screen and row = 63, column = 95 is lower right corner of screen.

Area includes row and column of both coordinates.

Inputs must satisfy conditions: D H, E L.

You should not use the right-most column (95). This routine fails if you try to
use it.

Modifies saveSScreen RAM area.

The pattern is written across the screen and is truncated at the right edge of
the specified rectangle. The pattern will also be truncated at the bottom of the
rectangle if needed.

(continued)

TI-83 Plus Developer Guide

5-29

Third Release January 25, 2002

System Routines — Graphing and Drawing

FillRectPattern (continued)

Example:

MyPat t er n:

B_CALL
LD

LD
LD

LD
LD

LD

LD
LDI R

LD
LD

B_CALL
B_CALL

B_JUWP
DB

Cl r LCDFul | :
A 6 ;

(Rect Fi | | PHei ght),
A
A4 ;

(RectFil | PWdth), A
HL, MyPat t er n ;

DE, RectFil | Pattern :
BC, 6 ;
HL, 1F2Fh

DE, 3F5Eh ;
Fill Rect Pattern :
Get Key ;

JFor ceCndNoChar :
OFh, 07h, 03h, 01h, 03

Cl ear the whol e screen
Pattern is 6 pixels
hi gh

Pattern is 4 pixels
wi de

Copy source is the
pattern in this code
Copy destination is the
pattern buffer

Copy 6 bytes

Copy pattern to pattern
buf f er

Coordi nates of the full
screen except |ast

col um

Fill it with the
pattern

Get key press

Exit app

h, 07h

TI-83 Plus Developer Guide

5-30

Third Release January 25, 2002

System Routines — Graphing and Drawing

GrBufClr

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing
Clears out the graph backup buffer plotSScreen.

None
None

None

None

None

All 768 bytes of plotSScreen set to 0.
All

TI-83 Plus Developer Guide 5-31

Third Release January 25, 2002

System Routines — Graphing and Drawing

GrBufCpy

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Copies the graph backup buffer plotSScreen to the display.

None
None
(winBtm) should be = 8

None

None

Graph buffer sent to display.
All

Both vertical and horizontal split setting will affect what is copied to the screen.

See ForceFullScreen. See RestoreDisp.

TI-83 Plus Developer Guide 5-32

Third Release January 25, 2002

System Routines — Graphing and Drawing

GrphCirc

Category:

Description:

Inputs:
Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Draws a circle on the screen given the pixel coordinates of the center and a
point on the circle.

None
useFastCirc, (1Y + plotFlag3) = 1 for fast circle routine that draws the circle in
sections simultaneously

useFastCirc, (1Y + plotFlag3) = 0 for normal circle routine that draws in a
circular direction

plotLoc, (IY + plotFlags) = 1 to draw to the display only
plotLoc, (IY + plotFlags) = 0 to draw to display and buffer
bufferOnly, (IY + plotFlag3) = 1 to draw to buffer only.

Pixel coordinates for the center and a point on the circle. Coordinate (0,0) is
the pixel in the lower left corner of the display, (X,y).

(curGX2) = x coordinate of center
(curGY2) =y coordinate of center

(curGX) = x coordinate of point on the circle
(curGY) =y coordinate of point on the circle

None

None

Circle drawn on the display.
All

The graph screen does not have to be displayed. The current window settings
have no affect. If useFastCirc is used, the flag must be reset by the caller. See
CircCmd and DrawCirc2 routines.

TI-83 Plus Developer Guide

5-33

Third Release January 25, 2002

System Routines — Graphing and Drawing

HorizCmd
Category: Graphing and Drawing
Description: Displays the current graph screen and draws a horizontal line at X = OP1.
Same as TI-83 Plus instruction Horizontal.
Inputs:
Registers: None
Flags: graphDraw, (IY + graphFlags) = 1 if current graph is dirty, and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen.
bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display
Others: OP1 = X value to draw the horizontal line at.
Outputs:
Registers: None
Flags: None
Others: Current graph and the line are drawn to the screen and the graph backup
buffer, plotSScreen.
FPST = name of equation drawn, this must be cleaned by the calling routine.
Registers All
destroyed:
RAM used: OP1 - OP6
Remarks:
Example: Draw a horizontal line at X = 3 on the graph screen.

B_CALL OP1Set 3 . OP1 = 3

B CALL Hor i zCmd : draw the line

TI-83 Plus Developer Guide 5-34 Third Release January 25, 2002

System Routines — Graphing and Drawing

IBounds

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Tests if a pixel coordinate lies within the graph window defined by the current

split mode settings.

B = X pixel coordinate
C =Y pixel coordinate

The current split screen setting.

None

None

CA =1 if out of graph window
= 0 if in graph window

Line drawn where specified.

All registers are preserved.

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes. See
ForceFullScreen and IBoundsFull routines for further information.

TI-83 Plus Developer Guide 5-35

Third Release January 25, 2002

System Routines — Graphing and Drawing

IBoundsFull
Category: Graphing and Drawing
Description: Tests if a pixel coordinate lies within the full pixel range of the display. Full
screen mode should be active when using this routine. Valid values will include
all 64 rows and 96 columns of the display. Normally only 63 rows and 95
columns are valid.
Inputs:
Registers: B = X pixel coordinate
C =Y pixel coordinate
Flags: The current split screen setting.
Others: None
Outputs:
Registers: None
Flags: CA =1 if out of graph window
= 0 if in graph window
Others: Line drawn where specified.
Registers All registers are preserved.
destroyed:
Remarks: G-T and HORIZ split screen modes will affect how this routine maps the

coordinates specified. To avoid this, turn off the split screen modes. See the
ForceFullScreen and IBounds routines for further information.

TI-83 Plus Developer Guide

5-36

Third Release January 25, 2002

System Routines — Graphing and Drawing

ILine

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Graphing and Drawing

Draws a line between two-pixel points defined by their pixel coordinates.
The line drawn can be on, off, or inverted.

The graph window is defined with the lower left corner of the display to be pixel
coordinates (0,0).

The system graphing routines do not normally draw in the last column and the
bottom row of the screen, column 95 and row O.

This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFig4)

X = column
Y = row

B — X Coordinate of first point — 0...94 (95) see above
C — Y Coordinate of first point — 1(0)...63

D — X Coordinate of second point — 0...94 (95)

E — Y Coordinate of second point — 1(0)...63

H — Type of line to draw

0 — Set points to light, on-line

1 — Set points to dark

2 — Invert points (XOR operation)

1 to use column 95 and row O

1 to draw to the display only

0 to draw to display and plotSScreen buffer
1 to draw to plotSScreen buffer only

fullScrnDraw, (Y + apiFlg4)
plotLoc, (IY + plotFlags)

bufferOnly, (IY + plotFlag3)

None

None
None
Line drawn where specified.

All registers are preserved.

(continued)

TI-83 Plus Developer Guide 5-37 Third Release January 25, 2002

System Routines — Graphing and Drawing

ILine (continued)

Remarks: If the draw is going to the buffer, then the contents of the buffer are used to
draw the line and copied to the screen.

G-T and HORIZ split-screen modes affect how this routine maps the
coordinates specified. To avoid this. turn off the split-screen modes.

See ForceFullScreen.

No clipping, X, Y points assumed to be defined on the screen.

Example: Erase a line in the display only, between pixel coordinates (25,30) and (62,50).
LD BC, 25*256+30 1st point, B=25,
C=30
LD DE, 62*256+50 2nd point, D=62,
E=50
SET pl ot Loc, (1 Y+pl ot FI ags) di splay only
LD H, 0 signal turn pixels
of f
B CALL I Li ne draw the line
TI-83 Plus Developer Guide 5-38 Third Release January 25, 2002

System Routines — Graphing and Drawing

InvCmd

Category: Graphing and Drawing

Description: Displays the current graph screen and draws a function along the Y-axis.
The equation is evaluated with respect to X, but the value of X will range
between Ymin and Ymax, and the result of each evaluation will be the X
coordinate, and the Y coordinate will be the value of X. It is the same as

switching X and Y, and having Y be the independent variable. But it is
important to write the expression in terms of X.

Same as T1-83 Plus instruction Drawlnv.
Inputs:
Registers: None

Flags: graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied
to the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display

Others: FPST = name of equation to evaluate and draw
Outputs:
Registers: None
Flags: None
Others: Current graph and function are drawn to the screen and the graph backup

buffer, plotSScreen.

FPST = name of equation drawn, this must be cleaned by the calling routine.

Registers All

destroyed:

RAM used: OP1 - OP6

Remarks: Errors can be generated during the draw — see Error Handlers section.

See section on Floating Point Stack.

Example: Draw Y1 on the graph screen along the Y-axis.
LD HL, Ylname
B_CALL Mov9ToOP1 ; OPL = Y1
B CALL PushReal O1 ; push Y1 into FPST
B CALL | nvCnd ;. draw
B CALL PopReal O1 : clean Y1 off of FPS

TI-83 Plus Developer Guide 5-39 Third Release January 25, 2002

System Routines — Graphing and Drawing

InvertRect

Category: Graphing and Drawing

Description: Inverts a rectangular area on the screen (black pixels to white; white pixels to
black).

Inputs:

Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column

Flags: None

Others: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

Outputs:

Registers: None

Flags: None

Others: None

Registers None

destroyed:

Remarks: Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner
of screen.

Area includes row and column of both coordinates.
Inputs must satisfy conditions: D H, E L.
Modifies saveSScreen RAM area.
Example: B CALL C r LCDFul | ; Cear the screen
LD HL, O ; HL = upper left corner
LD DE, 3F5Fh ; DE = lower right corner
B CALL | nvert Rect : Blacken entire screen
LD HL, 2030h . HL = mddle of screen
LD DE, 3F5Fh ; DE = lower right corner
B CALL I nvert Rect ; Whiten lower right quadrant
B CALL Get Key ; Get key press
TI-83 Plus Developer Guide 5-40 Third Release January 25, 2002

System Routines — Graphing and Drawing

|Offset

Category: Graphing and Drawing
Description: Given a pixel location, computes the offset to add to the start address of the
graph buffer to the byte in the buffer containing that pixel.
Also returns the bit number in that byte for that pixel.
Also computes the row and column commands to set the LCD driver to the
display byte for that pixel.
Inputs:
Registers: Pixel's row and column coordinate, (0,0) = lower left pixel of the display.
B — Column coordinate value, (0 — 95)
C — Row coordinate value, (0 — 63)
Flags: None
Others: None
Outputs:
Registers: ACC = bit that corresponds to the pixel’s location in the byte it resides in is set.
For example, pixel (0,0) would return with ACC = 80h, bit 7 is set.
HL = byte offset to add to the start address of the display buffer to the byte
that contains the pixel’s bit.
(curXRow) = row command to send to the LCD driver for that pixel.
(curY) = column command to send to the LCD driver for that pixel.
Flags: None
Others: None
Registers All but DE
destroyed:
Remarks:
Example: Test if pixel (23,14) is set in the graph buffer plotSScreen.
LD BC, 23*256+14 BC = 23,14
B CALL | O f set
LD DE, pl ot SScr een ; start of graph buffer
ADD HL, DE ; add offset to byte with
; pi xel
AND (HL) ; and pixels bit with byte
:in buffer
JR Z, Pixel _is Of ; jump if pixel is not set
in buffer
TI-83 Plus Developer Guide 5-41 Third Release January 25, 2002

System Routines — Graphing and Drawing

IPoint

Category: Graphing and Drawing

Description: Executes one of the following pixel operations without displaying the current
graph screen:
Turn Off
Turn On
Change (invert)
Test
Copy

Inputs: The pixels are addressed with the lower left corner of the display being pixel
(0,0), (row,col)
The system does not normally draw in the last column, and the bottom row of
the screen, column 95 and row O.

This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFig4)

Registers: B = pixel row address — 0...94 (95 if full screen) see above

C =Y Coordinate of first point — 1(0)...63 (64 if full screen)
D = Function to perform

0 — Turn point off

1 — Turn point on

2 — Invert point (XOR operation)

3 — Test point

4 — Copy a point from buffer to the display

Flags: fullScrnDraw, (1Y + apiFlg4) = 1 to use column 95 and row 0

plotLoc, (IY + plotFlags) = 1 to draw to the display only
plotLoc, (IY + plotFlags) = 0 to draw to display and buffer

bufferOnly, (IY + plotFlag3) = 1 to draw to buffer only
Others: None
Outputs:
Registers: None

Flags: For option 3 (test)
Z =1 for point off
Z = 0 for point on

Others: None

Registers None, except for option 3 (test) then all.
destroyed:

(continued)

TI-83 Plus Developer Guide 5-42 Third Release January 25, 2002

System Routines — Graphing and Drawing

IPoint (continued)

Remarks: The test option always tests the buffer not the display. This means that in
order to use the test option the pixel tested must have been written to the
graph buffer.

If the buffer is specified then the contents of the buffer are used to draw/copy,
not what is in the screen.

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this turn off the split screen modes. See
ForceFullScreen.

If G-T mode is set then this routine will turn on pixels if the display byte
containing the center column of pixels is accessed. This is done to keep the
center line in G-T drawn.

Example: Turn on the point specified by pixel coordinates at (5,10).
LD BC, 5*256+10
LD D1 ; point on cnd
B CALL | Poi nt ; turn on the point

TI-83 Plus Developer Guide 5-43 Third Release January 25, 2002

System Routines — Graphing and Drawing

LineCmd

Category:

Description:

Inputs:
Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Graphing and Drawing
Displays the current graph screen and draws a line defined by two points.

These points are graph coordinates with respect to the current range settings.
They do not have to be points on the screen. If they are not on the screen the
line will still be drawn if it passes through the screen with the current range
settings.

Same as TI-83 Plus instruction Line(.

None
graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display

points (X1, Y1) (X2, Y2), all are floating-point numbers
FPST = Y2 COORDINATE
FPS1 = X2 COORDINATE
FPS2 = Y1 COORDINATE
FPS3 = X1 COORDINATE

See Floating Point Stack section.

None
None

Current graph and line are drawn to the screen and the graph backup buffer,
plotSScreen.

Inputs are removed from the Floating Point Stack.
All

OP1 -0OP6

Errors can be generated during the draw. See Error Handlers section. See
CLine and ILine to draw lines without graphing. See section on Floating Point
Stack.

(continued)

TI-83 Plus Developer Guide

5-44

Third Release January 25, 2002

System Routines — Graphing and Drawing

LineCmd (continued)

Example: Draw a line on the current graph screen between (1,2) and (3,4)
B _CALL OP1Set 1 OPl = X1
B CALL PushReal O1 to FPS
B CALL Pl usl OoPL =0P1 +1, =VY1
B CALL PushReal O1 to FPS
B CALL Pl usl OPL =0OP1 +1, = X2
B CALL PushReal O1 to FPS
B CALL Pl usl OPlL =0OP1 +1, =Y2
B CALL PushReal O1 to FPS
B CALL Li neCrd copy graph to screen and
draw |ine
TI-83 Plus Developer Guide 5-45 Third Release January 25, 2002

System Routines — Graphing and Drawing

PDspGrph

Category: Graphing and Drawing
Description: Tests if the graph of the current mode needs to be regraphed. If so, the graph
is regraphed, otherwise copies plotSScreen to the display.
Inputs:
Registers: None
Flags: bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display
Others: Current graph window settings and equations
Outputs:
Registers: None
Flags: None
Others: None
Registers All
destroyed:
Remarks: G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this situation, turn off the split screen modes.
See the ForceFullScreen routine for further information.
Example: Generate the current graph screen in the display.
B CALL PDspG ph
TI-83 Plus Developer Guide 5-46 Third Release January 25, 2002

System Routines — Graphing and Drawing

PixelTest

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Tests a pixel in the graph buffer specified by pixel coordinates without copying
the graph to the display.

Pixel coordinate (0,0), (row,col), is the upper left most pixel.

FPST = Pixel coordinate’s column value, a floating-point number
(0 —94) in full screen and horizontal split
(0 — 46) in vertical split

FPS1 = Pixel coordinate’s row value, a floating-point number
(0 — 62) in full screen
(0 — 30) in horizontal split
(0 — 50) in vertical split

See Floating Point Stack section.
None
None

None

None

Z =1 for point off
Z = 0 for point on

None
All

Test on the point specified by pixel coordinates at (5,10).
LD BC, 5* 256+10

B CALL Pi xel Test ; test the point

TI-83 Plus Developer Guide 5-47 Third Release January 25, 2002

System Routines — Graphing and Drawing

PointCmd
Category: Graphing and Drawing
Description: Displays the current graph screen and executes one of the following point
operations:
Turn Off
Turn On
Change (invert)
The point is defined by graph coordinates with respect to the current range
settings. The point does not need to be on the screen, and if it is not, then
nothing will be drawn.
Same as TI-83 Plus instructions Pt-On(, Pt-Off(, Pt-Change(.
Inputs:
Registers: ACC = point command
0=0n
1 = Off
2 = Change
Flags: graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen
bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display
Others: Bit 5 of RAM location (OP1 + 2) MUST =0
FPST =Y coordinate of the point, a floating-point number
FPS1 = X coordinate of the point, a floating-point number
Outputs:
Registers: None
Flags: None
Others: Current graph and point operation are drawn to the screen and the graph
backup buffer plotSScreen.
Inputs are removed from the Floating Point Stack.
Registers All
destroyed:
RAM used: OP1 - OP6
Remarks: Errors can be generated during the draw. See Error Handlers section. See

CPoint, CPointS, and IPoint for point commands without graphing.

(continued)

TI-83 Plus Developer Guide

5-48

Third Release January 25, 2002

System Routines — Graphing and Drawing

PointCmd (continued)

Example: Invert point at coordinate (1.5,2)
LD HL, f p_1p5 ;
B _CALL Mov9ToOP1 ; OP1 = X coordinate, 1.5
B _CALL PushReal OL ; to FPS
B _CALL OP1Set 2 ; OP1 = Y coordinate, 2, resets
; bit 5 (0OP1 + 2)
B _CALL PushReal OL ; to FPS
LD A 2 ; command to invert
B _CALL Poi nt Cnd ; copy graph to screen and
; invert point
TI-83 Plus Developer Guide 5-49 Third Release January 25, 2002

System Routines — Graphing and Drawing

PointOn
Category: Graphing and Drawing
Description: Turns on a point specified by its pixel coordinates.
Inputs: The graph window is defined with the lower left corner of the display to be pixel
coordinates (0,0).
The system graphing routines do not normally draw in the last column and the
bottom row of the screen, column 95 and row O.
This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFig4)
Registers: X = column
Y = row
B — X Coordinate of first point — 0...94 (95) see above
C — Y Coordinate of first point — 1(0)...63
Flags: fullScrnDraw, (1Y + apiFlg4) = 1 to use column 95 and row 0
plotLoc, (IY + plotFlags) = 1 to draw to the display only
= 0 to draw to display and plotSScreen buffer
bufferOnly, (IY + plotFlag3) = 1 to draw to plotSScreen buffer only
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers D
destroyed:
Remarks: If the buffer is specified, then the contents of the buffer are used to draw the
point.
G-T and HORIZ split-screen modes affect how this routine maps the
coordinates specified. To avoid this, turn off the split-screen modes.
See ForceFullScreen.
Example: Turn on the point specified by pixel coordinates at (5,10):
LD BC, 5*256+10
B CALL Poi nt On ; turn on the point
TI1-83 Plus Developer Guide 5-50 Third Release January 25, 2002

System Routines — Graphing and Drawing

Regraph

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers

destroyed:

Remarks:

Example:

Graphing and Drawing

Graphs any selected equations in the current graph mode along with any
selected statplots.

None

1 to defeat smart regraphing feature
and force all equations to be
regraphed, not just new ones.

smartGraph_inv, (IY + smartFlags) =

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen,

not to the display.

Current graph equations
Current window settings

None
None

Graph redrawn to the display and backup buffer plotSScreen, or the
plotSScreen only.

All but AF

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. . To avoid this situation, turn off the split screen modes.
See the ForceFullScreen routine for further information. Also, see the Smart
Regraphing section.

B CALL Regr aph

TI-83 Plus Developer Guide

5-51

Third Release January 25, 2002

System Routines — Graphing and Drawing

SetAllPlots

Category: Graphing and Drawing
Description: Selects or deselects all statplots.
Inputs:

Registers: B =0 to unselect
B = 1 to select

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: If any plot's selection stat changes then the graph is marked dirty.
Registers All
destroyed:
Remarks:
Example: Turn off all stat plots.
LD B, 0
B CALL SetAll Plots

TI-83 Plus Developer Guide 5-52 Third Release January 25, 2002

System Routines — Graphing and Drawing

SetFuncM
Category: Graphing and Drawing
Description:
Inputs:

Registers: None

Flags: None

Others: None
Outputs:

Registers: None

Flags: None

Others:

up.

Registers A, BC, DE, HL
destroyed:
Remarks:
Example: B_CALL Set FuncM

Changes from current graph mode to function mode.

Current flags saved with current mode, function mode flags and pointers set

TI-83 Plus Developer Guide

5-53

Third Release January 25, 2002

System Routines — Graphing and Drawing

SetParM

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes from current graph mode to parametric mode.

None
None

None

None

None

Current flags saved with current mode. Parametric mode flags and pointer set

up.
A, BC, DE, HL

B CALL Set Par M

TI-83 Plus Developer Guide

5-54

Third Release January 25, 2002

System Routines — Graphing and Drawing

SetPolM

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Graphing and Drawing

Changes from current graph mode to polar mode.

None
None

None

None

None

Current flags saved with current mode, polar mode flags and pointers set up.

A, BC, DE, HL

B CALL Set Pol M

TI-83 Plus Developer Guide

5-55

Third Release January 25, 2002

System Routines — Graphing and Drawing

SetSegM

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes from current graph mode to sequence mode.

None
None

None

None

None

Current flags saved with current mode, sequence mode flags and pointers set

up.
A, BC, DE, HL
B _CALL Set SeqM

TI-83 Plus Developer Guide

5-56

Third Release January 25, 2002

System Routines — Graphing and Drawing

SetTblGraphDraw

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Sets the current graph to dirty to cause a complete regraph the next time the
graph needs to be displayed. Also marks the table of values as dirty, unless a
graph is currently being graphed.

None
None

None

None

smartGraph_inv, (IY + smartFlags) is set to invalidate smart graph
reTable, (IY + tblFlags) is set to dirty the table, if not graphing
graphDraw, (IY + graphFlags) is set to dirty the graph

None

None

TI-83 Plus Developer Guide 5-57 Third Release January 25, 2002

System Routines — Graphing and Drawing

TanLnF

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing
Draws the tangent line for given equation at a given point.
The equation itself is not drawn only the tangent line.

The graph screen is not displayed — it is assumed to be displayed already.

None
None

FPST = equation name, X is the independent variable
Variable X = X coordinate of point
OP1 =Y coordinate of point, a floating-point number

Window settings for the current graph are used

None

None

Tangent line drawn to the display.
Equation name removed from the FPS.
All

OP1 -0OP6

See section on the Floating Point Stack in Chapter 2.

TI-83 Plus Developer Guide

5-58

Third Release January 25, 2002

System Routines — Graphing and Drawing

UCLIneS

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing
Draws a WHITE line between two points specified by graph coordinates.

The line is plotted according to the current window settings Xmin, Xmax, Ymin,
Ymax.

The points do not need to lie within the current window settings. This routine
will clip the line to the screen edges if any portion of the line goes through the
current window settings.

This routine should only be used to draw lines in reference to the window
settings.

ILine can be used to draw lines by defining points with pixel coordinates,
which will be a faster draw.

FPS2 — Y1 Coordinate
FPS3 — X1 Coordinate
FPS1 — Y2 Coordinate
FPST — X2 Coordinate

plotLoc, (IY + plotFlags) 1 to draw to the display only
0 to draw to the display and the plotSScreen
buffer

1 to draw to the plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes. See the
ForceFullScreen routine.

grfSplit, (IY + sGrFlags)
vertSplit, (1Y + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)

1 if horizontal split mode set
1 if graph-table split mode set
1 to ignore split modes

None

None
None
None
All

OP1 - OP6

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

See the CLineS routine.

TI-83 Plus Developer Guide 5-59 Third Release January 25, 2002

System Routines — Graphing and Drawing

UnLineCmd
Category: Graphing and Drawing
Description: Displays the current graph screen and erases a line defined by two points.
These points are graph coordinates with respect to the current range settings.
They do not have to be points on the screen. If they are not on the screen, the
line will still be drawn if it passes through the screen with the current range
settings.
Same as the TI-83 Plus instruction Line(with the last argument = 0 for unline.
Inputs:
Registers: None
Flags: graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen
bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display
Others: Points (X1,Y1) (X2,Y2), all are floating-point numbers
FPST = Y2 COORDINATE
FPS1 = X2 COORDINATE
FPS2 = Y1 COORDINATE
FPS3 = X1 COORDINATE
See the Floating Point Stack section.
Outputs:
Registers: None
Flags: None
Others: Current graph and line are drawn to the screen and the graph backup buffer,
plotSScreen.
Inputs are removed from the Floating Point Stack.
Registers All
destroyed:
RAM used: OP1 - OP6
Remarks: Errors can be generated during the draw — see the Error Handlers section.
See UCLineS to draw lines without graphing. See the Floating Point Stack
section.
Example: See LineCmd.

TI-83 Plus Developer Guide 5-60 Third Release January 25, 2002

System Routines — Graphing and Drawing

VertCmd

Category:

Description:

Inputs:
Registers:

Flags:

Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

Displays the current graph screen and draws a vertical line at Y = OP1.
Same as TI-83 Plus instruction Vertical.

None
graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen, not
to the display

OP1 =Y value to draw the vertical line at

None
None

Current graph and the line are drawn to the screen and the graph backup
buffer, plotSScreen.

FPST = name of equation drawn, this must be cleaned by the calling routine.
All

OP1 -0OP6

Draw a vertical line at Y = 3 on the graph screen.
B_CALL OP1Set 3 ; OP1 = 3

B CALL Ver t Cmd : draw the line

TI-83 Plus Developer Guide 5-61 Third Release January 25, 2002

System Routines — Graphing and Drawing

VtoWHLDE
Category: Graphing and Drawing
Description: In the current graph window converts a pixel point to its corresponding X and Y
values, floating-point numbers.
The graph must be up to date for this routine to return correct values.
Inputs:
Registers: B = X pixel value, 0 — 94, 0 = left most pixel column
C =Y pixel value, 1 — 62, 1 = next to last row of pixels from bottom
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OPL1 = floating-point value representing X pixel coordinate
OP4 = floating-point value representing Y pixel coordinate
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4
Remarks: The bottom row of pixels is not used. Graph is up to date.
Example:

TI-83 Plus Developer Guide

5-62

Third Release January 25, 2002

System Routines — Graphing and Drawing

Xftol

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

In the current graph window, converts a floating-point value to an X pixel
coordinate.

This is used by the graphing routines to plot points in the current graph.

The graph must be up to date for this routine to return correct values.

HL = pointer to floating-point number representing the X coordinate
None

None

ACC = X pixel value, 0 — 94, 0 = left most pixel column
None

None

All

OP1, OP2, OP3

The right most column is not used. Graph is up to date.

TI-83 Plus Developer Guide

5-63

Third Release January 25, 2002

System Routines — Graphing and Drawing

Xitof

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

In the current graph window converts an X pixel coordinate to the floating-point
value of X for that pixel.

The graph must be up to date for this routine to return correct values.

ACC = X pixel value, 0 — 94, 0 = left most pixel column
HL = pointer to location to return floating-point value

None

None

None
None

Floating-point value representing X pixel coordinate returned at input HL to
HL + 8.

All

OP1, OP2, OP3

The bottom row of pixels is not used. Graph is up to date.

TI-83 Plus Developer Guide

5-64

Third Release January 25, 2002

System Routines — Graphing and Drawing

Yftol

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

In the current graph window, converts a floating-point value to an Y pixel
coordinate.

This is used by the graphing routines to plot points in the current graph.

The graph must be up to date for this routine to return correct values.

HL = pointer to floating-point number representing the Y coordinate
None

None

ACC =Y pixel value, 1 — 62, 1 = next to last row of pixels from bottom
None

None

All

OP1, OP2, OP3

The bottom row of pixels is not used. Graph is up to date.

TI-83 Plus Developer Guide

5-65

Third Release January 25, 2002

System Routines — Graphing and Drawing

ZmDecml

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings such that (0,0) is in the center of the display and
X and 00Y = 0.1. See the ZDecimal selection in the TI-83 Plus ZOOM menu.

None
None

Current window settings.

None
graphDraw, (IY + graphFlags) = 1, dirty the graph

Current window settings are moved to ZPrevious. New windows settings set to
X.-4.7t04.7,Y:-3.1t0 3.1

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

5-66

Third Release January 25, 2002

System Routines — Graphing and Drawing

ZmFit

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings such that the minimum and maximum Y value

for all selected functions fit in the graph window.

The same ZoomFit under the ZOOM menu.

None
None

Current window settings

None
graphDraw, (IY + graphFlags) = 1, dirty the graph
Current window settings are moved to ZPrevious.

New windows settings set so that all selected functions Y values fit in the
display when regraphed.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

5-67

Third Release January 25, 2002

System Routines — Graphing and Drawing

Zmint

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings such that AX and AY = 1.0, given the
coordinates in the center of the screen. The coordinates of the center of the
screen are rounded to the closest integer before the window range is set. See
the Zlinteger selection in the TI-83 Plus ZOOM menu.

None
None

OP1 = X coordinate of new center of the screen, floating-point number
OPS5 =Y coordinate of new center of the screen, floating-point number

Current window settings.

None

graphDraw, (IY + graphFlags) = 1, dirty the graph
Current window settings are moved to ZPrevious.
New windows settings set.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide 5-68 Third Release January 25, 2002

System Routines — Graphing and Drawing

/mPrev

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings back to the settings before the last zoom
command was executed, if one was. See the ZPrevious selection in
T1-83 Plus ZOOM/MEMORY menu.

None
None

None

None

graphDraw, (IY + graphFlags) = 1, dirty the graph

If ZPrevious values exist they are copied to the current window settings.
All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide 5-69 Third Release January 25, 2002

System Routines — Graphing and Drawing

ZmSquare
Category: Graphing and Drawing
Description: Changes the window settings in either the X or Y direction such that AX = AY.
Doing this operation will make a circle drawn have the shape of a circle instead
of an ellipse. See the ZSquare selection in the TI-83 Plus ZOOM menu.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: graphDraw, (IY + graphFlags) = 1, dirty the graph
Others: Current window settings are moved to ZPrevious.
New windows settings set.
Registers All
destroyed:
Remarks: The graph is marked dirty for redrawing, but the graph is not redrawn.
Example:

TI-83 Plus Developer Guide

5-70

Third Release January 25, 2002

System Routines — Graphing and Drawing

ZmStats

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings such that all selected Statplots will be visible in
the graph window. See the ZoomStat in the TI-83 Plus ZOOM menu.

None
None

None

None

graphDraw, (IY + graphFlags) = 1, dirty the graph
Current window settings are moved to ZPrevious.
New windows settings set.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide 5-71 Third Release January 25, 2002

System Routines — Graphing and Drawing

ZmTrig

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings to preset values that are appropriate for
trigonometrical function graphs. See the ZTrig selection in the TI-83 Plus
ZOOM menu.

None
None

Current window settings

None
graphDraw, (IY + graphFlags) = 1, dirty the graph

Current window settings are moved to ZPrevious.
New windows settings set to X: -(47/24) * pi, Y: (47/24) * pi

If the current angle mode setting is radians, then those values are used. If the
current angle mode setting is degrees, then those values are converted from
radians to degrees.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

5-72

Third Release January 25, 2002

System Routines — Graphing and Drawing

Zmusr

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Recalls the window settings stored by the last ZoomSto command. See the
ZoomRcl selection in the TI-83 Plus ZOOM/MEMORY menu.

None
None

None

None

graphDraw, (IY + graphFlags) = 1, dirty the graph

Current window settings are moved to ZPrevious.

New windows settings set.
All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

5-73

Third Release January 25, 2002

System Routines — Graphing and Drawing

ZooDefault
Category: Graphing and Drawing
Description: Changes the window settings back to the default settings of (-10,10) for both X
and Y ranges.
The same ZStandard under the ZOOM menu.
Inputs:
Registers: None
Flags: None
Others: Current window settings
Outputs:
Registers: None
Flags: graphDraw, (IY + graphFlags) = 1, dirty the graph
Others: New windows settings set to X: -10 to 10, Y: -10 to 10
Registers All
destroyed:
Remarks: The graph is marked dirty for redrawing, but the graph is not redrawn.
Example:

TI-83 Plus Developer Guide

5-74

Third Release January 25, 2002

System Routines — Interrupt

6 System Routines —
Interrupt

DIVHLBYL0 ...ttt eetee ettt ete et e et te et eeete e e e e et e e eteeeteeesteeeaeeeteeenteesreeenseeaneeean
DIVHLBYA ...ttt te et ettt et e et e bt et e et e et e e ae e eeteeteere et e eeesreereenes

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Interrupt

DivHLBY10
Category: Interrupt
Description: Divides HL by 10.
Inputs:
Registers: HL = dividend
Flags: None
Others: None
Outputs:
Registers: HL = Int(HL/10)
A = mod(HL/10)
Flags: None
Others: None
Registers None
destroyed:
Remarks: None
Example:

TI-83 Plus Developer Guide

6-1

Third Release January 25, 2002

System Routines — Interrupt

DivHLBYA
Category: Interrupt
Description: Divides HL by accumulator.
Inputs:
Registers: HL = dividend
A = divisor
Flags: None
Others: None
Outputs:
Registers: HL = Int(HL/A)
A = mod(HL/A) (remainder)
Flags: None
Others: None
Registers None
destroyed:
Remarks: None
Example:

TI-83 Plus Developer Guide

6-2

Third Release January 25, 2002

System Routines — 10

System Routines —
1O

PN o] 01 CT=) (O 1o 7-1
APPGELCH ... e eaa 7-2
RECLSIBYLE ..o e 7-3
S0 K3 1Y (=] N 7-4
RECABVYLEIO ... e e 7-5
SENUABYLE e e a e 7-6
Y= 10 AV =T O 1 T TN 7-7

TI-83 Plus Developer Guide

Third Release January 25, 2002

System Routines — 10

AppGetCalc

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

10

Executes the basic GetCalc command to retrieve a variable from another
TI1-83 Plus or a TI-83.

OP1 = name of variable to attempt to retrieve
None

None

None
None

comFailed, (IY + getSendFlg) = 0 if variable received
comFailed, (IY + getSendFlg) = 1 if variable not received
Variable updated or created if received

All

Variables can be received from both an TI-83 Plus and a TI1-83.

B _CALL AnsNarre OP1 = Ans
vari abl e name
B _CALL AppGet Cal ¢ ; attenpt to get
; Ans
BIT confai | ed, (I Y+get SendFl g) did it work?
JP NZ, Get Fai | ed ; jump if no

TI-83 Plus Developer Guide

7-1

Third Release January 25, 2002

System Routines — 10

AppGetChbl

Category: 10

Description: Executes the basic GetCbl command to retrieve data from a CBL/CBL2 or
CBR device.

Inputs:
Registers: OP1 = name of variable to attempt to retrieve
Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: comFailed, (IY + getSendFlg) = 0 if variable received

comFailed, (IY + getSendFIg) = 1 if variable not received
Variable updated or created if received

Registers All
destroyed:
Remarks:
Example; LD HL, L1nane
RST r Mov9ToOP1 : OP1 = L1 variable
;. name
B CALL AppGet Col ; attenpt to get
; data
BIT confail ed, (I Y+tget SendFlg) ; did it work?
JP NZ, Get Fai | ed ; jump if no
Llnane: DB Li st oj ,tVarlLst,tL1,0,0

TI-83 Plus Developer Guide 7-2 Third Release January 25, 2002

System Routines — 10

ReclstByte
Category: 10
Description: Polls the link port for activity until either a byte is received, the [ON] key is

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

pressed, or an error occurred during communications. The cursor is turned on
for updates.

None
None

None

ACC = byte received if one
None

Error will be generated if communications fail.
An error is also generated if the [ON] key is pressed.

All

APD can occur while waiting for link activity. See Chapter 2 for Error Handlers
and Link Port. See entry points Rec1stByteNC, RecAByte, and SendAByte.

See Chapter 2.

TI-83 Plus Developer Guide

7-3

Third Release January 25, 2002

System Routines — 10

ReclstByteNC
Category: 10
Description: Polls the link port for activity until either a byte is received, the [ON] key is

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

pressed, or an error occurred during communications. The cursor is not turned
on for updates.

None
None

None

ACC = byte received if one
None

Error will be generated if communications fail. An error is also generated if the
[ON] key is pressed.

All

APD can occur while waiting for link activity. See Chapter 2 for Error Handlers
and Link Port. See entry points Rec1stByte, RecAByte, and SendAByte.

See Chapter 2.

TI-83 Plus Developer Guide

7-4

Third Release January 25, 2002

System Routines — 10

RecABytelO
Category: 10
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: ACC = byte if successful
Flags: None
Others: None
Registers All
destroyed:
Remarks:
Example: See Chapter 2.

Attempts to read a byte of data over the link port.

If no link activity is detected within about 1.1 seconds, a system error is
generated. See entry points Rec1stByte, Rec1lstByteNC, and SendAByte.

TI-83 Plus Developer Guide

7-5

Third Release January 25, 2002

System Routines — 10

SendAByte

Category: 10
Description: Attempts to send a byte of data over the link port.
Inputs:

Registers: ACC = byte to send.

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers All
destroyed:
Remarks: If no link activity is detected within about 1.1 seconds, a system error is

generated. See entry points ReclstByte, Rec1lstByteNC, and RecAByte.
Example: See Chapter 2.

TI-83 Plus Developer Guide 7-6 Third Release January 25, 2002

System Routines — 10

Attempts to send a variable whose name is in OP1 to CBL/CBL2 or CBR

OP1 contains name of variable to send.

CompFailed, (IY+getSendFlg) = 1 if send failed.
CompFailed, (IY+getSendFlg) = 0 if successful.

No system error is generated if link is not successful.

Check status of Channel 1 on CBL2.

SendVarCmd
Category: 10
Description:

device.
Inputs:

Registers: None

Flags: None

Others:

Outputs:

Registers: None

Flags:

Others: OP1 is left intact.
Registers All
destroyed:

Remarks:
Example:

LD HL, L1nane

RST r Mov9ToOP1 ; OP1 = L1 nane

RST r Fi ndSym ; Look up L1

JR C, Createlt ; jump if it doesn't

. exist

B CALL Del Var Ar c ; delete L1
Createlt:

LD HL, 3 : 3 elenents in L1

B CALL Cr eat eRLi st : L1 created

I NC DE

I NC DE ; nove past size bytes

LD HL, Comand8

LD BC, 27

LD R ; L1 ={8,1,0}

B _CALL Op4ToOpl ; OP1L = L1 nane

B CALL SendVar Cnd : send L1 to CBL2

BIT confail ed, (I Y+tget SendFlg) ; did it work?

JP NZ, SendFail ed ; no, junp

B CALL AppGet Cbl ; attenpt to get L1

BI T confail ed, (I Y+tget SendFlg) ; did it work?

JP NZ, Get Fai | ed ; jump if no
Linane:

DB Li st oj ,tVarlLst,tL1,0,0
Command8:

DB 00h, 80h, 80h, 00h, 00h, 00h, 00h, 00h, 00h

DB 00h, 80h, 10h, 00h, 00h, 00h, 00h, 00h, 00h

DB 00h, 80h, 00h, 00h, 00h, 00h, 00h, 00h, 00h

TI-83 Plus Developer Guide 7-7 Third Release January 25, 2002

System Routines — Keyboard

System Routines —
8 Keyboard

APUASEIUD ...ttt ettt ettt et e et e et e et et e et se et e et e et et e e ereeteete e e e eneereere e
CANAIDNINS ..ot ettt et e ettt e e et e et e e e
GEECSC oo oo et
GBUKEY ...ttt ettt s s s s st

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines — Keyboard

ApdSetup

Category: Keyboard
Description: Resets the Automatic Power Down timer.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: (apdTimer)
Flags: None
Others: None
Registers HL
destroyed:
Remarks:
Example:
TI-83 Plus Developer Guide 8-1

Third Release January 25, 2002

System Routines — Keyboard

Cancels alpha, alpha lock, and insert mode.

textinsMode (In textFlags) and shiftALock (In shiftFlags) cleared
shiftAlpha (In shiftFlags) and shiftLwrAlph (In shiftFlags) may also be cleared

depends on flag shiftkeepAlph (In shiftFlags)

CanAlphins
Category: Keyboard
Description:

Inputs:

Registers: None

Flags: None

Others: None
Outputs:

Registers: None

Flags:

Others: None
Registers None
destroyed:

Remarks:
Example: B_CALL

CanAl phl ns

TI-83 Plus Developer Guide

Third Release January 25, 2002

System Routines — Keyboard

GetCSC

Category:

Description:

Inputs:
Registers:
Flags:
Others:

Outputs:

Registers:
Flags:
Others:

Registers
destroyed:

Keyboard

Gets and clears keyboard scan code. This routine should be used to read the
keyboard only when an app does not care about second keys or alpha keys or
pull down menus.

This routine only returns to the application which physical key on the keyboard
was last pressed.

None
None
None

This routine does not wait for a key press to return back to the app. Key
presses are detected in the interrupt handler, this routine returns that value. A
0 value is returned if no key has been pressed since the previous call to
GetCSC.

A = (kbdScanCode) value

None

(kbdScanCode) set to 0. kbdSCR flag reset.
AF, HL

(continued)

TI-83 Plus Developer Guide 8-3 Third Release January 25, 2002

System Routines — Keyboard

GetCSC (continued)

Remarks: No silent link activity will be detected if this routine is used to poll for keys.
Below are the scan code equates.

skDown equ 01h skCos equ 1Eh
skLeft equ 02h skPrgm equ 1Fh
skRight equ 03h skStat equ 20h
skUp equ 04h skO equ 21h
skEnter equ 09h skl equ 22h
skAdd equ O0Ah sk4 equ 23h
skSub equ 0Bh sk7 equ 24h
skMul equ 0Ch skComma equ 25h
skDiv equ 0Dh skSin equ 26h
skPower equ OEh skMatrix equ 27h
skClear equ OFh skGraphvar equ 28h
skChs equ 11h skStore equ 2Ah
sk3 equ 12h skLn equ 2Bh
sk6 equ 13h skLog equ 2Ch
sk9 equ 14h skSquare equ 2Dh
skRParen equ 15h skRecip equ 2Eh
skTan equ 16h skMath equ 2Fh
skVars equ 17h skAlpha equ 30h
skDecPnt equ 19h skGraph equ 31h
sk2 equ 1Ah skTrace equ 32h
sk5 equ 1Bh skZoom equ 33h
sk8 equ 1Ch skWindow equ 34h
skLParen equ 1Dh skYEqQu equ 35h

sk2nd equ 36h

skMode equ 37h

skDel equ 38h

(continued)

TI-83 Plus Developer Guide 8-4 Third Release January 25, 2002

System Routines — Keyboard

GetCSC (continued)

Example: Poll for the 2nd key.

El ; enable interrupts
; the halt is optional, this
; will help save battery life.
; you can still use GetCSC at
; anytinme without the halt.

sl eep:

HALT ; sleep in |ow power for a
o little

B CALL CGet CSC : check for a scan code

CP ksk2nd ; 2nd key ?

JR NZ, sl eep ; jump if no

TI-83 Plus Developer Guide 8-5 Third Release January 25, 2002

System Routines — Keyboard

GetKey

Category: Keyboard

Description: Keyboard entry routine that will return second keys, alpha keys — both capital
and lower case, the on key, APD, and link communication. Contrast
adjustment is also handled by this routine.

When called, this routine scans for keys until one is pressed, or an APD
occurs, or the unit is turned off, or link activity is detected.

Inputs:
Registers: None

Flags: indicOnly, (1Y + indicFlags) MUST BE RESET, otherwise no key presses
will be detected.
1 to show the run indicator while waiting for a
key press.
1if APD is enabled
0 if APD is disabled
lwrCaseActive, (IY + appLwrCaseFlag) = 1 for the key sequence
[alpha] [alpha] to access lower
case alpha key presses
= 0 for normal alpha key operation

indicRun, (IY + indicFlags)

apdAble, (IY + apdFlags)

Others: None
Outputs:
Registers: ACC = key code, 0 = ON key
See TI83plus.inc file.
Flags: oninterrupt, (IY + onFlags) = 1 if ON key, this should be reset

Others: APD: If the auto power down occurs the application will not be notified. Once
the unit is turned back on control is returned to the GetKey routine.

OFF: If the unit is turned off the application is put away. When the unit is
turned back on the home screen will be in control.

Link Activity: When link activity is initiated, control is given to the silent link
handler. If the communication is from the GRAPH LINK, the
application will be shut down in most cases. The only exception is
getting screen snap shots, in that case the application is not shut
down. After the screen is sent control returns to GetKey.

Registers DE, HL
destroyed:
Remarks: If APD is disabled, it should be re-enabled before exiting the application. If

lower case is enabled, it should be disabled upon exiting the application.

Example:

TI-83 Plus Developer Guide 8-6 Third Release January 25, 2002

System Routines — List

System Routines —
List

AILEIE ... 9-1
L] 1Y/ 5 1 T 9-2
(61010 1Y/ Mol e | I ST TSP UPPPTTRPPIN 9-3
(61010 1Y/ I g o] I o RSP P T PSUP PP PPPTTRPPIN 9-4
DEILISTED ... 9-5
FING_PAIrSE. FOMMUIA ...veeveveeeeeee oottt e ettt e et et et eeeeeee et et e en e et aeeenns
(7= {01] SRR PPPPRRSPR 9-7
INCLSESIZE ..ottt ettt ettt ettt ettt et ettt e ettt e et et e et en e
INCLSESIZE (CONLINUEA) ..evvieiii e e e e e e e ee s
T IS I PP 9-10
INSEIELISt (CONLINUE) ...ttt ettt ettt et et e et e et e e een e [9-11]
1 S 9-12

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines — List

AdrLEle
Category: List
Description: Computes the RAM address of an element of a list.
Inputs:
Registers: DE = pointer to start of list's data storage, output of FindSym
HL = element number in list to compute address of. List element number one
is checked for real or complex data type to determine if the list is real or
complex.
Flags: None
Others: None
Outputs:
Registers: HL = pointer in RAM to the start of the desired element
Flags: None
Others: None
Registers AF, BC
destroyed:
Remarks: This routine does not check to see if the element’s address requested is within
the current size of the list.
Do not use this routine on a list that does not have element number 1
initialized.
Example: Compute the address of element number 23 of list L1.
LD HL, L1Nare
RST r Mov9ToOP1 ; OP1 = L1 nane
B CALL Fi ndSym ; look it up
JP C, Undef i nedL1 ; jump out if L1 is not
; defined;
LD A B : if b<>0 then L1 is archived
: in Flash ROM
OR A
JP NZ, Ar chi vedL1 ; jump if not in RAM
; DE = pointer to start of list data storage;
LD HL, 23d : element's address desired
B CALL Adr LEl e ; RET HL = pointer to 23rd
;. el ement
RET
L1Nane:
DB Li st oj ,tVarlLst,tL1,0,0
TI-83 Plus Developer Guide 9-1 Third Release January 25, 2002

System Routines — List

ConvDim

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Converts floating-point value in OP1 to a two-byte hex value — make sure
valid matrix or vec dimension. Less than 100 is valid dimension

None
None
OP1 = FP number

A = LSB HEX VALUE, DE = ENTIRE HEX VALUE
None

None

A, BC, DE, HL, OP1

Error if negative, non-integer, or greater than 99.

B CALL ConvDi m

T1-83 Plus Developer Guide

9-2

Third Release January 25, 2002

System Routines — List

ConvLcTolLr
Category: List
Description: Converts an existing complex list variable to a real list variable.
Inputs:

Registers: None

Flags: None

Others: OP1 = name of complex list variable to convert
Outputs:

Registers: None

Flags: None

Others: Error if the list was undefined.

OP1 = name of list with type set to ListObj. The imaginary part of each
element is deleted and the data storage area is compressed. All symbol
table pointers are updated.

Registers All

destroyed:

Remarks: Do not use this routine if the input list is already a real list.
Example:

TI-83 Plus Developer Guide

9-3

Third Release January 25, 2002

System Routines — List

ConvLrTolLc
Category: List
Description: Converts an existing real list variable to a complex list variable.
Inputs:
Registers: DE = pointer to data storage for list, output of ChkFindSym
Flags: None
Others: FPST = name of variable converted, see Floating Point Stack
Outputs:
Registers: DE = pointer to data storage of converted list
Flags: None
Others: Error if not enough free RAM to convert to complex.
Each element of the list is converted to a complex number with a 0 imaginary
E?’réT = name of variable converted, see Floating Point Stack.
All symbol table pointers are updated.
Registers All
destroyed:
Remarks: Do not use this routine if the input list is already a complex list.
Example: Convert real list L1 to a complex list.

LD HL, L1Nane
RST r Mov9ToOP1 ; OP1 = L1 nane
B _CALL PushReal OL ; FPST = nane of I|ist
‘ B _CALL Fi ndSym ; look it up, DE = pointer
; to data storage
JP C convertError ; junp out if L1 is not
: defined
, AppOnErr convertError ; install error handler in

; case not enough RAM

B _CALL ConvLr TolLc ; attenpt to convert to
; conpl ex
AppOFfErr : renove error handl er
; successful
60nvertErron
B CALL PopReal O1 : renove nanme of |ist from
;. FPST
' RET
L1Nane:
DB Li st oj ,tVarlLst,tL1,0,0
TI-83 Plus Developer Guide 9-4 Third Release January 25, 2002

System Routines — List

DelListEl

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Deletes one or more elements from an existing list, residing in RAM.

A = ListObj if the list has real elements

= CListObj if the list has complex elements

DE = pointer to start of list's data storage, output of FindSym
HL = number of elements to delete
BC = element number to start deleting at

None

None

HL = pointer to start of list's data storage, output of FindSym
DE = new dimension of the list.

None

(insDelPtr) = pointer to start of the list

All

DO NOT ATTEMPT ON AN ARCHIVED LIST. The size bytes of the list are
adjusted. All pointers in the symbol table are updated

Delete three elements from list L1 starting with element number two.

LD
RST
B_CALL
JP

LD

LD

JP

LD

AND

LD

LD

B_CALL

L1Name:

HL, L1Nane
r Mov9ToOP1
Fi ndSym

C, Undef i nedL1

A
B

>2>0

NZ, err Ar chi ved

AC
1Fh
HL, 3
BC, 2

Del Li st E

OP1 = L1 nane

l ook it up, DE = pointer
to data storage

jump out if L1 is not
defi ned

save type

get archived status

in RAM or archived

cannot insert if archived

get type back

mask type of list in ACC
want to delete 3 elenents
del ete 2nd el enent on

del ete el enents

Li st oj ,tVarlLst,tL1,0,0

TI-83 Plus Developer Guide

9-5

Third Release January 25, 2002

System Routines — List

Find_Parse Formula

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Checks if a list variable has a formula attached to it and parses the formula
and stores it back into the list data.

None
None

OP1 = name of list

None

None

If no error, then the list values are updated.
All

If no formula is attached, nothing is done to the existing list data.

Any error that occurs during the parsing of the formula will cause an error
screen to be displayed if no error handler is invoked.

If the resulting type from the formula parsing is not a list, this will also generate
an error.

See Error Handlers.

T1-83 Plus Developer Guide

9-6

Third Release January 25, 2002

System Routines — List

GetLToOP1
Category: List
Description: Copies a list element to OP1 or OP1/OP2.
Inputs:
Registers: HL = element number to copy
DE = pointer to start of list's data storage
Flags: None
Others: None
Outputs:
Registers: HL = pointer to next element in the list
Flags: None
Others: OP1 = list element if a real list
OP1/0OP2 = list element if a complex list
Registers All
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 9-7

Third Release January 25, 2002

System Routines — List

IncLstSize
Category: List
Description: Increments the size of an existing list in RAM by adding one element at the
end of the list. No value is stored in the new element.
Input:
Registers: A = ListObj if the list has real elements
= CListObj if the list has complex elements
DE = pointer to start of list's data storage, output of FindSym
Flags: None
Others: None
Output:
Registers: DE = intact
HL = new dimension of the list
Flags: None
Others: (insDelPtr) = pointer to start of the list
Registers All
destroyed:
Remarks: DO NOT ATTEMPT ON AN ARCHIVED LIST. A memory error will be

generated if insufficient RAM. The size bytes of the list are adjusted. All
pointers in the symbol table are updated.

(continued)

TI-83 Plus Developer Guide 9-8 Third Release January 25, 2002

System Routines — List

IncLstSize (continued)

Example:

L1Name:

LD
RST
B_CALL

JP

LD
JP

LD
B_CALL
PUSH
PUSH
B_CALL

POP
POP

B_CALL

Increment real list L1 and store a 3 in the new element.

HL, L1Nane

r Mov9ToOP1 ; OP1 = L1 nane

Fi ndSym ; look it up, DE = pointer to
; data storage

C, Undef i nedL1 ; jump out if L1 is not
: defined

A B ; get archived status

A : in RAM or archived

NZ, err Archived ; cannot insert if archived

A, Li st Ooj ; type of list in ACC

| ncLst Si ze : insert elenent at end

DE ; save pointer to list

HL ; save |ast elenent #, just
: inserted

OP1Set 3 ; OP1 = 3

HL

DE . restore

Put ToL : store OP1 to inserted
;. el ement

Li st oj ,tVarlLst,tL1,0,0

TI-83 Plus Developer Guide

Third Release January 25, 2002

System Routines — List

InsertList

Category: List

Description: Inserts one or more elements into an existing list, residing in RAM.
Inputs:

Registers: A = ListObj if the list has real elements
A = CListObj if the list has complex elements
DE = pointer to start of list's data storage, output of FindSym
HL = number of elements to insert
BC = List element number to insert after

Flags: CA =0 to set new elements to 0
CA =1 to set new elements to 1

Others: None
Outputs:

Registers: DE = intact
HL = new dimension of the list.

Flags: None

Others: (insDelPtr) = pointer to start of the list

Registers All
destroyed:
Remarks: DO NOT ATTEMPT ON AN ARCHIVED LIST. A memory error will be

generated if insufficient RAM. The size bytes of the list are adjusted. All
pointers in the symbol table are updated

(continued)

TI-83 Plus Developer Guide 9-10 Third Release January 25, 2002

System Routines — List

InsertList (continued)

Example:

elements to O’s.

L1Nane:

LD
RST
B_CALL

JP
LD
LD
JP
LD
AND

LD
LD

B_CALL

HL, L1Nane
r Mov9ToOP1
Fi ndSym

C, Undefi nedL1

A
B

>>0

NZ, err Ar chi ved

A C

1Fh

HL, 3
BC, 2
A

| nsertList

Insert three new elements in list L1 after its second element, set the new

OP1 = L1 name

look it up, DE = pointer to
dat a storage

junp out if L1 is not

defi ned

save type

get archived status

in RAM or archived

cannot insert if archived

get type back

mask type of list in ACC
want to insert 3 elenents
insert after 2nd el enent

CA = 0, to set new el enents
to O

insert el enents

Li st Obj,tVarLst,tL1,0,0

TI-83 Plus Developer Guide

9-11

Third Release January 25, 2002

System Routines — List

PutToL
Category: List
Description: Stores either a floating-point number or a complex pair to an existing element
of a list.
Inputs:
Registers: HL = element number to store to
There is no check to see if this element is valid for the list.
DE = pointer to the start of the list's data area, output of FindSym
Flags: None
Others: None
OP1 = floating-point number set to RealObj to store to a real list
OP1/0P2 = floating-point numbers representing a complex number to store to
a complex list
There are no checks made that the correct data type is being stored to the
correct type of list (real/complex).
Outputs:
Registers: DE = pointer to next element in the list
Flags: None
Others: OP1/0OP2 = intact
Registers All
destroyed:
Remarks:
Example; ; Look up L1 and store 1 to elenent 30.
LD HL, L1name
B CALL Mov9ToOP1 ;. OP1 = nane
‘ B CALL Fi ndSym ; ook up
RET C : return if undefined
‘ ; DE = pointer to data area of |ist
‘ PUSH DE ; save pointer
B_CALL OP1Set 1 ; OPL =1
‘ POP DE
LD HL, 30d : element to store to
B CALL Put ToL : store 1 to elenent 30
RET
i_lname:
DB Listpj,tVarlLst,tL1,0
TI-83 Plus Developer Guide 9-12 Third Release January 25, 2002

System Routines — Math

10 System Routines —
Math

ADSO LOZCD i 10-1
ADSOLPADSO2 ... e aaeean] 10-2
O 01 PP 10-3
ACOSH .o e 10-4
ACOSRA ... e aaaaaaan 10-5
AN 10-6
N T PPN 10-7
NS 1] PSPPI 10-8
ASINRAG ... e e e e e et — e aaaaaann 10-9
N = o PP 10-10
N = 0 U 10-11
N = 1 12 - o PP 10-12
ATANH o araa 10-13
N 1= = T 10-14
L L o 10-15
11V [0 10-16
LI PP 10-17
CDIVBYREAI ...ttt e e e 10-18
L (o) 10-19
L1 - Vo PP 10-20
(O] 31 (o | PSP PPP PP PRPPP 10-21
L4 | 10-22
L7 Lo [0 10-23
L0170 1 =1 0 10-24
L0 (0] =t 1 o b 10-25
L0]t I O 10-26
(OO] =t 1 o 1 10-27

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Math

L0 (@] =t I LT | 10-28
CKOPZ2FPO ...ttt ettt e e e e e ettt e et e e e e e e e nab bt e e e e e e e e e e aannns 10-29
CKOP2POS ...ttt ettt e e e e e et e et e e e e e e e bbbt e e e e e e e e e e annn 10-30
(O (@] = o LT | 10-31
L0 0T 1 | SR 10-32
1011V = 1o |\ 0o 10-33
L N R 10-34
L0 oo BT PP 10-35
{4 [8 PP 10-36
[£] 10-37
CMIBYREAL ...ttt 10-38
[10-39
(7] o] PP 10-40
(1@ T Y1 (0 10-41
L0 S PP 10-42
O H . e 10-43
CPOPLOP2....cee e an 10-44
CPOPAOPS. ... s 10-45
CRECIP -ttt 10-46
CSOROOL ...t 10-47
CSQUAIE ..ot e e et e e e e e e et r e 10-48
CSUD L L 10-49
LR 1= o) PP 10-50
L I 1 Lo PP 10-51
L o 10-52
1094 (00 | A APPSR 10-53
[() 10-54
DT ol @ 2 o TP PP PTTR P PRPPPPPPPPPTN 10-55
DTOR 10-56
ETOX 10-57
E XD T OHEX e s 10-58
= (o (0] 1= USSP 10-59
FPAG. ...ttt
(continued)

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Math

FP DIV ettt ettt e e e e e et e e e e e e e e nana e e 10-61
FPIMUIL ettt e e e e s et e e e e e e e e e s nnnnene s 10-62
FPRECID ..ot 10-63
FPSQUANE ...t e e e e e e e e e e e eenee 10-64
FPSUD . .t e e e e e 10-65
FTC 1vvevivtteettet ettt ettt ettt bttt s sttt ettt bttt
I 41T U USEPPRRIN 10-67
I T SRR 10-68
I ettt
1] (o | T PO PPTT P TPPRPPPPRPIN 10-70
INVOP LS L. e e 10-71
INVOPLSC ..ot e et e e e et e e e e e e e e e e e 10-72
INVO P 2SS i e e e 10-73
11V] o USSP | 0-74
[) TP PPRP PRSP 10-75
0o) PP PP PPPRPPPPPPPTN 10-76
= OO 10-77
Y/ o USSP 10-78
YT T 1 USSP 10-79
OPLEXPTODECcceetieie ettt e e e e et e e b e 10-80

OP1Set0, OP1Setl, OP1Set2, OP1Set3, OP1Set4, OP2Set0, OP2Setl,
OP2Set2, OP2Set3, OP2Set4, OP2Set5, OP2Set60, OP3Set0, OP3Set1,

OP3Set2, OP4Set0, OP4Setl, OP5SEt0......ccoiieeeiieeeiiiie e 10-81
OP2SEE ...ttt ———— 10-82
OP2SEEA. ..ot ——— 10-83
o 11 SRR 10-84
PTOR 10-85
RS2 1o | 10-86
[F= 110 (0] o T 10-87
NN = U1 PR 10-88
0 (€T o USSP 10-89
RIFX ¢ttt e st ettt ettt n ettt n s ettt ettt
0 11 T 10-91
RTOD .. 10-92
RTOP 10-93

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Math

1] PP 10-94
S 1 1@ 11 = To 10-95
SHNMH ettt ettt n ettt ettt ettt n ettt
SINHCOSH ... e 10-97
S0 Lo T | RSP f[0-98]
TN oottt bbbttt n s
TANH . ea e 10-100
B =] 0D TP PPRTPN 10-101
B I 023 = A =T T 10-102
I 1SS 10-103
I 1T 10-104
1A= 0 1 PRSP 10-105
e] =TSSP 10-106
TTUINIC Lottt e et e et e et e et e e et e e e e e e e e e e e e ea e 0-107
D\ = L 41 P UPPPRRSPPIN 10-108
Da 26 1o] A 2O UPPRPIN 10-109
=10 [P P PP UPPTTPPRPPI 10-110
20 10) 10-111
ZEIOLEBD ...t 10-112
ZEIOOP .ttt e e e e e aes 10-113
ZeroOP1, ZeroOP2, ZErOOP3 ...ttt 10-114

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Math

Abs0O102Cp
Category: Math
Description: Compares Abs(OP1) to Abs(OP2).
Inputs:
Registers: None
Flags: None
Others: OP1 = floating point
OP2 = floating point
Outputs:
Registers: None
Flags: Z = 1: Abs(OP1) = Abs(OP2)
Z =0, CA=1: Abs(OP1) < Abs(OP2)
Z =0, CA =0: Abs(OP1) >= Abs(OP2)
Others: OP1 = Abs(OP1)
OP2 = Abs(OP2)
Registers A, BC, DE, HL
destroyed:
Remarks: None
Example:

TI-83 Plus Developer Guide 10-1

Third Release January 25, 2002

System Routines — Math

AbsO1PAbsQO?2

Category: Math

Description: Calculates the sum of the absolute values of the floating point in OP1 plus the
floating point in OP2.

Inputs:
Registers: None
Flags: None

Others: OP1 = floating point
OP2 = floating point

Outputs:
Registers: None
Flags: None
Others: OPL1 = floating point with value (Abs(OP1) + Abs(OP2))
Registers A, BC, DE, HL
destroyed:
Remarks: None
Example:

TI-83 Plus Developer Guide 10-2 Third Release January 25, 2002

System Routines — Math

ACos

Category: Math

Description: Computes the inverse cosine of a floating point. The answer will not go
complex.

Inputs:
Registers: None
Flags: None

Others: OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = inverse cosine (floating point)
Registers All
destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks: Domain error if answer is complex.

Example:

TI-83 Plus Developer Guide 10-3 Third Release January 25, 2002

System Routines — Math

ACosH

Category: Math
Description: Computes inverse hyperbolic cosine of a floating point.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = inverse hyperbolic cosine (floating point)
Registers All
destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks: Domain error if OP1 is negative.

Example:

TI-83 Plus Developer Guide 10-4 Third Release January 25, 2002

System Routines — Math

ACosRad

Category: Math
Description: Computes the inverse cosine of a floating point and force radian mode.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = inverse cosine (floating point)
Registers All
destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-5 Third Release January 25, 2002

System Routines — Math

Angle
Category: Math
Description: Calculates a polar complex angle from a rectangular complex.
Input:

Registers: None

Flags: None

Others: OPL1 = real representing complex X

OP2 = real representing complex Y

Outputs:

Registers: None

Flags: None

Others: OPL1 = real representing complex angle
Registers All
destroyed:
Remarks: OP1 is not modified.
Example:

TI-83 Plus Developer Guide 10-6 Third Release January 25, 2002

System Routines — Math

ASin

Category: Math
Description: Computes the inverse sine of a floating point.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = inverse sine (floating point)
Registers All
destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-7 Third Release January 25, 2002

System Routines — Math

ASinH

Category: Math
Description: Computes the inverse hyperbolic sine of a floating point.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = inverse sine (floating point)
Registers All
destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-8 Third Release January 25, 2002

System Routines — Math

ASinRad

Category: Math
Description: Computes the inverse sine of a floating point and force radian mode.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = inverse sine (floating point)
Registers All
destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-9 Third Release January 25, 2002

System Routines — Math

ATan

Category: Math
Description: Computes the inverse tangent of a floating point.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point
Outputs:

Registers: None

Flags: None

Others: OP1 = inverse tangent (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-10 Third Release January 25, 2002

System Routines — Math

ATan2

Category: Math
Description: Returns the angle portion of a complex number in rectangular form.
Inputs:

Registers: None

Flags: trigDeg, (Y + trigFlags) = 1 to return angle in degrees
= 0 to return angle in radians
Others: OP1 = imaginary part of complex number, floating-point number
OP2 = real part of complex number, floating-point number

Outputs:

Registers: None

Flags: None

Others: OP1 = the angle portion of the polar form of the input rectangular complex

number.

Registers All
destroyed:

RAM used: OP1 - OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-11 Third Release January 25, 2002

System Routines — Math

ATan2Rad
Category: Math
Description: Returns the angle portion of a complex number in rectangular form — forced

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

to return the angle in radians no matter what the current system angle settings
are.

None
None

OP1 = imaginary part of complex number, floating-point number
OP2 = real part of complex number, floating-point number

None
None

OP1 = the angle portion of the polar form of the input rectangular complex
number.

All

OP1 -0OP5

TI-83 Plus Developer Guide

10-12

Third Release January 25, 2002

System Routines — Math

ATanH

Category: Math
Description: Computes the inverse hyperbolic tangent of a floating point.
Inputs:
Registers: None
Flags: None
Others: OP1 = floating point
Outputs:
Registers: None
Flags: None
Others: OP1 = inverse hyperbolic tangent (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5

Remarks: Initial input rules:

- If floating point = 0, then output = 0.

- If the absolute value of input is greater than 1 then domain
error.

- FOR |OP1] <.7 Use Cordic; otherwise, use Logs.
Example:

TI-83 Plus Developer Guide 10-13 Third Release January 25, 2002

System Routines — Math

ATanRad

Category: Math
Description: Computes the inverse tangent of a floating point and forces radian mode.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point
Outputs:

Registers: None

Flags: None

Others: OP1 = inverse tangent (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-14 Third Release January 25, 2002

System Routines — Math

CAbs

Category: Math
Description: Computes the magnitude of a complex number.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex number

Outputs:

Registers: None

Flags: None

Others: OPL1 = floating point result, a real number
Registers All
destroyed:

RAM used: OP1 - OP4
Remarks: SgRoot(OP1/72 + OP2/2).
Example: B_CALL CAbs

TI-83 Plus Developer Guide 10-15 Third Release January 25, 2002

System Routines — Math

CAdd

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Addition of two complex numbers.

None

None

OP1/0OP2 = second argument
FPS1/FPST = first argument

None

None

OP1/0P2 = complex result (first argument) + (second Argument)

All

OP1 -0P2

First argument is removed from the FPS (Floating Point Stack).

See CSub.

TI-83 Plus Developer Guide

10-16

Third Release January 25, 2002

System Routines — Math

CDiv

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Division of two complex numbers.

None

None

OP1/0OP2 = second argument
FPS1/FPST = first argument

None

None

OP1/0OP2 = complex result (first argument) / (second Argument)

All

OP1 - OP4

First argument is removed from the FPS (Floating Point Stack).

See CSub.

TI-83 Plus Developer Guide

10-17

Third Release January 25, 2002

System Routines — Math

CDivByReal
Category: Math
Description: Divides a complex number by a real number.
Inputs:
Registers: None
Flags: None
Others: OP1/0OP2 = complex number
OP3 = floating point real number
Outputs:
Registers: None
Flags: None
Others: OP1/0OP2 = complex result, OP1/OP2 / OP3
OP3 = intact
Registers All
destroyed:
RAM used: OP1 - OP4
Remarks:
Example: B_CALL CDi vByReal

TI-83 Plus Developer Guide

10-18

Third Release January 25, 2002

System Routines — Math

CEtoX

Category: Math
Description: Returns e*X where X is a complex number.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex number
Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex result
Registers All
destroyed:
RAM used: OP1 - OP6
Remarks:
Example: B_CALL CEt oX

TI-83 Plus Developer Guide 10-19 Third Release January 25, 2002

System Routines — Math

CFrac

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns the fractional part of both the real and imaginary components of a
complex number.

None

None

OP1/0OP2 = complex number

None

None

OP1/0OP2 = complex result

All

OP1, OP2

B_CALL

CFrac

TI-83 Plus Developer Guide

10-20

Third Release January 25, 2002

System Routines — Math

Cintgr

Category: Math
Description: Executes the Intgr function on a complex humber.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex number
Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex result
Registers All
destroyed:

RAM used: OP1, OP2

Remarks: Return the next integer less than or equal to, for both the real and imaginary
parts of the complex humber.

See Intgr.
Example: B_CALL Clntgr

TI-83 Plus Developer Guide 10-21 Third Release January 25, 2002

System Routines — Math

Ckint

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Tests floating-point number to be an integer.

HL = pointer to the exponent of the number to check

None

None

Z =1 if integer, Z = 0 if noninteger

None
None
All

OP1 -0OP5

If exponent of OP1 > 13 then it is considered to be an integer.

TI-83 Plus Developer Guide

10-22

Third Release January 25, 2002

System Routines — Math

CkOdd

Category: Math
Description: Tests if a floating-point number is odd or even.
Inputs:

Registers: HL = pointer to exponent of number to check

Flags: None
Others: None
Outputs:
Registers: None
Flags: If even, then Z = 1. If odd, then Z = 0.
Others: None
Registers All
destroyed:
RAM used: None
Remarks: If exponent of OP1 > 13, then it is considered to be an even.
If 0 < Abs(OP1) < 1, then it is considered odd, negative exponent.
Example: Test a floating-point number in OP1 for add/even.
LD HL, OP1+1
B_CALL CkQdd
JP Z,1s_Even

TI-83 Plus Developer Guide 10-23 Third Release January 25, 2002

System Routines — Math

CkOP1CO

Category: Math
Description: Tests a complex number in OP1/OP2 to be (0,0).
Inputs:

Registers: None

Flags: None
Others: OP1/0OP2 = complex number
Outputs:

Registers: None
Flags: If (0,0), then Z = 1; otherwise, Z = 0.

Others: None

Registers A

destroyed:

Remarks:

Example: B_CALL CkOP1C0

TI-83 Plus Developer Guide 10-24 Third Release January 25, 2002

System Routines — Math

CkOP1Cplx

Category: Math
Description: Tests value in OP1 for complex data type.
Inputs:
Registers: None
Flags: None
Others: (OP1) = objects data type byte
Outputs:
Registers: None
Flags: If OP1 contains a complex number, then Z = 1; otherwise, Z = 0.

Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP1Cpl x

TI-83 Plus Developer Guide 10-25 Third Release January 25, 2002

System Routines — Math

CkOP1FPO

Category: Math
Description: Tests floating-point number in OP1 to be O.
Inputs:
Registers: None
Flags: None
Others: OP1 = floating-point number
Outputs:
Registers: None

Flags: Z=1:0P1=0
Z=0:0P1<>0

Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP1FPO

TI-83 Plus Developer Guide 10-26 Third Release January 25, 2002

System Routines — Math

CkOP1Pos

Category: Math
Description: Tests floating-point number in OP1 to be positive.
Inputs:

Registers: None

Flags: None

Others: (OP1) = sign byte of floating-point number in OP1

Outputs:
Registers: ACC bit 7 = sign bit
Flags: If OP1 >0, Z = 1; otherwise, Z = 0.
Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP1Pos

TI-83 Plus Developer Guide 10-27 Third Release January 25, 2002

System Routines — Math

CkOP1Real

Category: Math
Description: Tests object in OP1 to be a real data type.
Inputs:

Registers: None

Flags: None
Others: (OP1) = objects data type byte
Outputs:

Registers: ACC = data type of object in OP1
Flags: If OP1 contains a real number, then Z = 1; otherwise, Z = 0.

Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP1Real

TI-83 Plus Developer Guide 10-28 Third Release January 25, 2002

System Routines — Math

CkOP2FPO

Category: Math
Description: Tests floating-point number in OP2 to be 0.
Inputs:
Registers: None
Flags: None
Others: OP2 = floating-point number
Outputs:
Registers: None
Flags: If OP2 =0, then Z = 1; otherwise, Z = 0.

Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP2FPO

TI-83 Plus Developer Guide 10-29 Third Release January 25, 2002

System Routines — Math

CkOP2Pos

Category: Math
Description: Tests floating-point number in OP2 to be positive.
Inputs:

Registers: None

Flags: None

Others: (OP2) = sign byte of floating-point number in OP2

Outputs:
Registers: ACC bit 7 = sign bit
Flags: If OP2 > 0, then Z = 1; otherwise, Z = 0.
Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP2Pos

TI-83 Plus Developer Guide 10-30 Third Release January 25, 2002

System Routines — Math

CkOP2Real

Category: Math
Description: Tests object in OP2 to be a real data type.
Inputs:

Registers: None

Flags: None
Others: (OP1) = objects data type byte
Outputs:

Registers: ACC = data type of object in OP2
Flags: If OP2 contains a real number, then Z = 1; otherwise, Z = 0.

Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP2Real

TI-83 Plus Developer Guide 10-31 Third Release January 25, 2002

System Routines — Math

CkPoslInt

Category: Math
Description: Tests floating-point number in OP1 to be a positive integer.
Inputs:
Registers: OP1 = floating-point number
Flags: None
Others: None
Outputs:
Registers: If OP1 is a positive integer, then Z = 1.
Flags: None

Others: None

Registers All

destroyed:

RAM used: None

Remarks:

Example: B CALL CkPosl nt ; check OP1 = positive integer

JR Z, Posl nt ; jump if positive integer

TI-83 Plus Developer Guide 10-32 Third Release January 25, 2002

System Routines — Math

CkValidNum
Category: Math
Description: Checks for a valid number for a real or complex number in OP1/OP2.
Inputs:
Registers: OP1, if real
OP1 and OP2, if complex
Flags: None
Others: None
Outputs:
Registers: Err: Overflow if exponent > 100
Value set to 0 if exponent < -99
Flags: None
Others: None
Registers AF, HL
destroyed:
Remarks: This should be used before storing a real or complex to a user variable or a
system variable.
Intermediate results from the math operations can generate values outside of
the valid exponent range for the TI-83 Plus. This routine will catch those
cases.
If this is not done, then problems can occur when trying to display the invalid
numbers.
This does not need to be done after every floating-point operation. The core
math routines can handle exponents in the range or +/- 127.
Example: After a floating-point multiply, check the result for validity before stringing to

variable X. Assume OP1 and OP2 have values already.

B CALL FPMUI t generate value to store to 'X
B CALL CkVal i dNum make sure valid exponent
B CALL St oX store to ' X

TI-83 Plus Developer Guide 10-33 Third Release January 25, 2002

System Routines — Math

CLN

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the natural log of a complex number.

None
None

OP1/0OP2 = complex number
None

None

OP1/0OP2 = complex result
All

OP1 -0OP6

B_CALL CLN

TI-83 Plus Developer Guide 10-34

Third Release January 25, 2002

System Routines — Math

CLog

Category: Math
Description: Computes the base 10 log of a complex humber.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex number
Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex result
Registers All
destroyed:
RAM used: OP1 - OP6
Remarks:
Example: B_CALL ClLog

TI-83 Plus Developer Guide 10-35 Third Release January 25, 2002

System Routines — Math

ClrLp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Clears a memory block (to 00h’s).

HL = address of start of memory block
B = number of bytes to clear

None

None

None
None
Memory block cleared
B, HL

None

TI-83 Plus Developer Guide 10-36

Third Release January 25, 2002

System Routines — Math

CIrOP1S

Category: Math
Description: Clears the mantissa sign bit in OP1.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None

Registers
destroyed:

Remarks: This routine only acts on the display, not the textShadow.

Example:

TI-83 Plus Developer Guide 10-37 Third Release January 25, 2002

System Routines — Math

CMItByReal

Category: Math
Description: Multiplies a complex number by a real number.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex number
OP3 = floating point real number

Outputs:
Registers: None
Flags: None
Others: OP1/0OP2 = complex result, OP1/OP2 OP3
OP3 = intact
Registers All
destroyed:

RAM used: OP1 -0OP4
Remarks:
Example: B_CALL CM t ByReal

TI-83 Plus Developer Guide 10-38 Third Release January 25, 2002

System Routines — Math

CMult

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Multiplication of two complex numbers.

None

None

OP1/0OP2 = second argument
FPS1/FPST = first argument

None

None

OP1/0P2 = complex result (first argument) * (second argument)

All

OP1 - OP4

First argument is removed from the FPS (Floating Point Stack).

See CSub.

TI-83 Plus Developer Guide

10-39

Third Release January 25, 2002

System Routines — Math

Conj

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math

Computes the complex conjugate of a real complex number.

None
None

OP1/0P2 = real complex nhumber

None
None

OP2 = -OP2, negate imaginary
Set OP1/OP2 = current complex mode

All

No error checking. Sets Ans to the current complex mode.

TI-83 Plus Developer Guide 10-40 Third Release January 25, 2002

System Routines — Math

COP1Set0

Category: Math
Description: Puts a complex (0,0) in OP1/0OP2.
Inputs:

Registers: None

Flags: None

Others: None
Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex (0,0)
Registers A, HL
destroyed:
Remarks: OP1 is not modified.
Example:

TI-83 Plus Developer Guide 10-41 Third Release January 25, 2002

System Routines — Math

Cos

Category: Math
Description: Computes the cosine of a floating point.
Inputs:

Registers: None

Flags: None

Others: Current angle mode
OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = cosine (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-42 Third Release January 25, 2002

System Routines — Math

CosH

Category: Math
Description: Computes the hyperbolic cosine of a floating point.
Inputs:
Registers: None
Flags: None
Others: OP1 = floating point
Outputs:
Registers: None
Flags: None
Others: OP1 = hyperbolic cosine (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example:

TI-83 Plus Developer Guide 10-43 Third Release January 25, 2002

System Routines — Math

CpOP10P2

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Math

Compares floating-point values in OP1 and OP2.

None
None

OPL1 = floating-point value
OP2 = floating-point value

None

Z=1:0P1=0P2
Z=0,CA=1.0P1<0P2
Z=0,CA=0:0P1>=0P2

None
A, BC, DE, HL

OP1 and OP2 are preserved.

TI-83 Plus Developer Guide

10-44

Third Release January 25, 2002

System Routines — Math

CpOP40P3

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Compares floating-point values in OP4 and OP3.

None
None

OP4 = floating-point value
OP3 = floating-point value

None

Z=1:0P4 =0P3
Z=0,CA=1.0P4<0OP3
Z=0,CA=0:0P4>=0P3

None
A, BC, DE, HL

OP1, OP2

OP4 and OP3 are preserved.

TI-83 Plus Developer Guide

10-45

Third Release January 25, 2002

System Routines — Math

CRecip

Category: Math
Description: Computes the reciprocal of a complex number.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = input complex number
Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = resulting complex number
Registers All
destroyed:
RAM used: OP1 - OP4
Remarks:
Example: B_CALL CReci p

TI-83 Plus Developer Guide 10-46 Third Release January 25, 2002

System Routines — Math

CSqRoot

Category: Math
Description: Computes the square root of a complex number.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex number
Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex result
Registers All
destroyed:
RAM used: OP1 - OP6
Remarks:
Example: B_CALL CSqRoot

TI-83 Plus Developer Guide 10-47 Third Release January 25, 2002

System Routines — Math

CSquare

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the square of a complex number.

None
None

OP1/0OP2 = complex number
None

None

OP1/0OP2 = complex result
All

OP1 - OP4

B _CALL CSquar e

TI-83 Plus Developer Guide 10-48

Third Release January 25, 2002

System Routines — Math

CSub

Category: Math
Description: Subtracts two complex numbers.
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = second argument
FPS1/FPST = first argument

Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex result (first argument) - (second argument)
Registers All
destroyed:

RAM used: OP1 -0P3

Remarks: First argument is removed from the FPS (Floating Point Stack).
Example: Assume that variable X and Y both have complex values.
Recall the contents and subtract Y from X, such that OP1/OP2 = X - Y
B CALL Rcl X ; OP1/ OP2 = conpl ex value of X

This next call pushes OPl the real part of the conplex #, onto FPST;
then pushes OP2, the immginary part, onto the FPST which pushes the
real part to FPS1 position.

FPS1 = 1st argunent real part
FPST = 1st argunent inmaginary part
B CALL PushMCpl xO1 ; push 1st argunent on FPS, X
B CALL RclY ; OP1/ OP2 = conplex value of Y
B _CALL CSub ; OPL/OP2 =result X N Y, FPS
: is cleaned

TI-83 Plus Developer Guide 10-49 Third Release January 25, 2002

System Routines — Math

CTenX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns 10~X where X is a complex number.

None
None

OP1/0OP2 = complex number
None

None

OP1/0OP2 = complex result
All

OP1 -0OP6

B CALL CTenX

TI-83 Plus Developer Guide 10-50

Third Release January 25, 2002

System Routines — Math

CTrunc

Category: Math

Description: Returns the integer part of both the real and imaginary components of a
complex number; no rounding is done.

Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex number
Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex result
Registers All
destroyed:
RAM used: OP1, OP2
Remarks: No rounding is done; for example, Trunc (1.5 + 3i) returns 1 + 3i.
Example: B_CALL CTrunc

TI-83 Plus Developer Guide 10-51 Third Release January 25, 2002

System Routines — Math

Cube

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the cube of a floating-point number.

None

None

OP1 = floating-point number

None
None
OP1 = OP173
A, BC, DE, HL

OP1-0OP3

B_CALL Cube

TI-83 Plus Developer Guide

10-52

Third Release January 25, 2002

System Routines — Math

CXrootY

Category: Math
Description: Returns the complex root of a complex number, y~(1/x).
Inputs:

Registers: None

Flags: None

Others: OP1/0OP2 = second argument (y)
FPS1/FPST = first argument (X)

Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = complex result second_argument”(1/(first_argument))
Registers All
destroyed:

RAM used: OP1 - OP6
Remarks: First argument is removed from the FPS (Floating Point Stack).

Example: See CSub.

TI-83 Plus Developer Guide 10-53 Third Release January 25, 2002

System Routines — Math

CYtoX

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Raises a complex number to a complex power, y~x.

None
None

OP1/0OP2 = second argument (x)
FPS1/FPST = first argument (y)

None

None

OP1/0OP2 = complex result first_argument”(second_argument)
All

OP1 - OP6
First argument is removed from the FPS (Floating Point Stack).
See CSub.

TI-83 Plus Developer Guide

10-54

Third Release January 25, 2002

System Routines — Math

DecO1Exp

Category: Math
Description: Decrements OP1 exponent.
Inputs:

Registers: None

Flags: None
Others: OP1
Outputs:
Registers: None
Flags: None
Others: Decrement OP1 exponent by one.
Registers A
destroyed:
Remarks:
Example: B_CALL DecOLEXp

TI-83 Plus Developer Guide 10-55 Third Release January 25, 2002

System Routines — Math

DToR

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Converts the floating-point number in OP1 from a degrees angle to a radian

angle.

None

None

OPL1 = floating-point number to convert

None

None

OPL1 = floating-point number representing the radian angle of the input value

All

OP1, OP2, OP3

TI-83 Plus Developer Guide

10-56

Third Release January 25, 2002

System Routines — Math

EToX

Category: Math
Description: Computes e*OP1 = 10N(OP1*LOG(e)).
Inputs:

Registers: None

Flags: None

Others: OP1 = value e is raised to
Outputs:

Registers: None

Flags: None

Others: OP1 = result
Registers All, OP2, OP3, OP4
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 10-57 Third Release January 25, 2002

System Routines — Math

ExpToHex

Category: Math

Description: Converts absolute value of one-byte.
Exponent (in HL) to hexadecimal.

Inputs:

Registers: (HL) = exponent to convert

Flags: None
Others: None
Outputs:
Registers: (HL) = absolute value of exponent
Flags: None
Others: None
Registers A
destroyed:
Remarks: This converts the floating point exponent value from the offset type

(e.g., 7Fh = 107-1, 80h = 1070, 81h = 1071,...) to a value of 0...n. It treats
positive and negative exponents the same:

e.g.,80h=0
8lh=1
82h =2
7Fh = Al
7Eh = A2
See OP1ExpToDec for another exponent conversion routine.
Example: LD HL, Exponent
LD (HL), 7Eh
B CALL ExpToHex ; change (HL) from FEh N> 02h.

TI-83 Plus Developer Guide 10-58 Third Release January 25, 2002

System Routines — Math

Factorial

Category: Math
Description: Computes the factorial of an integer or a multiple of .5.
Inputs:

Registers: None

Flags: None
Others: OPL1 = floating-point number, must be an integer or a multiple of .5 in the
range of -.5 to 69
Outputs:
Registers: None
Flags: None
Others: OPL1 = factorial of input, floating-point number. Else, error if input is out of
range.
Registers All
destroyed:
RAM used: OP1 - OP3
Remarks:
Example:

TI-83 Plus Developer Guide 10-59 Third Release January 25, 2002

System Routines — Math

FPAdd

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Floating point addition of OP1 and OP2.

None
None

OPL1 = floating-point number, argument one
OP2 = floating-point number, argument two

None

None

OPL1 = floating-point result OP1 + OP2
All

OP1, OP2

B_CALL FPAdd

TI-83 Plus Developer Guide 10-60

Third Release January 25, 2002

System Routines — Math

FPDiv

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Floating point division of OP1 and OP2.

None
None

OPL1 = floating-point number, argument one
OP2 = floating-point number, argument two

None
None

OP1 = floating point result OP1 / OP2
OP2 = intact

All
OP1, OP2, OP3
B_CALL FPDi v

TI-83 Plus Developer Guide 10-61

Third Release January 25, 2002

System Routines — Math

FPMult

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Floating point multiplication of OP1 and OP2.

None
None

OPL1 = floating-point number, argument one
OP2 = floating-point number, argument two

None
None

OPL1 = floating point result OP1 * OP2
OP2 = intact

All
OP1, OP2, OP3
B_CALL FPMul t

TI-83 Plus Developer Guide 10-62

Third Release January 25, 2002

System Routines — Math

FPRecip

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Floating point reciprocal of OP1.

None
None

OP1 = floating-point number

None
None

OP1 = floating point result 1 / OP1
OP2 = input OP1

All
OP1, OP2, OP3
B CALL FPReci p

TI-83 Plus Developer Guide 10-63

Third Release January 25, 2002

System Routines — Math

FPSquare

Category: Math
Description: Floating point square of OP1.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating-point number
Outputs:

Registers: None

Flags: None

Others: OPL1 = floating-point result OP1 OP1
OP2 = input OP1

Registers All
destroyed:

RAM used: OP1, OP2, OP3
Remarks:
Example: B_CALL FPSquar e

TI-83 Plus Developer Guide 10-64 Third Release January 25, 2002

System Routines — Math

FPSub

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Floating point subtraction of OP1 and OP2.

None
None

OPL1 = floating-point number, argument one
OP2 = floating-point number, argument two

None
None
OPL1 = floating point result OP1 N OP2

All

OP1, OP2

B_CALL FPSub

TI-83 Plus Developer Guide

10-65

Third Release January 25, 2002

System Routines — Math

Frac

Category: Math
Description: Returns the fractional part of a floating-point number.
Inputs:
Registers: None
Flags: None
Others: OP1 = floating-point number
Outputs:
Registers: None
Flags: None
Others: OPL1 = floating-point result
Registers All
destroyed:
RAM used: OP1
Remarks: No rounding; for example, Frac (1.5) = .5

Example: B_CALL Frac

TI-83 Plus Developer Guide 10-66 Third Release January 25, 2002

System Routines — Math

HLTimes9

Category: Math

Description: Multiplies HL by nine.

Inputs:
Registers: HL = multiplicand
Flags: None
Others: None

Outputs:
Registers: HL = HL * 9 modulo 65536
Flags: CA = 1: answer larger than 65535

CA = 0: answer less than 65535

Others: None

Registers BC

destroyed:

Remarks: None

Example:

TI-83 Plus Developer Guide 10-67

Third Release January 25, 2002

System Routines — Math

HTimesL

Category: Math
Description: Multiplies H (register) * L (register).
Inputs:

Registers: H, L

Flags: None

Others: None

Outputs:
Registers: HL = product of (original H) * (original L)
Flags: None
Others: None
Registers B, DE
destroyed:
Remarks: Restriction: H cannot be O; If H is 0, performs 256 * L.

Cannot overflow if H > 0.

Example:

TI-83 Plus Developer Guide 10-68 Third Release January 25, 2002

System Routines — Math

Int

Category: Math
Description: Rounds a floating-point number to an integer.
Inputs:

Registers: None

Flags: None

Others: OPL1 = floating-point number to round
Outputs:

Registers: None

Flags: None

Others: OP1 = Int (OP1)
Registers All
destroyed:

RAM used: OP1
Remarks: The mantissa sign of the input has no affect on the result.
Example: B_CALL I nt

TI-83 Plus Developer Guide 10-69 Third Release January 25, 2002

System Routines — Math

Intgr

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math

Returns the integer.

None
None

OP1 = floating-point number

None

None

OPL1 = floating-point result
A, BC, DE, HL

If OP1 is an integer, then result = OP1. Otherwise,
for positive numbers, returns the same as Trunc (OP1);
for negative numbers, returns the Trunc (OP1 - 1).

TI-83 Plus Developer Guide 10-70 Third Release January 25, 2002

System Routines — Math

InvOP1S

Category: Math
Description: Negates a floating-point number OP1, if OP1 = 0 then set OP1 = positive.
Inputs:

Registers: None

Flags: None
Others: OPL1 = floating-point number. No check is made for a valid floating-point
number.
Outputs:
Registers: None
Flags: None
Others: OP1 = A(OP1), unless 0 then it is set to positive.
Registers A
destroyed:
Remarks:
Example: Set OP1 =Al
B CALL OPlSet 1 ; OP1 = floating point 1
B_CALL | nvOP1S ; OPL = -1

TI-83 Plus Developer Guide 10-71 Third Release January 25, 2002

System Routines — Math

InvVOP1SC

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math

Used to negate a complex number in OP1/OP2 by negating both OP1 and
OP2. If OP1 or OP2 = 0, then that OP register is set positive.

None
None

OP1/0P2 = two floating-point numbers that make up a complex number

None
None

OP1 = -(OP1), unless 0 then it is set to positive
OP2 = -(OP2), unless 0 then it is set to positive

A

TI-83 Plus Developer Guide 10-72 Third Release January 25, 2002

System Routines — Math

InvOP2S

Category: Math
Description: Negates a floating-point number OP2, if OP2 = 0 then set OP2 = positive.
Inputs:

Registers: None

Flags: None
Others: OP2 = floating-point number, no check is made for a valid floating-point
number.
Outputs:

Registers: None
Flags: None
Others: OP2 = -(OP2), unless 0 then it is set to positive

Registers A

destroyed:

Remarks:

Example: Set OP2 =-1
B CALL OP2Set 1 ; OP2 = floating point 1
B_CALL | nvOP2S ; OP2 = -1

TI-83 Plus Developer Guide 10-73 Third Release January 25, 2002

System Routines — Math

InvSub

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Negates OP1 and add to OP2.

None
None

OP1 = floating point
OP2 = floating point

None

None

OP1 = floating point with value (-OP1) + OP2
A, BC, DE, HL

OP1, OP2

None

TI-83 Plus Developer Guide 10-74

Third Release January 25, 2002

System Routines — Math

LnX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Returns natural log of a floating-point number in OP1.

None
None

OP1 = floating-point number, must be positive

None
None

Error if OP1 is negative
Else OP1 = Ln(OP1)

All

OP1 - OP5
A system error can be generated. See section on Error Handlers.

Compute the Ln(OP1), install an error handler to avoid the system reporting
the error.

AppOnErr Cat chError install error handler

B CALL LnX conmput e Ln(OP1)

AppOFfErr remove error handl er, no
error occurred

RET

come here if LnX generated an error

CatchError:

TI-83 Plus Developer Guide

10-75

Third Release January 25, 2002

System Routines — Math

LogX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Returns log base 10 of a floating-point number in OP1.

None

None

OP1 = floating-point number, must be positive

None

None

Error if OP1 is negative
Else OP1 = Log(OP1)

All

OP1 -0OP5

A system error can be generated. See section on Error Handlers.

See LnX.

TI-83 Plus Developer Guide

10-76

Third Release January 25, 2002

System Routines — Math

Max

Category: Math
Description: Returns the maximum (OP1, OP2), two floating-point numbers.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating-point number
OP2 = floating-point number

Outputs:

Registers: None

Flags: None

Others: OP1 = maximum (OP1, OP2)

OP2 = intact

Registers All
destroyed:
RAM used: OP1 - OP4
Remarks: See CpOP10P2, for non destructive compare.
Example:

TI-83 Plus Developer Guide 10-77 Third Release January 25, 2002

System Routines — Math

Min
Category: Math
Description: Computes the minimum of two floating-point numbers.

Inputs:

Registers: None

Flags: None

Others: OPL1 = floating-point number argument one
OP2 = floating-point number argument two

Outputs:

Registers: None

Flags: None

Others: OP1 = minimum (OP1, OP2)
OP2 = intact

OP3 = argument one
OP4 = argument two

Registers A, BC, DE, HL
destroyed:

RAM used: OP1 - 0OP4
Remarks:

Example:

TI-83 Plus Developer Guide 10-78 Third Release January 25, 2002

System Routines — Math

Minusl

Category: Math
Description: Floating point subtraction of one from OP1.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating-point number

Outputs:

Registers: None

Flags: None

Others: OPL1 = floating-point result OP1 - 1
Registers All
destroyed:

RAM used: OP1, OP2
Remarks:
Example: B_CALL M nus1

TI-83 Plus Developer Guide 10-79 Third Release January 25, 2002

System Routines — Math

OPl1ExpToDec

Category: Math
Description: Converts absolute value of exponent to a bcd number.
Inputs:

Registers: None

Flags: None
Others: OP1 + 1 = exponent to convert
Outputs:

Registers: (HL) = OP1 + 1 = |Exp| as hex
A = |Exp| as bcd

Flags: None
Others: OP1 + 1 = |Exp| as hex
Registers A, BC
destroyed:
Remarks: Overflow Error if |Exp| > 99
Example; ; Input OP1 + 1 value -> Qutput OP1 + 1 and A register
81h (1071) -> 01h & 01h
7Fh (10%-1) -> 01h & 01h
8Dh (10713) -> 0Dh & 13h
73h (107-13) -> 0Dh & 13h

TI-83 Plus Developer Guide 10-80 Third Release January 25, 2002

System Routines — Math

OP1Set0, OP1Setl, OP1Set2, OP1Set3, OP1Set4,
OP2Set0, OP2Setl, OP2Set2, OP2Set3, OP2Set4,
OP2Set5, OP2Set60, OP3Set0, OP3Setl, OP3Set?2,

OP4Set0,

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:
Registers
destroyed:

Remarks:

Example:

OP4Setl, OP5Set0

Math Utility

Sets value of OP(x) to floating point (value).

None
None
None

None
None
OP(x) = floating-point value
A, HL

Combinations Available:

Value 0 1 2 3 4

Register

OP1 X

OP2 X

OP3 X
X
X

X X X X

OP4
OP5

B_CALL oP2Set 5

X X X
>
>

TI-83 Plus Developer Guide 10-81

Third Release January 25, 2002

System Routines — Math

OP2Set8

Category: Math
Description: Sets OP2 = floating point 8.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: OP2 = floating point 8
Registers A, HL
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 10-82 Third Release January 25, 2002

System Routines — Math

OP2SetA

Category: Math
Description: Sets OP2 = floating-point value between 0 and 9.9.
Inputs:

Registers: ACC = two digits of mantissa to set OP2 to

Flags: None
Others: OP2 set to floating-point value
Outputs:
Registers: None
Flags: None
Others: None
Registers A, HL
destroyed:
Remarks:
Example: ; Set OP2 = 7.6
LD A, 76h ; mantissa digits
B_CALL OP2Set A , OP2 = 7.6

TI-83 Plus Developer Guide 10-83 Third Release January 25, 2002

System Routines — Math

Plusl

Category: Math
Description: Floating point addition of one to OP1.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating-point number
Outputs:

Registers: None

Flags: None

Others: OPL1 = floating-point result OP1 + 1
Registers All
destroyed:
RAM used: OP1, OP2
Remarks:
Example: B_CALL Plusl

TI-83 Plus Developer Guide 10-84 Third Release January 25, 2002

System Routines — Math

PToR

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Converts complex number in OP1/OP2 from a polar complex number to a
rectangular complex number.

None

None

OPL1 = floating-point number radius part of complex number
OP2 = floating-point number angle part of complex number

None

None

OP1/0P2 = rectangular representation of input polar complex number

All

OP1 -0OP6

TI-83 Plus Developer Guide

10-85

Third Release January 25, 2002

System Routines — Math

RandInit

Category: Math

Description: Initializes random number seeds to default value.
Inputs:

Registers: None
Flags: None

Others: None

Outputs:

Registers: None

Flags: None

Others: None
Registers HL, DE, BC
destroyed:
Remarks: Seeds initialized.
Example:

TI-83 Plus Developer Guide 10-86 Third Release January 25, 2002

System Routines — Math

Random

Category: Math
Description: Returns a random floating-point number, 0 < number < 1.
Inputs:

Registers: None

Flags: None

Others: None
Outputs:

Registers: None

Flags: None

Others: OP1 = floating point random number
Registers All
destroyed:

RAM used: OP1 -0P3
Remarks: See RnFx and Round routines.

Example:

TI-83 Plus Developer Guide 10-87 Third Release January 25, 2002

System Routines — Math

RName

Category: Math

Description: Constructs a name for real variable R in the format required by routine
FindSym.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1 = contains variable name for R in format required by routine FindSym
Registers A, HL
destroyed:
Remarks: This routine is used to prepare for a call to routine FindSym.
Example:

TI-83 Plus Developer Guide 10-88 Third Release January 25, 2002

System Routines — Math

RndGuard

Category: Math

Description: Rounds a floating-point number to 10 mantissa digits. The exponent value has
no effect on this routine.

Inputs:
Registers: None
Flags: None
Others: OPL1 = floating-point number to round to 10 mantissa digits

(fmtDigits) = current fix value

Offh = floating, no rounding will be done
Otherwise, the value is the number of decimal
Digits to round to, 0 — 9

Outputs:
Registers: None
Flags: None
Others: OP1 = input floating point rounded to 10 mantissas digits

Registers All

destroyed:

RAM used: OP1

Remarks: See the RnFx and Round routines.
Example:

TI-83 Plus Developer Guide 10-89 Third Release January 25, 2002

System Routines — Math

RnFx

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Rounds a floating-point number to the current FIX setting for the calculator.
This will round the digits following the decimal point.

None
None

OP1 = floating-point number to round

None
None
OP1 = input rounded to at maximum of 10 mantissa digits

(fmtDigits) = current fix value

Offh = floating, no rounding will be done
Otherwise, the value is the number of decimal
Digits to round to, 0 — 9

All

OP1

See Round and RndGuard routines.

TI-83 Plus Developer Guide 10-90 Third Release January 25, 2002

System Routines — Math

Round

Category: Math

Description: Rounds a floating-point number to a specified number of decimal places. This
will round the digits following the decimal point.

Inputs:
Registers: D = number of decimal places to round to, 0 — 9
Flags: None
Others: OP1 = floating-point number to round

(fmtDigits) = current fix value
Offh = floating, no rounding will be done
Otherwise, the value is the number of decimal digits to round to, 0 — 9

Outputs:
Registers: None
Flags: None
Others: OP1 = input rounded to at maximum of 10 mantissa digits
Registers All
destroyed:
RAM used: OP1
Remarks: See RnFx and RndGuard routines.
Example:

TI-83 Plus Developer Guide 10-91 Third Release January 25, 2002

System Routines — Math

RToD

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Converts the floating-point number in OP1 from a radian angle to a degree

angle.

None

None

OPL1 = floating-point number to convert

None

None

OPL1 = floating-point number representing the degree angle of the input value.

All

OP1, OP2, OP3

See DToR routine.

TI-83 Plus Developer Guide

10-92

Third Release January 25, 2002

System Routines — Math

RToP

Category: Math

Description: Converts complex number in OP1/OP2 from a rectangular complex number to
a polar complex number.

Inputs:

Registers: None

Flags: None
Others: OP1 = floating-point number X part of complex humber
OP2 = floating-point number Y part of complex humber

Outputs:

Registers: None

Flags: None

Others: OP1/0OP2 = polar representation of input rectangular complex number
Registers All
destroyed:

RAM used: OP1 - OP6
Remarks: See RToP routine.

Example:

TI-83 Plus Developer Guide 10-93 Third Release January 25, 2002

System Routines — Math

Sin
Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Computes the sine and cosine of a floating point.

Current angle mode
OP1 = floating point

None

None

None
None

OPL1 = sine (floating point)
OP2 = cosine (floating point)

All

OP1, OP2, OP3, OP4, OP5

B_CALL Sin

TI-83 Plus Developer Guide

10-94

Third Release January 25, 2002

System Routines — Math

SinCosRad

Category: Math
Description: Computes the sine and cosine of a floating point and radian mode is forced.
Inputs:
Registers: None
Flags: None
Others: OP1 = floating point
Outputs:
Registers: None
Flags: None

Others: OPL1 = sine (floating point)
OP2 = cosine (floating point)

Registers All

destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example: B_CALL Si nCosRad

TI-83 Plus Developer Guide 10-95 Third Release January 25, 2002

System Routines — Math

SinH

Category: Math
Description: Computes hyperbolic sine of a floating point.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point
Outputs:

Registers: None

Flags: None

Others: OP1 = hyperbolic sine (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:
Example: B_CALL Si nH

TI-83 Plus Developer Guide 10-96 Third Release January 25, 2002

System Routines — Math

SinHCosH

Category: Math
Description: Computes the hyperbolic sine and cosine of a floating point.
Inputs:
Registers: None
Flags: None
Others: OP1 = floating point
Outputs:
Registers: None
Flags: None

Others: OP1 = hyperbolic sine (floating point)
OP2 = hyperbolic cosine (floating point)

Registers All

destroyed:

RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example: B_CALL Si NHCosH

TI-83 Plus Developer Guide 10-97 Third Release January 25, 2002

System Routines — Math

SgRoot

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Returns the square root of OP1.

None
None

OP1 = floating-point number, must be positive

None

None

Error if OP1 is negative, else OP1 = Sqrt(OP1)
All

OP1-0OP3

See section on Error Handlers.

TI-83 Plus Developer Guide 10-98

Third Release January 25, 2002

System Routines — Math

Tan

Category: Math
Description: Computes the tangent of a floating point.
Inputs:

Registers: None

Flags: None

Others: Current angle mode
OP1 = floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = tangent (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:

Example: B_CALL Tan

TI-83 Plus Developer Guide 10-99 Third Release January 25, 2002

System Routines — Math

TanH

Category: Math
Description: Computes the hyperbolic tangent of a floating point.
Inputs:
Registers: None
Flags: None
Others: OP1 = floating point
Outputs:
Registers: None
Flags: None
Others: OP1 = hyperbolic tangent (floating point)
Registers All
destroyed:
RAM used: OP1, OP2, OP3, OP4, OP5
Remarks:
Example: B_CALL TanH

TI-83 Plus Developer Guide 10-100 Third Release January 25, 2002

System Routines — Math

TenX

Category: Math

Description: Returns 10°OP1).
Inputs:

Registers: None
Flags: None
Others: OP1 = floating-point number

Outputs:

Registers: None

Flags: None

Others: OP1 =10%0OP1)
Registers All
destroyed:
RAM used: OP1 - OP4
Remarks:
Example:

TI-83 Plus Developer Guide 10-101 Third Release January 25, 2002

System Routines — Math

ThetaName

Category: Math

Description: Constructs a name for real variable Theta in the format required by routine
FindSym.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1 = contains variable name for Theta in format required by routine
FindSym
Registers A, HL
destroyed:
Remarks: This routine is used to prepare for a call to routine FindSym.
Example:

TI-83 Plus Developer Guide 10-102 Third Release January 25, 2002

System Routines — Math

Times2

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Calculates OP1 times two.

None
None

OP1 = floating point

None
None

OPL1 = floating point with value OP1 * 2.0
OP2 = floating point 2

A, BC, DE, HL

OP1, OP2

None

TI-83 Plus Developer Guide

10-103

Third Release January 25, 2002

System Routines — Math

TimesPt5

Category: Math
Description: Calculates OP1 times 0.5.
Inputs:

Registers: None

Flags: None

Others: OP1 = floating point
Outputs:

Registers: None

Flags: None

Others: OPL1 = floating point with value OP1 * 0.5
OP2 = floating point 0.5

Registers A, BC, DE, HL
destroyed:

RAM used: OP1, OP2
Remarks:

Example:

TI-83 Plus Developer Guide 10-104 Third Release January 25, 2002

System Routines — Math

TName

Category: Math

Description: Constructs a name for real variable T in the format required by routine
FindSym.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1 = contains variable name for T in format required by routine FindSym
Registers A, HL
destroyed:
Remarks: This routine is used to prepare for a call to routine FindSym.
Example:

TI-83 Plus Developer Guide 10-105 Third Release January 25, 2002

System Routines — Math

ToFrac

Category: Math

Description: Converts a floating-point number to the integer numerator and integer
denominator of the equivalent fraction.

Inputs:
Registers: None
Flags: None

Others: OP1 = floating-point number

Outputs:
Registers: None
Flags: Carry = 0: Success
= 1: Failure.

Others: OP1:
On Failure — unchanged.
On Success — Numerator (floating-point integer)
OoP2:
On Failure — unchanged.
On Success — Denominator (floating-point integer)

Registers All
destroyed:
Remarks: Also modifies OP3, OP4, OP5, OP6.

Smallest possible denominator is created.
Fails if denominator must be > 999.

Example: LD HL, Exanpl eNum
RST r Mov9ToOP1
; OP1 = 1.25
B _CALL ToFr ac

; Convert to fraction form

; Carry is now O (success)

; OP1 now contains: 00h 80h 50h 00h 00Oh 00h 00h 00h 00h =5
;. OP2 now contains: 00h 80h 40h 00h 00Oh 00h O00h 00h 00h = 4
LD HL, Exanpl eNun®
RST r Mov9ToOP1
; OP1l = 1.2345678901234
B _CALL ToFrac

; Convert to fraction form

; Carry is now 1 (failure)

; Exampl eNum = 1. 25

Exanpl eNum DB 00h, 80h, 12h, 50h, 00h, 00h, 0O0h, 00h, 00h
; Exanpl eNunR = 1.2345678901234

Exanpl eNum DB 00h, 80h, 12h, 34h, 56h, 78h, 90h, 12h, 34h

TI-83 Plus Developer Guide 10-106 Third Release January 25, 2002

System Routines — Math

Trunc

Category: Math

Description: Truncates the fractional portion of a floating-point number returning the integer
portion with no rounding.

Inputs:
Registers: None
Flags: None

Others: OP1 = floating-point number

Outputs:

Registers: None

Flags: None

Others: OP1 = Trunc (OP1)
Registers All
destroyed:
RAM used: OP1 - 0OP2
Remarks:
Example: Trunc(1.5) = 1

TI-83 Plus Developer Guide 10-107 Third Release January 25, 2002

System Routines — Math

XName

Category: Math

Description: Constructs a name for real variable X in the format required by routine
FindSym.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1 = contains variable name for X in format required by routine FindSym
Registers A, HL
destroyed:
Remarks: This routine is used to prepare for a call to routine FindSym.
Example:

TI-83 Plus Developer Guide 10-108 Third Release January 25, 2002

System Routines — Math

XRootY

Category: Math

Description: Inverses power function and returns OP1/(1/0OP2).
Inputs:

Registers: None
Flags: None

Others: OP1 = number to find root of, floating point
OP2 = root to find, floating point

Outputs:

Registers: None

Flags: None

Others: OP1 = result if no error, floating point
Registers All
destroyed:

RAM used: OP1 - OP6
Remarks:

Example:

TI-83 Plus Developer Guide 10-109 Third Release January 25, 2002

System Routines — Math

YName

Category: Math

Description: Constructs a name for real variable Y in the format required by routine
FindSym.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1 = contains variable name for Y in format required by routine FindSym
Registers A, HL
destroyed:
Remarks: This routine is used to prepare for a call to routine FindSym.
Example:

TI-83 Plus Developer Guide 10-110 Third Release January 25, 2002

System Routines — Math

YToX

Category: Math
Description: Power function, returns OP1"OP2.
Inputs:

Registers: None

Flags: None
Others: OP1 = number to raise to a power, floating point
OP2 = power, floating point
Outputs:
Registers: None
Flags: None
Others: OP1 = result if no error, floating point
Registers All
destroyed:

RAM used: OP1 - OP6
Remarks:

Example:

TI-83 Plus Developer Guide 10-111 Third Release January 25, 2002

System Routines — Math

ZeroleD

Category: Math
Description: Sets eight-byte memory block to all 00h'’s.
Inputs:

Registers: HL = start of target block in memory

Flags: None
Others: None
Outputs:

Registers: None

Flags: None

Others: Memory block starting at original HL is all 00h’s
Registers A, HL
destroyed:
Remarks:

Example:

TI-83 Plus Developer Guide 10-112 Third Release January 25, 2002

System Routines — Math

ZeroOP

Category: Math

Description: Sets 11 bytes in OP(x) to 00h.
Note that this does not set the value to floating point 0.0.

Inputs:
Registers: HL = pointer to OP(x), x = 1...6
Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: OP(x) = all 11 bytes 00h
Registers A (=0), HL
destroyed:
Remarks:
Example: ; Set OP2 contents to all OOh:

; OP2+0 OP2+1 OP2+3 OP2+4 OP2+5 OP2+6 OP2+7 OP2+8 OP2+9 OP2+10
; 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
LD HL, OP2
B CALL Zer oOP

TI-83 Plus Developer Guide 10-113 Third Release January 25, 2002

System Routines — Math

ZeroOP1, ZeroOP2, ZeroOP3

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math

Sets 11 bytes in OP(x) to 00h.
Note that this does not set the value to floating point 0.0.

None
None

None

None

None

OP(x) = all 11 bytes 00h
A(=0), HL

Combinations Available:
x)=1,2,3

: Set OP2 contents to all 0Oh:
; OP2+0 OP2+1 OP2+3 OP2+4 OP2+5 OP2+6 OP2+7 OP2+8 OP2+9 OP2+10
; 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h

B CALL Zer oOP2

TI-83 Plus Developer Guide 10-114 Third Release January 25, 2002

System Routines — Matrix

System Routines —
1 1 Matrix

AdrMEle

... 11-1
AGIMROW ... 11-2
[T 4 I T o 11-3
PUETOMEL ...ttt e et n et st et e st e et e s ee et e et et et e s en et et e s eeeaeee e

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines — Matrix

AdrMEle

Category: List

Description: Computes the RAM address of an element of a matrix.

Inputs:

Registers: DE = pointer to start of matrix’s data storage, output of FindSym
BC = element’s (row, column) to compute address of Matrix Element (1,1) is
checked for real or complex data type to determine if the matrix is real or

complex.
Flags: None

Others: None

Outputs:
Registers: HL = pointer in RAM to start of desired element
Flags: None
Other: None
Registers All
destroyed:
Remarks: This routine does not check to see if the element’s address requested is within

the current dimension of the matrix.
Do not use this routine on a matrix that does not have element (1,1) initialized.

Example: Compute the address of element (5,6) of matrix [A].

LD HL, Mat ANane

RST r Mov9ToOP1 ; OP1 = [A] nane

B CALL Fi ndSym ; look it up

JP C, Undefi ned_A ; jump out if [A] is not
; defined;

LD A B ; if b<>0 then [A] is
: archived in Fl ash ROM

R A

JP NZ, Ar chi ved_A ; jump if not in RAM
; DE = pointer to start of
; matrix data storage;

LD BC, 5*256+6 : el ement's address
: desired

B CALL Adr MVEl e ; RET HL = pointer to
; element (5,6)

RET

Mat ANane:
DB Mat Obj , t Var Mat , t Mat A, 0, 0

TI-83 Plus Developer Guide

11-1 Third Release January 25, 2002

System Routines — Matrix

AdrMRow
Category: Matrix
Description: Computes the RAM address of the start of a row of a matrix.
Input:
Registers: DE = pointer to start of matrix's data storage, output of FindSym
B = row to compute address of
Matrix Element (1,1) is checked for real or complex data type to determine if
the matrix is real or complex.
Do not use this routine on a matrix that does not have element (1,1) initialized.
Flags: None
Others: None
Output:
Registers: HL = pointer in RAM to start of desired element
Flags: None
Others: None
Registers All
destroyed:
Remarks: This routine does not check to see if the row address requested is within the
current dimension of the matrix. See AdrMEle routine.
Example:

TI-83 Plus Developer Guide

11-2

Third Release January 25, 2002

System Routines — Matrix

GetMToOP1

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Other:

Registers
destroyed:

Remarks:

Example:

Matrix

Copies an element from a matrix to OPL1.

BC = element to get, row,col
DE = pointer to start of matrix's data storage

None

None

HL = pointer to next element in the same row, or the start of the next row of

None

OP1 = matrix element, floating-point number

All

the matrix.

TI-83 Plus Developer Guide

11-3

Third Release January 25, 2002

System Routines — Matrix

PutToMat
Category: Matrix
Description: Stores a floating-point number to an existing element of a matrix.
Inputs:
Registers: BC = (row, column) to store to
There is no check to see if this element is valid for the matrix.
DE = pointer to the start of the matrix’s data area, output of FindSym
Flags: None
Others: None
OPL1 = floating-point number
Outputs:
Registers: DE = pointer to next element in the matrix. This will be the next element in the
same row or the start of the next row.
Flags: None
Others: OP1 = intact
Registers All
destroyed:
Remarks:
Example: Look up MatA and store 1 to element (5,7).
LD HL, Mat Anane
B CALL Mov9ToOP1 ;. OP1 = nane
‘ B CALL Fi ndSym ; ook up
RET C : return if undefined
‘ ; DE = pointer to data area of
comatrix
‘ PUSH DE , save pointer
B_CALL OP1Set 1 ; OPL =1
‘ POP DE
LD BC, 5*257+7 ; element to store to (5,7)
B CALL Put ToMat ; store 1 to elenent (5,7)
RET
Mat Anane:
DB Mat Qoj , t Var Mat , t Mat A, 0
TI-83 Plus Developer Guide 11-4 Third Release January 25, 2002

System Routines — Memory

1 2 System Routines —
Memory

L (o © 4 = L o PP 12-1
CRKFINASYM L. 12-2
ChKFINASYM (CONTINUE) ...ttt s 12-3
L0 1= = 1 2 | PP 12-4
ClOSEPTOQ ..ttt 12-5
1000110103/ 1 1 1S S TP TP 12-6
CrEAEOEGU ... 12-7
CrEATEAPPVA ...ttt 12-8
(O 1T 10T O 1= 12-9
CrRATECPDIX s 12-10
CrEALEEQU ... e 12-11
(O 1T U] o | 12-12
(O 1T 1] o 12-13
CrEALEPIOT - e e 12-14
CrEatEPIOtPIOg . . et 12-15
(O 1T 10T =T | 12-16
(O 1T 1] o 1 12-17
CrEatERIMALvuii e e a 12-18
(01T 1(S30] [o [0 PP PTT PRSP 12-19
D= 1= 1] < SRS 12-20
D= 1= 1] 4= SRR 12-21
DEAIIOCFPS ... e aaaaar—— 12-22
== | o Tod e PSPPSR 12-23
D 1= 11T o o USRI 12-24
DelMem (CONLINUE)........coiiiiieieee e 12-25
D 1= T SRR 12-26
1= AT Y oSSR 12-27

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Memory

DEIVAINOAIC ... 12-28
T 111 2d (o To USRS 12-29
[aToTUTo] 011/ =T o o PR 12-30
EXCNO . 12-31
o o 12-32
FINAAIDNADIN ... e e e e e e e e e e e e e 12-33
FINdAIphaDN (CONtINUEA)uuniiiiieeice e e e e e e e e eeeens 12-34
FINAAIDNAUD ... e e e e e e 12-35
FINdAIphaUp (CONtINUEA)uuniceeeeecee et eeeeeens 12-36
100 1Y o] o P PRSPPI 12-37
FINAAPPNUMPAGES......ccoiiiiiii e e e e e e e et e e e e e e eeeens 12-38
100 VY o] o]] o PSPPI 12-39
100 VY o] o LU o PSPPI 12-40
FINO S M e e e e aaaeeaan 12-41
FINASYM (CONTNUE) ...ttt e e e en e,
D I=T 4] 01O o | PSPPI 12-43
FIAShTORAM ..o [2-44]
[E]=T 11V [=T o DO PP 12-45
INSErtMem (CONLINUEM)uuuii e e e e e e e e e e eeens 12-46
o o |0 o RSP 12-47
o= Vo[04 [To | == To =Y USSR
[Ior=To I [gTo 1 oF=To =T o NS 12-49
MEMCKHK ... 12-50
Yo [=To [CT=] PRI 12-51
RCIGDB2..... ..ttt e e e e e e s et e e e e e e e s e st areeaeeeeanannnnrnees 12-52
]| SRR 12-53
RCIVAISYIM .. e e e e e e e e e e et eaeaeeeennns 12-54
RCDK ettt et e e e e — et e e e e e e a it rraaaeaeaannnnrnees 12-55
o] SRR 12-56
REAIMMEL ... 12-57
Y= (0] 0] = Vo T=To | | R 12-58
SrchVLStDN, SIChVLSTUP...cciiiiiii e 12-59

TI1-83 Plus Developer’s Guide

Third Release January 25, 2002

System Routines — Memory

SEIMALEL ...t ——————— 12-60
RS (0] £ T PP 12-61
SEOGDB2 ...ttt —————————— 12-62
1] (] PP 12-63
Y (0 1] 1 1= 12-64
StOOLNEr (CONTINUE) ...ttt 12-65
1] (0] PP 12-66
STOSYSTOK ..ttt 12-67
1] (0 [PP 12-68
S (o I 1= - 12-69
1] (0) PP 12-70
) (0 2 12-71

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Memory

Arc_Unarc
Category: Memory
Description: Swaps a variable between RAM and archive.
Inputs:
Registers: None
Flags: None
Others: OP1 contains variable name
Outputs:
Registers: None
Flags: None
Others: Symbol table and data area (RAM and Flash) modified.
Registers All
destroyed:
Remarks: Destroys OP3 as well.
Will unarchive a variable already archived and will archive a variable that is
currently unarchived.
Gives an Err: Variable for any name that is not archivable or unarchivable
(e.g., Groups cannot be unarchived and X cannot be archived).
Gives an Err: Undefined for any name that does not already exist.
Does memory checking to make sure there is enough space (in RAM or in
Archive) to store the variable. Generates a memory error if not.
Example: ; unarchive variable A (real

; or complex) if it is
; archived:

B _CALL Zer oOP1 ; set OP1 to all Os

LD (OP1+1),tA ; want to look for floating
; point nunmber named 'A'

RST r Fi ndSym ; Data pointer -> DE
; Systempointer -> HL
; Cif none

JR C, skip ; does not exist, so skip

CALL Nz| f Ar chi ved ; NZ if was in RAM al r eady.

JR Z, skip ; not archived, so no need to
; unarchive

B _CALL Arc_Unarc ; unarchive vari abl e.

Nz| f Ar chi ved:

LD A B ; B has page information, NZ
;i f archived.

R A

RET

TI-83 Plus Developer Guide 12-1 Third Release January 25, 2002

System Routines — Memory

ChkFindSym

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Memory
Searches the symbol table structure for a variable.

This particular search routine must be used if the variable to search for is
either a Program, AppVar, or Group. It will also work for variables of other
types as long as the data type in OP1 input is correct.

This is used to determine if a variable is created and also to return pointers to
both its symbol table entry and data storage area.

This will also indicate whether or not the variable is located in RAM or has
been archived in Flash ROM.

(OP1) = one-byte, data type of variable to search for.
This routine will fail if this data type is not correct.
(OP1 + 1) to (OP1 + 8) = variable name

None

None

CA flag = 1 if symbol was not found
= 0 if symbol was found

Also if found:

ACC lower 5 bits = data type

ACC upper 3 bits = system flags about variable, do “AND 1Fh” to get type only

B = 0 if variable is located in RAM else variable is archived

B = ROM page located on
If variable is archived then its data cannot be accessed directly, it must be
unarchived first.

HL = pointer to the start of the variables symbol table entry

DE = pointer to the start of the variables data area if in RAM

None
OP1 = variable name
All

This will not find system variables that are preallocated in system RAM such
as Xmin, Xmax etc. Use RclSysTok to retrieve their values.

Note: ChkFindSym will not find Applications.
(continued)

TI-83 Plus Developer’'s Guide 12-2 Third Release January 25, 2002

System Routines — Memory

ChkFind Sym (continued)

Example: Look for AppVar MYAPPVAR in the symbol table.
If it exists and is archived then unarchive it and relook it up.

If it does not exist ; create it with a size of 100 ; bytes.

Rel ook:
LD HL, Var Nane
B _CALL Mov9ToOP1 ; OP1 = variable name
B _CALL ChkFi ndSym ; ook up
JR NC, Var Cr eat ed ; junp if it exists
LD HL, 100 ; Size to create at
B _CALL Cr eat eAppVar ; create it, HL = pointer to
; symentry, DE = pointer to
; data
PUSH HL
PUSH DE ; save during nove
B _CALL OP4ToOP1 ; OPl = nane
POP DE ; restore
POP HL
JR Done
Var Cr eat ed:
LD A B ; check for archived
R A ; in RAM ?
JR Z, done ;yes
B _CALL Arc_Unarc ; unarchive if enough RAM
JR Rel ook ; ook up pointers again in
;' RAM now done:
RET
Var Nane:
DB AppVar bj , ' MYAPPVAR , 0

TI-83 Plus Developer Guide 12-3 Third Release January 25, 2002

System Routines — Memory

CleanAll

Category: Memory

Description: Deletes all temporary variables from RAM.

Inputs:
Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: Temporary variables are all deleted
Registers All
destroyed:
Remarks: This routine should only be used when there are no temporary variables that

exist and are still being used. See the Temporary Variables section in
Chapter 2 for further information. See the Parselnp and MemChk routines.

Example:

T1-83 Plus Developer's Guide 12-4

Third Release January 25, 2002

System Routines — Memory

CloseProg
Category: Memory
Description: This routine is used after EditProg to return unused RAM back to free RAM.

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:
Example:

The size bytes of the variable are updated by this routine. An application
should not update them.

Each of these are two-bytes:

(iMathPtrl) = pointer to the start of the variables data storage area
(iMathPtr2) = pointer to the byte following the variable data, this will be used
to calculate the new size of the variable
(iMathPtr3) = pointer to the byte AFTER the last byte of free RAM inserted
(iMathPtr4) = size of RAM block moved to allow the RAM to be inserted
DO NOT CHANGE THIS VALUE.
None
None
None
None

The variable’s size is changed. Unused RAM returned to free RAM. Normal
allocating and deallocating of RAM can resume.

All

TI-83 Plus Developer Guide 12-5 Third Release January 25, 2002

System Routines — Memory

CmpSyms

Category: Memory
Description: Compares Name @HL with Name @DE.
Inputs:
Registers: HL = end of first name in RAM
DE = end of second name in RAM
B = length of name
Flags: None
Others: None
Outputs:
Registers: C = number of letters that match
C = original B if all letters match
Flags: Carry set if Sym2 (HL) > Sym1 (DE)
Others: None
Registers AF, BC, DE, HL
destroyed:
Remarks: The names must be the same size. The name lengths should have already
been compared before calling this routine.
Example; See if the nanme | ast used for the Xlist variable in statistics is
the name "ZEBRA'
LD HL, St Zebr a
RST r Mov9ToOP1 Move 9 bytes to OPL:
"ZEBRA" + junk
LD DE, OP1+4
LD HL, St at X+4
LD B, 5 conpare 5 bytes
B CALL CmpSyns If C=5then OP1 = StatX
namnme
LD A C
cP 5
JR Z, Mat ch
JR NoMat ch
St Zebr a: DB "ZEBRA"
TI-83 Plus Developer’'s Guide 12-6 Third Release January 25, 2002

System Routines — Memory

CreateOEqu
Category: Memory
Description: Creates an equation variable of size 0 in RAM.
Inputs:
Registers: None
Flags: None
Others: OP1 = name of equation to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. See section on
Creating Variables.
Example: Create an empty Y1 equation.

LD HL, Ylname

RST r Mov9ToOP1 OP1 = nane

B _CALL Cr eat eOEqu if returns then variable created
Ylnane: DB Equbj , t Var Equ, t Y1, 0,0

T1-83 Plus Developer Guide

12-7

Third Release January 25, 2002

System Routines — Memory

CreateAppVar

Category: Memory

Description: Creates an AppVar variable in RAM.

Inputs:

Registers: HL = size of AppVar to create in bytes
Flags: None
Others: OP1 = name of AppVar to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name

Registers OP1 and OP2

destroyed:

Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. Users can only delete
and link AppVars. They are intended for Apps to use for state saving upon
exiting. See section on Creating Variables.

Example: Create AppVar DOG, 50 bytes in size.

LD HL, DOGnane
RST r MovOToOP1 ; OPl = nane
LD HL, 50
B _CALL Cr eat eAppVar ; if returns then variable
; created
DOGnane: DB AppVar Obj, ' DOG , 0

TI-83 Plus Developer’'s Guide 12-8 Third Release January 25, 2002

System Routines — Memory

CreateCList

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Creates a complex list variable in RAM.

HL = number of elements in the list
None

OP1 = name of list to create

HL = pointer to variable's symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the elements is done, assume random. See
section on Creating Variables.

Create complex list L1 with 50 elements.

LD HL, L1name
RST r Mov9ToOP1 OP1 = nane
LD HL, 50
B _CALL Creat eCLi st if returns then variable
created
Liname: DB CListObj,tVarLst,tL1,0,0

T1-83 Plus Developer Guide

12-9

Third Release January 25, 2002

System Routines — Memory

CreateCplx
Category: Memory
Description: Creates a complex variable in RAM.
Inputs:
Registers: None
Flags: None
Others: OP1 = name of complex to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. This should not be used to create temp storage space,
A-Z or THETA. No initialization is done, assume random. See section on
Creating Variables.
Example: Create complex A.

LD HL, Anane
RST r Mov9ToOP1 ; OPl = nane
B _CALL Creat eCpl x ; if returns then variable
created
Anane: DB Cpl xnj,"A",0,0

TI-83 Plus Developer’'s Guide 12-10 Third Release January 25, 2002

System Routines — Memory

CreateEqu
Category: Memory
Description: Creates an equation variable in RAM.
Inputs:
Registers: HL = size of equation to create in bytes
Flags: None
Others: OP1 = name of equation to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. See section on
Creating Variables.
Example: Create Y1 equation 50 bytes in size.

LD HL, Ylname

RST rMov9ToOP1 ; OP1 = nane

LD HL, 50

B _CALL Cr eat eEqu ; if returns then variable created
Ylnane: DB EquQbj , t Var Equ, t Y1, 0,0

TI-83 Plus Developer Guide 12-11 Third Release January 25, 2002

System Routines — Memory

CreatePair
Category: Memory
Description: Creates a pair of parametric graph equations.

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers

destroyed:
Remarks:

Example:

There should never be a situation where only 1 of a pair of parametric
equations is created without the other. This routine will check that there is
enough memory to create both equations before creating any.

HL = size to create the equation specified in OP1, either xt or yt. The member
of the pair not specified will be created empty.

None

OP1 = pair member name to create with the specified size

HL = size of pair member specified
None

OP1 = pair member name specified
OP4 = pair member name not specified

OP1 and OP2

Memory error if not enough free RAM to create the pair.

If xt# is specified then yt# is created empty. If yt# is specified then xt# is
created empty.

No checks are made for duplicate or valid names. No initialization is done,
assume random. See section on Creating Variables.

Create parametric pair of equations xtl and yt1, ytl at size 50.

LD HL, yt 1nane
RST r MovOToOP1 OP1 = nane
LD HL, 50
B _CALL CreatePair if returns then vari abl es
created
OPl = ytl, OP4 = xtl, HL = 50
yt lnane: DB EquQbj , t Var Equ, ty1t, 0,0

T1-83 Plus Developer's Guide

12-12

Third Release January 25, 2002

System Routines — Memory

CreatePict
Category: Memory
Description: Creates a picture variable in RAM.
Inputs:
Registers: None
Flags: None
Others: OP1 = name of picture to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. The size of a Pic var is 756 bytes, it does not allocate space for
the last row of pixels, that row is never used by the system graph routines.
If you need to save a bitmap of the entire display to a variable then an AppVar
should be used. The only drawback to using an AppVar is that the Pic could
not be displayed by the user when the app is not executing.
No initialization is done, assume random. See section on Creating Variables.
Example: Create Pic Picl.

LD HL, Pi clnane
RST r Mov9ToOP1 OP1 = nane
B _CALL Creat ePi ct if returns then variable
created
Pi clnane: DB PictObj,tVarPict,tPicl,0,0

T1-83 Plus Developer Guide

12-13

Third Release January 25, 2002

System Routines — Memory

CreateProg
Category: Memory
Description: Creates a program variable in RAM.
Inputs:
Registers: HL = size of program to create in bytes
Flags: None
Others: OP1 = name of program to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. See section on
Creating Variables.
Example: Create Program DOG, 50 bytes in size.

LD HL, DOGnane
RST r MovOToOP1 OP1 = nane
LD HL, 50
B _CALL Creat eProg if returns then
; variable created
DOGnane: DB Progoj,' DOG , 0

T1-83 Plus Developer's Guide

12-14

Third Release January 25, 2002

System Routines — Memory

CreateProtProg

Category: Memory

Description: Creates a protected program variable in RAM.

Inputs:

Registers: HL = size of program to create in bytes
Flags: None
Others: OP1 = name of program to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name

Registers OP1 and OP2

destroyed:

Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. Users cannot delete or
edit protected programs, they can be deleted from an application. See section
on Creating Variables.

Example: Create protected Program DOG, 50 bytes in size.

LD HL, DOGnane

RST r Mov9ToOP1 OP1 = nane

LD HL, 50

B _CALL Creat eProt Prog if returns then variable

created

DOGnane: DB Pr ot Prognj, ' DOG , 0

T1-83 Plus Developer Guide

12-15

Third Release January 25, 2002

System Routines — Memory

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. This should not be used to create temp storage space, only A-Z
and theta. No initialization is done, assume random. See section on Creating

CreateReal
Category: Memory
Description: Creates a real variable in RAM.
Inputs:
Registers: None
Flags: None
Others: OP1 = name of real to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks:
Variables.
Example: Create real A.

LD HL, Anane

RST r MovOToOP1

B _CALL Cr eat eRea
Anane: DB Real Obj ,” A", 0,0

nane

if returns then variable

T1-83 Plus Developer's Guide

12-16

Third Release January 25, 2002

System Routines — Memory

CreateRList

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Creates a real list variable in RAM.

HL = number of elements in the list
None

OP1 = name of list to create

HL = pointer to variable's symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the elements is done, assume random. See
section on Creating Variables.

Create real list CAT with 50 elements.

LD HL, CAThane
RST r Mov9ToOP1 ; OPl = nane
LD HL, 50
B _CALL CreateRList ; if returns then variable
created
CATnane: DB Li st Obj,tVarLst,’ CAT',0

TI-83 Plus Developer Guide 12-17 Third Release January 25, 2002

System Routines — Memory

CreateRMat

Category: Memory

Description: Creates a real matrix variable in RAM.

Inputs:

Registers: HL = dimension of matrix, (row,col), 99 is maximum row or column
Flags: None
Others: OP1 = name of matrix to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, dimension
Flags: None
Others: OP4 = variable’s name

Registers OP1 and OP2

destroyed:

Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the elements is done, assume random. See
section on Creating Variables.

Example: Create matrix [A] with 5 rows and 8 columns.

LD HL, Mat Anane
RST r Mov9ToOP1 OP1 = nane
LD HL, 5* 256+8 5x 8
B _CALL Cr eat eRMVat if returns then variable
created
Mat Anane: DB Mat Obj , t Var Mat, t Mat A, 0, 0

T1-83 Plus Developer's Guide

12-18

Third Release January 25, 2002

System Routines — Memory

CreateStrng
Category: Memory
Description: Creates a string variable in RAM.
Inputs:
Registers: HL = number bytes in string
Flags: None
Others: OP1 = name of string to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the string contents is done, assume random.
See section on Creating Variables.
Example: Create string Strl 100 bytes in length.

LD HL, Strlnanme
RST r MovOToOP1 ; OP1 = nane
LD HL, 100 ; size of string
B _CALL CreateStrng ; if returns then variable
; Ccreated
Strlnane: DB StrngObj,tVarStrng,tStr1,0,0

TI-83 Plus Developer Guide 12-19 Third Release January 25, 2002

System Routines — Memory

DataSize

Category: Memory
Description: Computes the size, in bytes, of the data portion of a variable in RAM.
Inputs:

Registers: ACC = data type
HL = pointer to first byte of data storage

Flags: None
Others: None
Outputs:
Registers: DE = size of data storage in bytes
HL = intact
Flags: None
Others: None
Registers A, BC
destroyed:
Remarks: This routine cannot be used on archived variables or applications.
If the variable’s data area has size information, like a list has two-bytes for
number of elements, then those bytes are included in the computation.
Example; ; Find the size in bytes of the data area for list L1.
L1Nane:
DB Li st bj,tVarLst,tL1,0,0
LD HL, L1name
RST rMov9ToOP1I ; OP1 = L1
B CALL Fi ndSym ; find in synmbol table,
; DE = pointer to data
AND 1Fh ; ACC = data type infornation,
; real or conplex list
EX DE, HL ; HL = pointer to data storage
B CALL Dat aSi ze ; DE = size of data storage
: If L1 were areal list with 5

: elements then the size
; returned woul d be 47 bytes.

: 5 elenments *9 for each = 45
: 2 size bytes = 2
; 47

TI-83 Plus Developer’'s Guide 12-20 Third Release January 25, 2002

System Routines — Memory

DataSizeA

Category: Memory

Description: Computes the size, in bytes, of the data portion of a variable that has two size
bytes as part of its data storage.
This routine applies to equations, lists, matrices, programs, AppVars.

Inputs:

Registers: ACC = data type
BC = two byte size information: dimension, number of bytes, number of

elements
Flags: None
Others: None
Outputs:
Registers: DE = size of data storage in bytes
Flags: None
Others: None
Registers All
destroyed:
Remarks: If the variable’s data area has size information, like a list has two bytes for
number of elements, then those bytes are included in the computation.
Example; ; Find the size in bytes of a conplex list with 5 el enents:
LD A, CLi st Obj ; ACC = data type information,
;o cplx list
LD BC, 5 ; nunber el enents
B CALL Dat aSi zeA ; DE = size of data storage
5 elements *18 for each = 90
2 size bytes = 2
92

TI-83 Plus Developer Guide 12-21 Third Release January 25, 2002

System Routines — Memory

DeallocFPS
Category: Memory
Description: Removes space in nine-byte chunks from the Floating Point Stack.
Inputs:

Registers: HL = number of chunks to remove

Flags: None

Others: None
Outputs:

Registers: None

Flags: None

Others: FPS (Floating Point Stack top) decreased by HL 9
Registers DE, HL
destroyed:
Remarks: No values are removed from the deallocated space.
Example:

T1-83 Plus Developer's Guide 12-22

Third Release January 25, 2002

System Routines — Memory

DeallocFPS1
Category: Memory
Description: Removes space in bytes from the Floating Point Stack.
Inputs:
Registers: DE = number of bytes to remove
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: FPS (Floating Point Stack top) decreased by HL
Registers HL
destroyed:
Remarks: No values are removed from the deallocated space.
Example:
TI-83 Plus Developer Guide 12-23 Third Release January 25, 2002

System Routines — Memory

DelMem

Category: Memory

Description: Deletes RAM from an existing variable. This routine will only delete the RAM. If
the variable deleting from has a size field, it is NOT UPDATED. Updating must
be done by the application.

Inputs:

Registers: HL = address of first byte to delete
DE = number of bytes to delete

Flags: None
Others: None
Outputs:

Registers: DE = intact
BC = amount deleted

RAM deleted
Flags: None
Others: None
Registers All
destroyed:
Remarks: See InsertMem routine.

(continued)

TI-83 Plus Developer’'s Guide 12-24 Third Release January 25, 2002

System Routines — Memory

DelMem (continued)

Example:

; DE = pointer to size bytes of AppVar

Cr eat ed:

AppVar Narre:

LD
RST
B_CALL
JR

B_JUWP

PUSH

I NC
I NC

LD

B_CALL

POP
PUSH

B_CALL

XOR

LD

SBC

POP

LD
I NC
LD

DB

HL, AppVar Nanme
r MovOToOP1
ChkFi ndSym
NC, Created

Er r Undefi ned

DE
DE
DE

HL, 10
DE, HL
Del Mem

HL
HL

| dHLi nd

BC, 10
HL, BC

DE, HL
HL

(HL), E
HL
(HL), D

AppVar Obj , ' AVAR , 0

Delete 10 bytes at the beginning of an AppVar.

OP1 = nane of AppVar
| ook up in syniTabl e
junp if it exists

error if not there

save pointer to start of
size bytes of data

nove DE to 1st byte of
AppVar Dat a

nunber bytes to insert
HL = pointer to start of
del et e, DE nunber bytes

del ete the nenory

HL = pointer to size bytes
save

HL = size of AppVar,
nunmber bytes
clear CA

decr by anpunt del eted

pointer to size bytes
| ocation

wite new size

T1-83 Plus Developer Guide

12-25

Third Release January 25, 2002

System Routines — Memory

DelVar

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Deletes a variable stored in RAM.

All of the inputs for this routine are the outputs of FindSym and ChkFindSym.
It is common to call one of these routines and then call DelVar immediately
after.

HL = pointer to start of symbol table entry of variable
DE = pointer to start of data storage of variable
B = 0 if variable resides in RAM else it is the page in the archive it is stored

None

None

None
None
None
All

OP1 — OP6 are preserved.

Variable’s symbol entry and data are deleted.

Graph is marked dirty if variable was used during graphing.
All global memory pointers are adjusted.

Error if the variable resides in the archive.

Delete the variable "A if it exists

LD HL, ANane
RST r Mov9ToOP1 : OP1 = variable a
B CALL Fi ndSym ; ook up
JR C, Deleted ; jump if variable is not
created
B CALL Del Var
Del et ed:
ANane:
DB Real Ovj," A", 0,0

TI-83 Plus Developer’'s Guide 12-26 Third Release January 25, 2002

System Routines — Memory

DelVarArc
Category: Memory
Description: Deletes a variable from RAM or the archive.
Inputs:
Registers: HL = pointer to symbol table entry of variable to delete
DE = pointer to start of data for variable
B = archived status
0 = RAM otherwise the ROM page in Flash for the variable
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: Variable’'s symbol entry and data deleted if in RAM, otherwise the symbol table
entry is only deleted and the variable data is marked for deletion on the next
garbage collection.
Graph is marked dirty if variable was used during graphing.
All global memory pointers are adjusted.
Registers All
destroyed:
Remarks: See DelVar and DelVarNoArc routines.
Example:

T1-83 Plus Developer Guide

12-27

Third Release January 25, 2002

System Routines — Memory

DelVarNoArc
Category: Memory
Description: Deletes variable from RAM.
No archive checking performed.
Inputs:
Registers: HL = pointer to symbol table entry of variable to delete
DE = data pointer to data
Flags: None
Others: None
Outputs:
Registers: None
Flags: Regraph flag set if varGraphRef flag of symbol was set.
Others: None
Registers All
destroyed:
Remarks: See DelVar for more information.
This routine should only be called if you are sure that your variable will never
be archived. Generally, it is better to use the DelVarArc or DelVar routines.
Variable’'s symbol entry and data are deleted.
Graph is marked dirty if variable was used during graphing.
All global memory pointers are adjusted.
Error if the variable resides in the archive.
Example: Delete the variable "A" if it exists:
LD HL, Anane
RST r Mov9ToOP1 OP1 = variable a
B_CALL Fi ndSym ; ook up
JR C, Deleted ; junp if variable is not
created
B_CALL Del Var NoAr ¢
Del et ed:
Anare:
DB Real Obj ," A", 0,0
TI-83 Plus Developer’'s Guide 12-28 Third Release January 25, 2002

System Routines — Memory

EditProg

Category:
Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

This routine will insert all of free RAM into a Program, Equation, or AppVar.
The intent is for the variable to be able to be edited without having to
continuously allocate and deallocate memory. Once the edit is completed, a
call to CloseProg is made to return what is not used back to free RAM.

DE = pointer to start of variables data storage area
None

None

None
None

Each of following are two-bytes:

(iMathPtrl) = pointer to the start of the variables data storage area.
THIS MUST STAY INTACT WHILE THE EDIT IS IN SESSION.
(iMathPtr2) = pointer to the byte following the variable data. This is the next
location the data area can grow into.
(iMathPtr3) = pointer to the byte AFTER the last byte of free RAM inserted.
The data being input cannot be written into this RAM location.
(iMathPtr4) = size of RAM block moved to allow the RAM to be inserted.
DO NOT CHANGE THIS VALUE.
All

The application can must change the pointer value in (iMathPtr2) as the
variables data size grows or shrinks. This value is needed by the close routine.

No memory allocation/deallocation can be done in this state.
Contents of variables may by copied or changed, but not their sizes.
The Floating Point Stack may be copied to/from, but not grown or shrunk.

The hardware stack may change, calls, RET, push, and pop.

TI-83 Plus Developer Guide 12-29 Third Release January 25, 2002

System Routines — Memory

EnoughMem
Category: Memory
Description: Checks if an imputed amount of RAM is available. This routine will also

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

attempt to free RAM that is taken by temporary variables that have been
marked dirty but not yet deleted.

HL = amount of RAM to check for being available
None

None

DE = amount of RAM to check for being available
CA = one (set) if there is insufficient RAM available
None

All

None
No error is generated.
See MemChk.

TI-83 Plus Developer’'s Guide 12-30 Third Release January 25, 2002

System Routines — Memory

Exch9

Category: Memory
Description: Exchanges (swaps) two nine-byte blocks of memory.
Inputs:

Registers: DE = address of start of one nine-byte block
HL = address of start of second nine-byte block

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: Nine bytes originally at DE are now at original HL
Nine bytes originally at HL are now at original DE
Registers A, BC, DE, HL
destroyed:
Remarks: None
Example:

TI-83 Plus Developer Guide 12-31 Third Release January 25, 2002

System Routines — Memory

ExXLp

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:
Example:

Memory

Exchanges blocks of memory of up to 256 bytes.

B = number of bytes; 0 = 256
DE = address of start of one nine-byte block
HL = address of start of second nine-byte block

None

None

None
None

Block originally at DE is now at original HL
Block originally at HL is now at original DE

A, BC, DE, HL

None

T1-83 Plus Developer's Guide 12-32

Third Release January 25, 2002

System Routines — Memory

FindAlphaDn

Category:
Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:

Flags:

Others:

Registers
destroyed:

Memory

This is used to search the symbol table, for all of the variables of a certain
type, alphabetically in descending order.

Each call to this routine returns the variable name preceding the one input in
OP1.

None
None

OP1 = variable name to find the previous before, usually output from the last
call to this routine.

(OP1) must have the type of variable searching for set.

The name input in order to have the very last name for a certain type varies by
the variable’s type:

Real, Complex, Programs, AppVars, Group Vars:

OP1 +1 +2 | +3 | +4 | +5 +6 +7 +8
Object OFEh | ? ? ? ? ? ? ?
Type

All other types:

OP1 +1 +2 +3 | +4 +5 | +6 | +7 | +8
Object variable | OFEh | ? ? ? ? |? ?
Type token

If a previous variable name is found then:
HL = pointer to the symbol table entry of the variable found

CA =0 if a previous variable name was found
= 1 if no previous variable name exists

If a previous variable name is found then:
OP1 and OP3 = the variable name found

Otherwise :
OP1 = variable name input
All

(continued)

TI-83 Plus Developer Guide 12-33 Third Release January 25, 2002

System Routines — Memory

FindAl P haDn (continued)

RAM used: OP2, OP3
upDownPtr — two byte pointer

Remarks: ProgObj, ProtProgObj, and TempProgObj are grouped together.
ListObj and CListObj are grouped together.
NewEquObj and EquObj are grouped together.
See FindAlphaUp, SrchVLstUp, SrchVLstDn.

Example: Find all of the programs that are currently created, search alphabetically in
descending order.

Fi ndPr ogr ans:

B _CALL Zer oOP1

LD A, ProgQbj

LD (OP1), A ; looking for a list

LD A, OFEh ; name = FEh, so the |ast
; program al phabetically is

f ound
LD (OP1+1), A
Fi ndLoop

B _CALL Fi ndAl phabDn ; see if find another program
; hame

RET C ; return if no nore program

names found yet
OP1 = next list nane

JR Fi ndLoop ; find previous using one just
; found as input

TI-83 Plus Developer’'s Guide 12-34 Third Release January 25, 2002

System Routines — Memory

FindAlphaUp

Category:
Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:

Flags:

Others:

Registers
destroyed:

Memory

This is used to search the symbol table, for all of the variables of a certain
type, alphabetically in ascending order.

Each call to this routine returns the next variable name following the one input
in OP1.

None
None

OP1 = variable name to find the next after, usually output from the last call to
this routine.

(OP1) must have the type of variable searching for set.

The name input in order to have the very first name for a certain type varies by
the variable’s type:

Real, Complex, Programs, AppVars, Group Vars:

OP1 +1 +2 | +3 | +4 | +5 +6 +7 +8
Object 00 ? ? ? ? ? ? ?
Type

All other types:

OP1 +1 +2 +3 | +4 +5 | +6 | +7 | +8
Object variable | OFFh | ? ? ? ? |? ?
Type token

If a next variable name is found then:
HL = pointer to the symbol table entry of the variable found

CA = 0 if a next variable name was found
=1 if no next variable name exists

If a next variable name is found then:
OP1 and OP3 = the variable name found

Otherwise:
OP1 = variable name input
All

(continued)

TI-83 Plus Developer Guide 12-35 Third Release January 25, 2002

System Routines — Memory

FindAlphaUp (continued)

RAM used: OP2, OP3

upDownPtr — two byte pointer

Remarks: ProgObj, ProtProgObj and TempProgObj are grouped together.

ListObj and CListObj are grouped together.

NewEquObj and EquObj are grouped together.
See FindAlphaDn, SrchVLstUp, SrchVLstDn.

Example: Find all of the lists that are currently created, search alphabetically in
ascending order.
Fi ndLi st s:
B _CALL Zer oOP1
LD A Li st Qoj
LD (OP1), A | ooking for a list
LD A t Var Lst l'i st designator token
LD (OP1+1), A
LD A, OFFh set name to FFh, so that the
first list al phabetically is
f ound
LD (OP1+1), A
Fi ndLoop
B _CALL Fi ndAl phaUp see if find another |ist name
RET C return if no nore |ist names
not found yet
OP1 = next list nane
JR Fi ndLoop find next using one just found
as i nput
TI-83 Plus Developer’'s Guide 12-36 Third Release January 25, 2002

System Routines — Memory

FindApp

Category: Memory
Description: Searches for an application that may be stored in Flash ROM.
Inputs:

Registers: None

Flags: None
Others: OP1 = name of application to search for
Outputs:
Registers: A = ROM page application starts on if found
Flags: CA = 0 if application exists
CA =1 if application does not exist
Others: None
Registers All
destroyed:
RAM used: appSearchPage (two-bytes)
Remarks:
Example:

TI-83 Plus Developer Guide 12-37 Third Release January 25, 2002

System Routines — Memory

FindAppNumPages

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:
Example:

Memory
Finds the number of 16K pages an application uses in archive memory

A = first page of application
None

None

A = first page of application
C = number of 16K pages the application uses

None
None
BC, DE

If an application was not found on the given page, C will equal 0.

I'N A, (menPageAPort) gets the current menory
page for app. Make sure
this is on the first page
of a nmulti-page
application.

finds the total nunber of
pages the application
uses in archive menory.

; A = nunber of pages

B _CALL Fi ndAppNurrPages

LD A C

For multi-page apps, create a routine that will reside on the first page of the
application that will return the memory page.
i.e., Get_First_Page:

I N A, (nmenPageAPort) get the menory page of
the first application
page.

RET

TI-83 Plus Developer’'s Guide 12-38 Third Release January 25, 2002

System Routines — Memory

FindAppDn

Category: Memory
Description: Searches for the next application in Flash ROM whose name is alphabetically
less than the name in OP1.
Inputs:
Registers: None
Flags: None
Others: OP1 = the name to find an application less than
If searching for all of the application names in descending alphabetical order
then this name is either the previous one found or the initial name used to start
the search.
To initialize the search to find the last application name alphabetically, set
(OP1 + 1) = OFEh.
Outputs:
Registers: None
Flags: CA = 1if no application with a lesser name exists. The previous found is the
first alphabetically.
CA =0 if an application less than OP1 was found.
Others: OP1 = application name found if one exists.
Registers All
destroyed:
RAM used: OP2, OP3, appSearchPage (two-bytes)
Remarks: No information about what ROM page the application resides on is returned.
To get this information a FindApp needs to be done.
Example: A loop that finds all of the application names in descending order.
B _CALL ZerroOP1 initialize OP1 for 1st search
LD A, OFEh
LD OP1+1), A ; set OP1 = nanme > any valid
,nane
| oop:
B _CALL Fi ndAppDn ; look for next |esser
; al phabetically
JR NC, | oop ; junp if found one, go | ook for
next one
RET
TI-83 Plus Developer Guide 12-39 Third Release January 25, 2002

System Routines — Memory

FindAppUp

Category: Memory
Description: Searches for the next application in Flash ROM whose name is alphabetically
greater than the name in OP1.
Inputs:
Registers: None
Flags: None
Others: OP1 = the name to find an application greater than
If searching for all of the application names in ascending alphabetical order
then this name is either the previous one found or the initial name used to start
the search.
To initialize the search set OP1 = all 0's with a system call to ZeroOP1.
Outputs:
Registers: None
Flags: CA = 1if no application with a greater name exists. The previous found is the
last alphabetically.
CA = 0 if an application greater than OP1 was found
Others: OP1 = application name found if one exists
Registers All
destroyed:
RAM used: OP2, OP3, appSearchPage (two-bytes)
Remarks: No information about what ROM page the application resides on is returned.
To get this information a FindApp needs to be done.
Example: A loop that finds all of the application names in ascending order.
B _CALL ZerroOP1 initialize OP1 for 1st search
| oop:
B _CALL Fi ndAppUp | ook for next higher
; al phabetically
JR NC, | oop ; junp if found one, go | ook for
next one
RET
TI-83 Plus Developer’'s Guide 12-40 Third Release January 25, 2002

System Routines — Memory

FindSym

Category:
Description:

Inputs:
Registers:

Flags:

Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:

Remarks:

Memory
Searches the symbol table structure for a variable.

This search routine is used to find variables that are not programs, AppVar, or
Groups. See ChkFindSym.

This is used to determine if a variable is created and also to return pointers to
both its symbol table entry and data storage area.

This will also indicate whether or not the variable is located in RAM or has
been archived in Flash ROM.

(OP1 + 1) to (OP1 + 6) = variable name
See documentation on variable naming conventions.

None

None

CA flag = 1 if symbol was not found
= 0 if symbol was found

If symbol is found, additional outputs are:

ACC lower 5 bits = data type

ACC upper 3 bits system flags about variable. Mask via “AND” with a
value of 1Fh to obtain data type only.

B = Oifvariable is located in RAM else variable is archived

B = ROM page located on
If variable is archived then its data cannot be accessed directly, it
must be unarchived first.

HL = pointer to the start of the variables symbol table entry

DE = pointer to the start of the variables data area if in RAM

None

OP1 = variable name
All

This will not find system variables that are preallocated in system RAM such
as Xmin, Xmax etc. Use RclSysTok to retrieve their values.

This will not find applications.

(continued)

TI-83 Plus Developer Guide 12-41 Third Release January 25, 2002

System Routines — Memory

Fi ndSym (continued)

Example: ; Look for

; If it does not exist create it as a real

Rel ook:

Var Cr eat ed:

DONE:

Llnane:

List L1 in the synbol table.
; If it exists and is archived then unarchive it and relook it up.

LD
B_CALL
B_CALL
JR

LD
B_CALL
PUSH
PUSH
B_CALL
POP
POP

JR

LD
JR
B_CALL
JR

RET

HL, L1nane
Mov9ToOP1

Fi ndSym

NC, Var Created

HL, 10

Cr eat eRLi st
HL

DE
OP4ToOP1
DE

HL

Done

list of 10 el ements.

OP1 = variabl e nane
| ook up
junp if it exists

size to create at data

save during nove
OP1 = nane
restore

check for archived
in RAM ?
yes

unar chive if enough RAM
| ook up pointers again in
RAM now

Li stQoj,tVarlLst,tL1,0

T1-83 Plus Developer's Guide

12-42

Third Release January 25, 2002

System Routines — Memory

FixTempCnt

Category: Memory

Description: Resets pTempCnt back to a input value, and delete all temps with name
counters greater than or equal to that value.

Inputs:
Registers: DE = value to pTempCnt to

Flags: None
Others: None
Outputs:

Registers: None
Flags: None
Others: (pTempCnt) = DE

All temps created with pTempCnt >= input DE are deleted. For example, if
input DE = 5 then temps with counter value 5 or greater $0500 will be deleted.

$0600...

Registers All

destroyed:

RAM used: pTempCnt

Remarks: See the Temporary Variables section in Chapter 2. Also, see the CleanAll
routine.

Example:

TI-83 Plus Developer Guide 12-43 Third Release January 25, 2002

System Routines — Memory

page if the offset = 8000h. A will be incremented to the next page, and HL will

FlashToRam
Category: Memory
Description: Copies bytes from Flash to RAM.
Inputs:
Registers: A = page of source (Flash)
HL = offset of source (Flash)
DE = RAM location of destination
BC = number of bytes to copy
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks: Certain pages in Flash cannot be copied. This routine will wrap to the next
be reset to 4000h, and the copying will go on.
Example:

T1-83 Plus Developer's Guide 12-44

Third Release January 25, 2002

System Routines — Memory

InsertMem
Category: Memory
Description: Inserts RAM into an existing variable.

Inputs:
Registers:

Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

This routine will only insert the RAM — it stays uninitialized and if the variable
inserting into has a size field, it is NOT UPDATED. Updating must be done by
the application.

A check for enough free RAM must be done by the application. This routine
assumes the RAM is available.

HL = number of bytes of RAM to insert, no check is made for enough free
RAM.

DE = point of insertion address — this cannot be the first byte of the variable’s
data — if it is, its symbol table entry will not have the correct pointer to
the data.

None

None

DE = intact, the point of insertion address
None

RAM inserted into variable.

All

See DelMem.
(continued)

TI-83 Plus Developer Guide 12-45 Third Release January 25, 2002

System Routines — Memory

InsertMem (continued)

Example:

LD
B_CALL

LD
RST
B_CALL
JR

B_JUWP

HL, 10
Er r Not EnoughMem

HL, AppVar Nanme
r Mov9ToOP1
ChkFi ndSym
NC, Created

Er r Undefi ned

; DE = pointer to size bytes of AppVar

Cr eat ed:

AppVar Narre:

PUSH
I NC
I NC

LD
B_CALL

POP
PUSH

B_CALL

LD
ADD

POP

LD
I NC
LD

DB

DE

DE
DE

HL, 10
| nsert Mem

HL
HL

LdHLI nd
BC, 10
HL, BC

DE, HL
HL

(HL), E
HL
(HL), D

AppVar Obj , ' AVAR , 0

junp if

Insert 10 bytes at the beginning of an Application Variable.

nunmber bytes to insert
error if 10 bytes are not
free

OP1 = nane of AppVar
| ook up in synfTabl e
it exists

error if not there

save pointer to start of
size bytes of data
nove DE past size bytes

nunmber bytes to insert
insert the nmenory

HL = pointer to size bytes
save

HL = size of AppVar,
nunmber bytes

i ncrease by 10, anount

i nserted

pointer to size bytes
| ocation

wite new size

T1-83 Plus Developer's Guide

12-46

Third Release January 25, 2002

System Routines — Memory

LdHLInd

Category: Memory
Description: Loads register pair HL with the contents of memory pointed to by (HL).
Inputs:
Registers: HL = address.
Flags: None
Others: None
Outputs:
Registers: H = (HL+1)
L = (HL)
Flags: None
Others: None
Registers A, HL
destroyed:
Remarks:
Example: Same as:
LdHLI nd:
LD A (H)
| NC HL
LD H, (HL)
LD L, A
RET

TI-83 Plus Developer Guide 12-47 Third Release January 25, 2002

System Routines — Memory

LoadClindPaged

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Reads a byte of data from any ROM page. Main use is for applications to read

data from variables that are archived, without having to unarchive them to
RAM first.

B = ROM page to read byte from
HL = address of byte on the ROM page,
(4000h—7FFFh)

None

None

C = byte of data from input ROM page and Offset
None

None

C

B, HL are not changed. See the LoadDEIndPaged routine. Also, see the
Accessing Archived Variables Without Unarchiving section in Chapter 2.

Read the byte of data from ROM page 0Ch, address 4006h.

LD B, Och ROM page
LD HL, 4006h ; of fset
B _CALL LoadCl ndPaged ; C = byte

RET

T1-83 Plus Developer's Guide

12-48

Third Release January 25, 2002

System Routines — Memory

LoadDEIndPaged

Category: Memory

Description: Read two consecutive bytes of data from any ROM page. The main use of this
routine is for applications to read data from variables that are archived, without
having to unarchive them to RAM first.

Inputs:

Registers: B = ROM page of first of two bytes to read
HL = address of byte on the ROM page,

(4000h—7FFFh)
Flags: None
Others: None
Outputs:

Registers: E = first byte read
D = second byte read

Flags: None

Others: None

Registers DE, C

destroyed:

Remarks: B, HL are set to the address of the second byte read. If the second byte of
data is not on the same ROM page as the first, the switch to the next ROM
page is handled. See the LoadCIndPaged routine. Also, see the Accessing
Archived Variables Without Unarchiving section in Chapter 2.

Example: Read two bytes of data from ROM page 0Ch, address 4006h.

LD B, Och ; ROM page
LD HL, 4006h . of fset
B _CALL LoadDEI ndPaged ; D= byte @(4007h),
, E = byte @4006h)
RET
TI-83 Plus Developer Guide 12-49 Third Release January 25, 2002

System Routines — Memory

MemChk

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Returns the amount of RAM currently available.

None
None

None

HL = amount of RAM available, in bytes

None
None
BC, HL

If a system editor is open, this will always return 0 bytes available. System

edits use all of free RAM during the edit.

The amount returned may be inaccurate if there are any temporary variables
that are marked as dirty but not yet deleted. There are two ways/options to

solve this:

- The routine CleanAll can be used to remove all temporary
variables. This is fine as long as an application is not using
temporary variables. Temporary variables are returned by the
parser if the result is not RealObj or CpIxObj, make sure that

none are still in use.

- Use the routine EnoughMem instead, it will delete only temps

that are marked dirty.

Delete all temporary variables and then check if there is at least 100 bytes

available.
B _CALL Cl eanAl |
B _CALL MenChk
LD DE, 100
OR A
SBC HL, DE
JR C, Not _100

delete all tenporary

; vari abl es

HL = anount of nemfree

i CA=0

if CA=1then less than 100
bytes are avail abl e

; junp if < 100

T1-83 Plus Developer's Guide 12-50

Third Release January 25, 2002

System Routines — Memory

PagedGet

Category: Memory
Description: Used for reading data from the archive with the Caching technique. This
routine will return the next byte and also refill the cache when it is emptied.
A call to the SetupPagedPtr routine must be done once before using this
routine to retrieve data from the archive.
Inputs:
Registers: None
Flags: None
Others: These are initially set by the SetupPagedPtr routine and are updated each
time a call is made to the PagedGet routine. Applications do not need to
modify these RAM locations.
(pagedPN) = current Flash page.
(pagedGetPtr) = current Flash address.
Outputs:
Registers: ACC = byte read
Flags: None
Others: None
Registers ACC
destroyed:
Remarks: Crossing ROM page boundaries is handled. See the SetupPagedPtr,
LoadCIndPaged, and LoadDEIndPaged routines. Also, see the Accessing
Archived Variables Without Unarchiving section in Chapter 2.
Example: LD B, PageToGet
LD DE, Addr essToCet
B _CALL Set upPagedPt r ; setup paged get
B _CALL PagedCet ; ACC = byte from archive
LD E A E = byte
B_CALL PagedGet
LD D, A ; DE = 2 bytes read from
; archive
TI-83 Plus Developer Guide 12-51 Third Release January 25, 2002

System Routines — Memory

RclGDB2

Category:
Description:
Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Recalls graph database.

A =tVarGDB

None

OP1 = data base name

(chkDelPtrl) contains data pointer

None
None

None

Acts exactly as the user controlled RcIGDB command: Restores graph mode
stored in the GDB and replaces all equation variables with those stored in the
GDB and all range values with those stored in the GDB.

B_CALL
LD

LD

LD

LDI R
B_CALL
RET
B_CALL

GDB2Nane:
DB

Zer oOP1

HL, GDB2Nane
DE, OP1

BC, 03

Fi ndSym
C
Recl GDB2

Restore GDB2 if it exists:
zero out OP1
name -> OPl

; find & point to synbol.

abort if does not exist.
restore graph data base.

GDBObj , t Var GDB, t GDB2 (008h, 061h, 001h)

T1-83 Plus Developer's Guide

12-52

Third Release January 25, 2002

System Routines — Memory

RcIN

Category: Memory
Description: Recalls the contents of variable N if it exists.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: System error if N does not exist.

OP1 = contents of N if RealObj
OP1/0OP2 = contents of N if CpIxObj

Registers All
destroyed:

RAM used: OP1 - OP2
Remarks:

Example:

TI-83 Plus Developer Guide 12-53 Third Release January 25, 2002

System Routines — Memory

RclVarSym
Category: Memory
Description: Recalls the contents of variable A — Z or THETA.
Inputs:
Registers: None
Flags: None
Others: OP1 = name of variable to recall
Outputs:
Registers: None
Flags: None
Others: System error if variable does not exist.
If a variable other than A — Z or THETA, then nothing is done.
OP1 = contents of variable if RealObj
OP1/0OP2 = contents of variable if CplxObj
Registers All
destroyed:
RAM used: OP1 - OP2
Remarks:
Example:

TI-83 Plus Developer’'s Guide 12-54 Third Release January 25, 2002

System Routines — Memory

RclX

Category: Memory
Description: Recalls the contents of variable X if it exists.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: System error if X does not exist.

OP1 = contents of X if RealObj
OP1/0P2 = contents of X if CplxObj

Registers All
destroyed:

RAM used: OP1 - OP2
Remarks:

Example:

TI-83 Plus Developer Guide 12-55 Third Release January 25, 2002

System Routines — Memory

RclY

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:
Example:

Memory

Recalls the contents of variable Y if it exists.

None
None

None

None
None
System error if Y does not exist.

OP1 = contents of Y if RealObj
OP1/0OP2 = contents of Y if CplxObj

All

OP1 -0P2

T1-83 Plus Developer's Guide 12-56

Third Release January 25, 2002

System Routines — Memory

The space is allocated/deallocated. The pointers are adjusted accordingly. All
the new elements are set to 0. The old values of the elements that are not

zero out OP1

| oad matrix nane into OP1
find matrix vari abl e name
if not found, skip over work
see if archived

skip if variable archived

redi nensionalize matrix to 5x5

RedimMat
Category: Memory
Description: Redimensions an existing matrix.
Inputs:
Registers: HL = new dimension of matrix wanted
Flags: None
Others: OP1 = name of matrix
Outputs:
Registers: None
Flags: None
Others: None
Registers All, iMathPtrl, insDelPtr
destroyed:
RAM used: OP1, OP3
Remarks: If not enough room, then a memory error will occur.
removed are kept. A Matrix cannot be madified if it is archived.
Example: B_CALL Zer oOP1 ;
LD HL, Matri xA
LD DE, OP1
LD BC, 3
LD R ;
B _CALL ChkFi ndSym ;
JR C, skip ;
LD A B ;
R A ;
JR NZ, skip ;
LD HL, 0505h
B_CALL Redi mvat ’
ski p:
RET
Mat ri xA: DB Mat Qbj , t Var Mat ,

Mat A

T1-83 Plus Developer Guide

12-57

Third Release January 25, 2002

System Routines — Memory

SetupPagedPtr

Category:
Description:

Inputs:
Registers:

Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Initializes the process of reading data from the archive using the caching
method.

The PagedGet routine is used to read data from the archive after this
initialization routine is called.

Start address of the first byte of data to be read

B = ROM page of the first byte

DE = address of first byte, on the ROM page
(4000h—7FFFh)

None

None

None
None

These outputs are inputs to the PagedGet routine. An application should not
change these values directly.

pagedCount = 0 on first call
pagedPN = current Flash page
pagedGetPtr = current Flash address

None

See the PagedGet routine. Also, see the Accessing Archived Variables
Without Unarchiving section in Chapter 2.

LD B, PageToCet

LD DE, Addr essToGet

B _CALL Set upPagedPt r ; setup paged get

B _CALL PagedCet ; ACC = byte from archive
LD E A ; E = byte

B _CALL PagedGet

LD D, A ; DE = 2 bytes read from

; archive

TI-83 Plus Developer’'s Guide 12-58 Third Release January 25, 2002

System Routines — Memory

SrchVLstDn, SrchVLstUp

Description: Searches the /O var list in the backward/forward direction, next lower
alphabetically, and by type in the following order:
PROGRAM,ProtPtrg 05h,06h

DATABASE 08h
PICTURE 07h
LIST,Clist 01h,0Dh
MATRIX 02h
YVARS 03h
AppVars 15h
Group 17h
WINDOW 0Bh
ZSTO 0Ch
TABLE RANGE 0Dh
REAL 00h
Cplx 0Ch
String 04h
Apps 14h

Inputs:

Registers: op1 = |ast name and type found in variable format

Flags: inGroup, (IY + groupFlags) should be reset
inDelete, (1Y + ioDelFlag) should be reset
Others: (varClass) should be set to 9 to search through the entire list.
Outputs:

Registers: HL = pointer to symbol table entry if found

Flags: CA =0 if found
CA = 1if did not find anything
Others: OP1 = var format of next variable if found
Registers All registers
destroyed:
Remarks: This calls FindAlphaUp/FindAlphaDn to find variables within each variable
type.
Example:

TI-83 Plus Developer Guide 12-59 Third Release January 25, 2002

System Routines — Memory

StMatEl

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:
Example:

Memory

Stores an element to a matrix. Convert matrix or element to complex if

necessary.

BC = column number
DE = row number

None

OP1 = existing matrix variable name
FPST = value to store (real or complex)

None

graphDraw set if graph reference flag was on.

OP1 = value originally on FP stack
FPST was popped, value no longer on FPST
Value was stored to the matrix

All

T1-83 Plus Developer's Guide 12-60

Third Release January 25, 2002

System Routines — Memory

StoAns

Category:
Description:
Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Stores OP1 to Ans variable.

None
None

OP1[,0P2] = value if real [complex]
Otherwise OP1 = name of variable that contains the data to store into Ans

None
None

Data stored if possible
OP1[,0P2] = original contents if real[complex]
else OP1 = Ans variable name

FPS, OP1, OP2, OP4

If input was a parser temporary ($P) variable, it is marked dirty (to be deleted
by memory management).

A memory error occurs if there is not enough room to store the value.

Ans is the same system variable that is found by pressing [2nd] [Ans] on the
calculator keyboard.

Use RclAns to recall the contents of Ans.

T1-83 Plus Developer Guide

12-61

Third Release January 25, 2002

System Routines — Memory

StoGDB2

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Memory

Stores the current graph mode settings and equations into a system graph

database variable.

None
None

OP1 = graph database name to store to

None

None

GDB created or modified
All

(ioData) buffer used to store name temporarily.

This creates the graph database if it did not exist already. If it did exist, it is

resized to fit the size of the variables to be stored.

T1-83 Plus Developer's Guide 12-62

Third Release January 25, 2002

System Routines — Memory

StoN

Category: Memory
Description: Stores OP1 to sequence variable n.
Inputs:

Registers: None

Flags: None
Others: OP1 = a real number, positive integer
Outputs:

Registers: None
Flags: None

Others: Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

Registers All

destroyed:

RAM used: OP1, OP2, OP4

Remarks: This does not store to variable N.

This will store to the system variable n used in Sequence graphing.
To recall, see RcIN.

Example:

TI-83 Plus Developer Guide 12-63 Third Release January 25, 2002

System Routines — Memory

StoOther

Category:
Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:

Others:

Registers
destroyed:

Memory

General purpose routine that stores data to user created variables that are not
of type ProgObj, GDBODbj, GroupObj, AppObj or PictOb;.

Also, this routine should not be used to store to system variables such as
Xmin.

None
None

OP1 = name and type of variable to store to.
(OP1) = data type, followed by the name.
FPST = data to store if not storing to CpIxObj
FPS1/FPST = data to store if storing to CpIxObj

If the variable storing to is RealObj or CplxObj, then the data storing CANNOT
be another variable. The FPS must contain the literal data stored.

If the variable storing to is not RealObj or CpIxObj, then the data storing MUST
be another variable. This variable can either be user created or a temporary
variable returned by the parser after executing an expression.

If the variable storing to is already created, then it must reside in RAM and not
the archive.

None

Both the graph and the table can be marked dirty if the variable stored to was
used in a graph equation.

Error if the data is not the correct type to be stored to the variable — for
example, store list data to a matrix.

Error if the variable storing to is archived.

Error if not enough memory.

If no errors:

If the variable storing to was not created on input, this routine will create it.
Data stored to the variable.

OP1/0OP2 = data that was stored.

The data is removed from the FPS.

All

TI-83 Plus Developer’'s Guide 12-64 Third Release January 25, 2002

System Routines — Memory

StoOther (continued)

Remarks: See the StoSysTok routine. See Chapter 2 for Error Handlers and Floating
Point Stack.
Example: Store list L1 to list L3.
LD HL, L1name
B _CALL Mov9ToOP1 ; OP1 = L1 nane
B _CALL PushReal OL ; FPST = L1 nane
LD A tL3 ; token for L3
LD (OP1+2), A ; change OP1 to L3 name
B _CALL St oQt her ; store L1 -> L3
RET
Llnane:
DB Li stpj,tVarLst,tL1,0

TI-83 Plus Developer Guide 12-65 Third Release January 25, 2002

System Routines — Memory

StoR

Category: Memory
Description: Stores OP1[,0OP2] -> user variable R.
Inputs:

Registers: None

Flags: None

Others: OP1 = real value to store
or
OP1/0OP2 = complex value to store

Outputs:
Registers: None
Flags: None

Others: Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

Registers All
destroyed:
RAM used: OP1, OP2, OP4
Remarks: Note that there is not a RcIR routine, but one can be made by:
B _CALL RNane ; set OP1 to R nane
B _CALL Rel Var Sym ; do recall
Example: ; This sets Rto 1:
B _CALL OP1Set 1
B _CALL St oR S INTR=1
RET

TI-83 Plus Developer’'s Guide 12-66 Third Release January 25, 2002

System Routines — Memory

StoSysTok

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:
Example:

Memory

Stores a value in OP1 to system variable specified by token number in the

accumulator.

A = system variable token number
OP1 = real number to save

None

None

OP1 = contents of system variable
None

None

Store -3 into Xmn

register OP1 = floating point 3
negate FP nunber in OP1,

oP1 = -3

ACC = Xmin vari abl e token val ue
store OP1 to Xmn,

T1-83 Plus Developer Guide

B CALL OP1Set 3

B _CALL I nvOP1S

LD A, XM Nt

B _CALL St oSysTok
12-67

Third Release January 25, 2002

System Routines — Memory

StoT

Category: Memory
Description: Stores OP1[,OP2] to user variable T.
Inputs:

Registers: None

Flags: None

Others: OP1 = real value to store
or
OP1/0OP2 = complex value to store

Outputs:
Registers: None
Flags: None

Others: Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

Registers All
destroyed:
RAM used: OP1, OP2, OP4
Remarks: Note that there is not a RclT routine, but one can be made by:
B _CALL TNane ; set OP1 to T nane
B _CALL Rel Var Sym ; do recall
Example:
; This sets T to 0. :B CALL
; OP1Set O
B _CALL StoT S INTT=0

RET

TI-83 Plus Developer’'s Guide 12-68 Third Release January 25, 2002

System Routines — Memory

StoTheta
Category: Memory
Description: Stores OP1[,0OP2] to user variable Theta.
Inputs:
Registers: None
Flags: None
Others: OP1 = real value to store
or
OP1/0OP2 = complex value to store
Outputs:
Registers: None
Flags: None
Others: Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer
Registers All
destroyed:
RAM used: OP1, OP2, OP4
Remarks: Note that there is not a RclTheta routine, but one can be made by:
B _CALL Thet aName ; set OP1l to Theta name
B _CALL Rel Var Sym ; do recall
Example: ;
; This sets Theta to 2...
B_CALL OP1Set 2
B _CALL StoThet a INIT Theta = 2
RET
TI-83 Plus Developer Guide 12-69 Third Release January 25, 2002

System Routines — Memory

StoX

Category: Memory
Description: Stores OP1[,OP2] to user variable X.
Inputs:

Registers: None

Flags: None

Others: OP1 = real value to store
or
OP1/0OP2 = complex value to store

Outputs:
Registers: None
Flags: None

Others: Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

Registers All

destroyed:

RAM used: OP1, OP2, OP4

Remarks: See RclX to recall contents of X.

Example:
B _CALL OP1Set 2
B _CALL St oX
RET

; This sets Xto 2:

INNT X = 2

T1-83 Plus Developer's Guide 12-70

Third Release January 25, 2002

System Routines — Memory

StoY

Category: Memory
Description: Stores OP1[,OP2] to user variable Y.
Inputs:

Registers: None

Flags: None

Others: OP1 = real value to store
or
OP1/0OP2 = complex value to store

Outputs:
Registers: None
Flags: None

Others: Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

Registers All
destroyed:
RAM used: OP1, OP2, OP4
Remarks: See RclY to recall contents of Y.
Example:
; This sets Y to 2:
B _CALL OP1Set 2
B _CALL St oY S INTY = 2
RET

TI-83 Plus Developer Guide 12-71 Third Release January 25, 2002

System Routines — Parser

13 System Routines —
Parser

BINOPEXEC ...neiiiiii ettt et e e e e e e e et e e e e et e e e e et e eeeeat e e eeabaaaee 13-1
FIVEEXEC ...ttt ettt e e e e e e e et e e e e e e e e e et e e e e e e eearraaas 13-3
0 1 = o 13-5
= 1S T o PP 13-7
RCISYSTOK ... 13-9
TRIEEEXEC ... e 13-10
L L@] = =T o 13-12

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines — Parser

BinOPExec
Category: Parser
Description: Executes functions that have two arguments as inputs.
Inputs:

Registers: ACC = function to execute (see table below)

Flags: None

Others: OP1 = second argument

FPST = first argument (Floating Point Stack Top), see example

Outputs:

Registers: None

Flags: None

Others: OP1 = result
Registers All
destroyed:
Remarks: Checks for valid argument types are done.

The values pushed onto the FPS are removed.
This entry point should only be used if direct access to a particular function is
not available.

It can also be used in cases of mixed argument types. Like the example below
where a real is added to a list.
Valid arguments can be obtained from the T1-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide

13-1

Third Release January 25, 2002

System Routines — Parser

BinOPExec (continued)

Example: .5 + L1

Linane:

LD
RST
B_CALL

LD
RST

B_CALL

8

HL, Poi nt5
r Mov9ToOP1
PushOP1

HL, L1nane
r Mov9ToOP1

A, OPAdd
Bi nOPExec

;o OP1 =

.5

;. OP1 -> FPST, or
; conpl ex nunber

;o OP1 =

L1 name

OPL/OP2 is

: function is addition

;o OP1 =

result of

RLi stobj,tVarlLst,tL1,0,0

Bi nOPExec equates and functions

Equat e

OPBal

OPBi nCdf
OPFi nNom
OPRandNr m
OPPrn
OPNor mal Pdf
OPPoi Pdf
OPGe OPdf
OPAdd

OPDi v
OPEq
OPAug
OPLcm

t Medi an
OPANd
OPNcr

OPLe
OPRand1
OPRt OPr
OPPt oRy

Functi on Equat e Functi on Equat e
bal (OPSum sunq OPPr od

bi nontdf (OPBi nPdf bi nompdf (OPlrr
>Nom(OPFi nEf f SEf f OPFi nDbd
r andNor n(OPst Dev st dDev(OPVari ance
T Prn(CPIntr T1nt(OPRandBi n
normal pdf (OPI Nornal i nvNor m(OPNor mal
poi ssonpdf (OPPoi Cdf poi ssoncdf (OPGeoCdf
geonet pdf (OPChi Pdf xypdf (OPTpdf

+ OPSub - oPwul t

/ OPPower A OPXr oot

= OPRound2 round(OPConst
augnent (OPMax max (OPM n

I em(OoPCGcd ged(t Eval F
medi an(t Mean mean(OPRandl nt
and oPOr or OPXor

nCr OPNpr nPr OPLt

<= oPE > OPGe
randM OPl nstr inString(OPPxt st
R>Pr (OPRt OPo R>PO(OPPt or x
P>RY(

.5 + L1

Functi on

prod(

irr(

dbd(

vari ance(
randBi n(
nor mal cdf (
geonet cdf (

t pdf (

xQy

Fill(

m n(

u(beg, end
randl nt (
xor

<

>=
Pxl - Test (
P>Rx (

Note: For tEvalF there are really three inputs but execution still goes through the entry
point for two arguments. The Equation name needs to be pushed onto the FPS first,
then the second argument and the third in OP1. This is only valid in Sequential graph
mode.

The second argument is the start value.
The third argument is the end value.

A list of results is returned.

TI-83 Plus Developer Guide

13-2

Third Release January 25, 2002

System Routines — Parser

FiveExec

Category: Parser
Description: Executes functions that have five arguments as input.
Inputs:

Registers: ACC = function to execute (see table below)

Flags: None

Others: OP1 = fifth argument
FPST = fourth argument (pushed onto FPS fourth)
FPS1 = third argument (pushed onto FPS third)
FPS2 = second argument (pushed onto FPS second)
FPS3 = first argument (pushed onto FPS first)

Outputs:
Registers: None
Flags: None
Others: OP1 = result
Registers All
destroyed:
Remarks: Checks for valid argument types are done.

The values pushed onto the FPS are removed.

This entry point should only be used if direct access to a particular function is
not available.
Valid arguments can be gotten from the T1-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide 13-3 Third Release January 25, 2002

System Routines — Parser

FiveExec (continued)

Example: ; fin(Yl, X 2, 4, .5);
LD HL, Ylnane
RST r Mov9ToOP1 ; OP1 = Y1 nane
B CALL PushOP1 : save to FPST;
B CALL XNane ; OP1 = X var nane
B CALL PushOP1 ; push onto FPST, Y1 -> FPSI;
B CALL OP1Set 2 ;o OP1 =2
B CALL PushOP1 ; push onto FPST, Y1 -> FPS2,
;. X -> FPSI;
B CALL OP1Set 4 ;. OP1 = 4
B CALL PushOP1 ;. ->FPST, Y1->FPS3, X->FPS2,
;. 2->FPS1, 4->FPST;
LD HL, poi nt 5
RST r Mov9ToOP1 ; OP1 = .5
LD A OPFmin 1 ; function is fMn(
B CALL Fi veExec : OP1 = result
Y1Nane: DB Equnj , t VarEqu,tY1,0,0
Poi nt 5: DB 0, 80h, 50h, 0,0,0,0,0,0
Fi veExec equates and functions
Equat e Functi on Equat e Functi on Equat e Functi on
OPSeq seq(OPQuad fnlnt(OPFmi n fmn(
OPFmax f Max(
TI-83 Plus Developer Guide 13-4 Third Release January 25, 2002

System Routines — Parser

FourkExec

Category: Parser
Description: Executes functions that have four arguments as input.
Inputs:

Registers: ACC = function to execute (see table below)

Flags: None

Others: OP1 = fourth argument
FPST = third argument (pushed onto FPS third)
FPS1 = second argument (pushed onto FPS second)
FPS2 = first argument (pushed onto FPS first)

Outputs:
Registers: None
Flags: None
Others: OP1 = result
Registers All
destroyed:
Remarks: Checks for valid argument types are done.

The values pushed onto the FPS are removed.

This entry point should only be used if direct access to a particular function is
not available.
Valid arguments can be obtained from the T1-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide 13-5 Third Release January 25, 2002

System Routines — Parser

FourExec (continued)

Example: ; nDeriv(Yl, X 2, .5);
LD HL, Y1Nane
RST r Mov9ToOP1 ; OP1 = Y1 nane
B CALL PushOP1 : save to FPST;
B CALL XNane ; OP1 = X var nane
B CALL PushOP1 ; push onto FPST, Y1 -> FPSI;
B CALL OP1Set 2 ;o OP1 =2
B CALL PushOP1 ; push onto FPST, Y1 -> FPS2,
;. X -> FPSI;
LD HL, poi nt 5
RST r Mov9ToOP1 ; OP1 = .5
LD A, OPDeri v81 : function is nDeriv
B CALL Four Exec : OP1 = result
Y1Nane: DB Equnj , t VarEqu,tY1,0,0
Poi nt 5: DB 0, 80h, 50h, 0,0,0,0,0,0
Four Exec equates and functions
Equat e Functi on Equat e Function Equat e Functi on
OPNpv npv(OPNor mal nornal cdf (OPM t Radd *r ow(
OPSeq seq(OPQuad fnlnt(OPDer i v81 nDeri v(
OPSol ve sol ve(OPFmi n fM n(OPFmax f Max(
OPDf Fcdf (
TI-83 Plus Developer Guide 13-6 Third Release January 25, 2002

System Routines — Parser

Parselnp

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Parser

Executes an equation or program stored in a variable.

None
None

OP1 = name of equation or program to execute

None

None

If executed an equation, then OP1 and Ans contain the result.
If executed a program, then no result is returned.

Errors will be generated during parsing — to avoid them from being displayed,
install an error handler before parsing.

All

See the Parsing Function, Temporary Variables section in Chapter 2 for further
information.

(continued)

TI-83 Plus Developer Guide 13-7 Third Release January 25, 2002

System Routines — Parser

Parseln P (continued)

Example:

Parse the graph equation y1 and store the answer in Y. Install an error handler
around the parsing and the storing to catch any errors.
RET CA=0if OK, else RET CA = 1.

LD
RST

HL, y1Nanme
r Mov9ToOP1 ;

; if an error while parsing go to this I|abel

AppOnErr

B _CALL
: returns if no error

B_CALL
JR

AppOF f Err

OP1 = y1 nanme

Er r or Han : error handler installed,
; (macro)

Par sel np ; execute the equation

CkOP1Real ; check if Real Obj

Z,storit ; jump if it is real

: renove the error handl er

; come here if any error was detected

; error handl er

Er r or Han:
B CALL

SCF
RET

storit:
B _CALL
AppOF fErr

B_CALL

RET

y1Nane:

is renmpved when the error

occurred

clean any tenp vars created by

; CA=1 signals failure

store to Y, RET if no error,

: renove error handl er

Equnj , t VarEqu,tY1,0,0

clean any tenp vars created by

Cl eanAl | :
; parser
StoY ;
: else ErrorHan
Cl eanAl | ;
; parser
A ;

CA =0 for no error

TI-83 Plus Developer Guide

13-8

Third Release January 25, 2002

System Routines — Parser

RclISysTok
Category: Parser
Description: Recalls a value in system variable specified by token number in the
accumulator to OP1.
Inputs:
Registers: A = system variable token number
Flags: None
Others: None
Outputs:
Registers: OP1 = contents of system variable
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: LD A, XM Nt
B CALL Rcl SysTok ; OP1L = contents of Xmn

TI-83 Plus Developer Guide 13-9 Third Release January 25, 2002

System Routines — Parser

ThreeExec
Category: Parser
Description: Executes functions that have three arguments as input.
Inputs:
Registers: ACC = function to execute (see table below)
Flags: None
Others: OP1 = third argument
FPST = second argument (pushed onto FPS second)
FPS1 = first argument (pushed onto FPS first)
Outputs:
Registers: None
Flags: None
Others: OP1 = result
Registers All
destroyed:
Remarks: Checks for valid argument types are done.

The values pushed onto the FPS are removed.

This entry point should only be used if direct access to a particular function is

not available.

Valid arguments can be obtained from the T1-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide 13-10

Third Release January 25, 2002

System Routines — Parser

ThreeExec (continued)

Example:

LD
RST

B_CALL
B_CALL
B_CALL

B_CALL
LD
B_CALL

Mat ANane: DB

HL, Mat ANane

r Mov9ToOP1 ;
PushOP1 :
OP1Set 1 ;
PushOP1 :

OP1Set 2 :
A, OPRAdd ;
Thr eeExec :

row +([A], 1, 2)

OP1 = [A] nane
save to FPST;

oP1 =1

push onto FPST, mat
noves to FPS1;

name

OoPl = 2;

function is row +

OP1 = result, a tenp Matrix
vari abl e

Mat Qoj , t Var Mat, t Mat A, 0, 0O

Thr eeExec equates and functions

Equat e Functi on Equat e Functi on Equat e Functi on
OPPrn T Prn(CPIntr T1nt(OPBi npdf bi nompdf (
OPBi ncdf bi nontdf (CPlrr irr(OPNpv npv(
OPSum sunq OPPr od pr od(OPNor mal Pdf nor mal pdf (
OPRandNrm randNor m(OPRandBin randBi n(OPRandl nt r andl nt (
OPI Nor nal i nvNor n{ OPl nstr inString(COPNor nmal nor mal cdf (
OPDt t cdf (OPFpdf Fpdf (Opchi x2cdf (
OPSubstr sub(OPDeriv81 nDeriv(tEval F Eval (
OPRadd r ow+(OPRswap r owSwap(OPRni t r ow* (

OPM t Radd *r ow+(OPSol ve sol ve(

Note: For tEvalF there are really four inputs but execution still goes through the entry point
for three arguments. The Equation name needs to be pushed onto the FPS first, then
the second argument and then third, and then the fourth in OP1. This is only valid in
Sequential graph mode.

The second argument is the start value.
The third argument is the end value.
The fourth argument is the step size.

A list of results is returned.

TI-83 Plus Developer Guide

13-11

Third Release January 25, 2002

System Routines — Parser

UnOPEXxec
Category: Parser
Description: Executes functions that have one argument as the input.
Inputs:
Registers: ACC = function to execute (see table below)
Flags: None
Others: OP1 = argument
Outputs:
Registers: None
Flags: None
Others: OP1 = result
Registers All
destroyed:
Remarks: This entry point should only be used if direct access to a particular function is

not available.

It is also useful to use this entry point when arguments are not simply real
numbers. See example below.

Valid arguments can be obtained from the T1-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide

13-12

Third Release January 25, 2002

System Routines — Parser

UNOPEXecC (continued)

Example: ; sin(L1)
LD HL, L1nane
RST r Mov9ToOP1 ; OP1 = L1 nane;
LD A, OPSi n : function is addition
B CALL UnOPExec ; OPL = result of sin(Ll) a
; tenmp list variable
Llnane: DB RLi st bj,tVarlLst,tL1,0,0

UnOPExec equates and functions

Equat e Function Equat e Function Equate Function
COPLog I og(OPTenX 107 X(OPLn I n(

OPEt 0X e™X(OPNot not (OPSi n si n(
OPAsi n sin-1(OPCos cos(Pacos cos- 1(
OPTan tan(OPAt an tan- 1(OPSi nh si nh(
OPAsi nh si nh- 1(OPCosh cosh(OPAcosh cosh- 1(
OPTanh t anh(OPAt anh tanh- 1(OPl nverse recipricol
OPDet det (OPSqr oot Sqrt OPSquare "2
Opnegat e (-) OPl part i Part (OPFpart fPart (
OPI nt gr int(tEval F y#(val ue OPConj conj (
OPFact ! OPAbs abs(OPI dent identity(
OPTranspose nmmt transpose OPSum sum(OPPr od prod(
OPM n m n(OPMax max (OPTofrac >Frac
OPReal real (OPI nag I mag(OPAngl e angl e(
OPEXpr expr (OPRound?2 round(OPLength | ength(
OPCube "3 OPChr t 3 OPDi m di m(
OPRad Ar OPDeg ’ t Mean mean(

t Medi an medi an(OPRef ref(OPRr ef rref(
OPCunfSum cunsuny(OPNor mal Pdf nor mal Pdf (OPI normal i nvNor n{(
OPDel t al st - Li st (OPBal bal (OPSt dev st dDev/(
OPVari ance vari ance(OPRand rand

Note: For tEvalF there are really two inputs but execution still goes through the entry point
for one argument. The Equation name needs to be pushed onto the FPS first, and
the second argument in OP1.

This is valid in all graph modes.

The second argument is the value to evaluate at.

TI-83 Plus Developer Guide 13-13 Third Release January 25, 2002

System Routines — Screen

System Routines —
14 Screen

(200 (o] =T]| FSY o1 (1<) o PP 14-1

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines — Screen

ForceFullScreen

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Screen

Switches the T1-83 Plus to Full Screen mode if currently In Horizontal or

Vertical split mode.

None
None

None

None
None
None
All

Graph is dirtied if mode switched.

T1-83 Plus Developer Guide

14-1

Third Release January 25, 2002

System Routines — Statistics

System Routines —
15 Statistics

DBIRES ... et e e e e e e et aeeaaaaaa 15-1
L Y T P 15-2
RCIL_STAIVA. ... 15-3
IR A= 1 2. 15-4

TI1-83 Plus Developer’s Guide Third Release January 25, 2002

System Routines —Statistics

DelRes

Category: Statistics

Description: Invalidates the statistic results.
Inputs:

Registers: None
Flags: None

Others: None

Outputs:

Registers: None

Flags: None

Others: Statistic result variables marked as undefined.

RegEq variable is deleted.

Registers All
destroyed:
Remarks: Note that this routine does not set the graphDraw flag even if the stat result

variable is used in a graph equation. This is a known problem.

Example: B _CALL Del Res ; invalidate stat results

TI-83 Plus Developer Guide 15-1 Third Release January 25, 2002

System Routines — Statistics

OneVar

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Statistics

Executes one-variable statistics.

ACC = number of arguments input

No_Del_Stat, (IY + more_flags) = 1 if:

Stat results that are not associated with one-variable stats are not to be
deleted when this routine executes.

Also no Min's, Max’s, or Quartiles will be computed.

Otherwise: previous statistic results are cleared.

If ACC =1 then OP1 = data list name.

If ACC = 2 then OP1 = frequency list name.
FPST = data list name.

Dimensions must match if two arguments.

None

statANSDISP, (IY+statFlags) = 1

If no errors then one-variable stat output variables are updated.
All

If the input lists have a formula associated with them this routine will not
execute it and update the list values. This must be done by the calling
routine.

See Find_Parse_Formula.

Run one-variable stats on data list L1 and freqg. list L2.

LD HL, L1nanme
RST r Mov9ToOP1 OoP1 = L1
RST r PushReal Ol data ->FPST
LD HL, L2nane
RST r Mov9ToOP1 OoP1 = L2
B CALL OneVar execute 1-variable stats
RET
Llnane: DB Li st oj ,tVarlLst,tL1,0,0
L2nane: DB Li st oj ,tVarlLst,tL2,0,0

TI-83 Plus Developer Guide

15-2

Third Release January 25, 2002

System Routines - Statistics

Rcl_StatVar
Category: Statistics
Description: Recalls a statistic result variable to OP1.
Inputs:
Registers: ACC = stat variable to recall token value. These are listed in the TI83plus.inc
file.
Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: OPL1 = stat variable value, floating-point number
Registers All but the ACC.
destroyed:
Remarks: The statistic variables are validated by running a regression or one/two

variable statistic commands.

This routine does not check that the statistic variables are valid. Recalling
one when not valid may result in random values.

Example: Recall statistic result variable X mean, assume statistic have been
computed.
LD A, t XMean : token val ue for XMean
B CALL Rcl _St at Var ; recall contents to OP1

TI-83 Plus Developer Guide 15-3 Third Release January 25, 2002

System Routines — Statistics

TwoVarSet
Category: Statistics
Description: Executes two-variable statistics and regressions.

Inputs:

Registers: ACC = number of arguments input. Must be at least 2.

Flags:

Others:

B = type of calculation
- 0 =LinReg (a+bx)

- 1 =ExpReg

- 2=LnReg

- 3 =PwrReg

- 4 =LinReg (ax+b)
- 5=QuadReg

- 6 = CubicReg

- 7 =QuartReg

- 8 =Med-Med

- 9 =2-Var Stats
- 19h = LinRegTTest

- 1Ah = Logistic
- 1Bh =In use for ANOVA
- 1Ch = SinReg

No_Del_Stat, (IY + more_flags) = 1 if:

Stat results that are not associated with one-variable stats are not to be
deleted when this routine executes.

Also no Min’'s, Max’s, or Quartiles will be computed.

Otherwise: previous statistic results are cleared.

If ACC =2 then OP1 =Y - data list name.
FPST = X — data list name.

If ACC = 3 then OP1 = frequency list name.
FPST =Y - data list name.
FPS1 = X — data list name.

If ACC = 4 then OP1 = Name of equation to store RegEq to.
FPST = frequency list name.
FPS1 =Y — data list name.
FPS2 = X — data list name

List dimensions must match.

TI-83 Plus Developer Guide 15-4 Third Release January 25, 2002

System Routines - Statistics

Outputs:
Registers: None
Flags: statANSDISP, (IY+statFlags) = 1
Others: If no errors then stat output variables are updated. Arguments are removed
from Floating Point Stack.
Registers All
destroyed:
Remarks: This B_CALL is not available on OS version 1.12 or below. The application

should check the OS version before calling this routine. See GetBaseVer.

If the input lists have a formula associated with them this routine will not
execute it and update the list values. This must be done by the calling
routine.

See Find_Parse_Formula.

Example: Calculate LinReg(ax+b) on x-list L1 and y-list L2, and store the results in Y1.

LD HL, L1name
RST r MovOToOP1 ; OP1L = L1
RST r PushReal O1 ; data ->FPST
LD HL, L2name
RST r MovOToOP1 ; OP1L = L2
RST RPushReal OL ; FPS1 = L1; FPST = L2
LD HL, Ylnane
RST r MovOToOP1 ; OP1L = Y1
LD A 3 ; 3 arguments
LD B, 4 ; calc. LinReg(ax+b)
B _CALL TwoVar Set ; execute stats
RES st at ANSDI SP, (| Y+st at Fl ags) ; don’t show results
RET

Liname: DB Li st oj ,tVarlLst,tL1,0,0

L2name: DB Li st Obj,tVarLst,tL2,0,0

Ylnane: DB Equbj, tVarEqu, tyl, 0, O

TI-83 Plus Developer Guide 15-5 Third Release January 25, 2002

System Routines — Utility

1 6 System Routines —
Utility

Y o] o1 [11 AP TR 16-1
AN SN A 6-2
(o1 = 7= L 01 PP 16-3
(0701177 5 112 010 [TR 16-4
CPHLDE ... 16-5
DISADIEAD ... 16-6
ENADIEADPAo e a e 16-7
EOPLNOIREAIvevieeieieieiet ettt ettt ettt eeene e
o [T T NN 1521 = |
G IBASEV O ... i 1610
GEtSYSINTO. e e 16-11
(=Y i o] (I T o P 16-13
(T o S {1 T PP URRPPRPRPIN 16-14
[SAZBYLETOK ... 16-15
JFOrCECMUNOCKRAciiiiiiiiiiiiiiieiie ettt e et e e e e e e e e e e eeeeeeeeeeeeeeeeeeeees 6-16
JFOrCEGIaPNKEYt e e 16-17
JFOrceGraphNOKEYccooiiice e 16-18
1Y 0 11O [T PRI 16-19
MBIMS L ...ttt e et e et et e e e e e e e e e aee 16-20
Mov7B, Mov8B, MovOB, MOV10B, MOVI8B........cccoieeiiiiiieieeeeee e 16-21
MOVOOPLOP2.....cee e e e e e e e e e e n e e n e e neeas 16-22
MOVOOP 2 D ..ttt ettt e e e e e e e e e e e e n s 16-23
MOVOTOOPL ...t a e aaaaas 16-24
MOVOTOOPZ ... e e e e et e e e e e e eaan s 16-25
1Y oY 16-26
DA | S 3T = [£ PPN 16-27
OP1ExOP2, OP1EXOP3, OP1ExOP4, OP1EXOP5, OP1EXOPS6,

OP2EXOP4, OP2EXOP5, OP2EXOP6, OPSEXOPSGccccvvvvviiiiiiiiiiiiiieeeeeee 16-28

OP1ToOP2, OP1ToOP3, OP1ToOP4, OP1ToOPS5, OP1ToOPS6,
OP2ToOP1, OP2ToOP3, OP2ToOP4, OP2ToOPS5, OP2ToOP6,
OP3ToOP1, OP3ToOP2, OP3ToOP4, OP3ToOPS5, OP4ToOP1,
OP4ToOP2, OP4ToOP3, OP4ToOPS5, OP4ToOP6, OP5ToOP1,

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Utility

OP5ToOP2, OP5ToOP3, OP5ToOP4, OP5ToOP6, OP6ToOP1,

OPBTOOP2, OPBTOOPS. ... 16-29
POSNOOINT. .. e e 16-30
PULAWAY ...ttt et eee et e et e et e et et et e et eee et et et e et et et e e e e e e e e ee e e eeeeeae [16-31]
o o 1 16-33
RElOAdAPPENIIYVECS ...ttt e e e e e e eeaees 16-34
SEIEXSPEEU. ..cceiiiiiiiiiieeeee 16-35
SEEXXOPL .. 16-37
SEtXXOP2 ...
SEIXXXXOPZ ..
S (0] =V o RPN 16-40
1] (@0} o) 16-41
SULENGEN e 16-42

TI-83 Plus Developer Guide Third Release January 25, 2002

System Routines — Utility

Applnit

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility
Sets system monitor vectors.

This routine is used by advanced applications to override the system monitor
vector table. This routine should only be used by applications, hot ASM
programs.

HL points to monitor vector table.
None

None

None

None

OP1 contains the variable name Ans.
All

A common use of Applnit is to override the system'’s putaway vector. This
allows the application to save its state or clean up any flags before shutting
down if the user presses 2™ + OFF or silent link activity is detected during a
system B_CALL GetKey.

Monitor vector table format:

VecTab: DW CXMai nPt r
DW CXPPut AnayPt r
DwW CXPut Away Pt r
DW CXRedi spPtr
DW CXEr r or EPPt r
DW CXSi zeW ndPt r
DB AppFl agsByt e

The application must set all of these pointers to a label somewhere in the
application. If a vector is not used, it must point to a RET statement.

If an application uses Applnit to change the system monitor vectors, it must
perform a B_CALL ReloadAppEntryVecs before exiting and also in the
application’s putaway routine.

See also ReloadAppEntryVecs.

See Chapter 2: “Entering and Exiting an Application Properly” for example
putaway code.

TI-83 Plus Developer Guide

16-1

Third Release January 25, 2002

System Routines — Utility

AnsName

Category: Utility
Description: Loads OP1 with the variable name Ans.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1 contains the variable name Ans.
Registers All
destroyed:
Remarks:
Example: B_CALL AnsNare

| oad OP1 with Ans variable

TI-83 Plus Developer Guide 16-2

Third Release January 25, 2002

System Routines — Utility

Chk_Batt Low

Category: Utility
Description: Check for low battery. Return Z = 1 if battery is low.
Inputs:

Registers: None

Flags: None

Others: None
Outputs:

Registers: Z =1 if battery is low.

Z = 0 if battery is not low.
Flags: None

Others: None

Registers All
destroyed:
Remarks: An application should check the battery condition before attempting to

archive a variable. There is a risk of corrupting the archive if the attempt
fails due to low batteries.

Example: Archive variable whose name is in OP1 if batteries are not low:
B CALL Chk_Batt_Low ; check battery | evel
RET Z cret if low batteries
B CALL ChkFi ndSym
RET C : return if vari able does not exist
LD A B ; get archived status
R A : if non zero then it is archived
; already
RET NZ : ret if archived

AppOnErr error Hand install error handler

B CALL Arc_Unarc ; archives the variable

AppOFfErr ; remove error handl er
error Hand:

RET

TI-83 Plus Developer Guide 16-3 Third Release January 25, 2002

System Routines — Utility

ConvDimOO

Category: Utility
Description: Converts floating-point number in OP1 to a two-byte value and compares
that value with an input two-byte value.

Inputs:
Registers:
HL = two-byte test value
Flags:
None
Others:
OP1 = floating-point value, must be a positive integer < 10,000
Outputs:

Registers: If no error on the input:
A = LSB hex value of OP1
DE = entire hex value of OP1

Flags: None
Others: None

Registers All

destroyed:

Remarks:

Example: Test OP1 = positive integer < or = 400:
LD HL, 400d ; test val ue
B_CALL ConvDi n0O

TI-83 Plus Developer Guide 16-4 Third Release January 25, 2002

System Routines — Utility

CpHLDE

Category: Utility
Description: Non destructives compare of registers HL and DE.
Inputs:

Registers: HL = two-byte value
DE = two-byte value

Flags: None

Others: None

Outputs:
Registers: HL, DE intact
Flags: CA=1ifDE>HL

Z=1ifHL = DE
CA=0if HL > DE

Others: None

Registers None
destroyed:

Remarks:
Example: B_CALL CpHLDE

TI-83 Plus Developer Guide 16-5 Third Release January 25, 2002

System Routines — Utility

DisableApd

Category: Utility
Description: Turns off Auto Power Down feature.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:

Registers: None
Flags: None

Others: apdAble, (IY + apdFlags) is reset

Registers None

destroyed:

Remarks: Applications should re-enable APD before exiting. See EnableApd.
Example:

TI-83 Plus Developer Guide 16-6 Third Release January 25, 2002

System Routines — Utility

EnableApd

Category: Utility
Description: Turns on Auto Power Down.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: None
Registers None
destroyed:
Remarks: The TI-83 Plus will now power down if not used for approximately

four minutes.

Example:

TI-83 Plus Developer Guide 16-7 Third Release January 25, 2002

System Routines — Utility

EOP1NotReal

Category: Utility

Description: Tests object in OP1 to be a real data type. If it is not, then jump to the
system error DATA TYPE.

Inputs:
Registers: None
Flags: None
Others: (OP1) = objects data type byte
Outputs:
Registers: None
Flags: None
Others: Error if not OP1 — it does not have the data type RealOb;.

Registers A
destroyed:

Remarks:

Example:

TI-83 Plus Developer Guide 16-8 Third Release January 25, 2002

System Routines — Utility

Equ_or_NewEqu

Category: Utility
Description: Sees if A = EQuObj or NewEquObj type.
Inputs:
Registers: A =type, can have flags set
Flags: None
Others: None
Outputs:
Registers: A = type with flags reset
Flags: Z set if A = EqQuObj or NewEquObj type
Others: None
Registers None
destroyed:
Remarks:
Example: ; see if ACCis EquObj or NewEquQbj
Equ_or _NewEqu: :
AND 1Fh
cP Equbj
RET z
cP NewEqubj
RET
TI-83 Plus Developer Guide 16-9

Third Release January 25, 2002

System Routines — Utility

GetBaseVer

Category: Utility
Description: Returns current operating system version number.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:

Registers: A = major version number
B = minor version number

Flags: None

Others: None

Registers A, B

destroyed:

Remarks:

Example: For Operating system 1.00: A=1,B =0.

TI-83 Plus Developer Guide 16-10 Third Release January 25, 2002

System Routines — Utility

GetSysinfo

Category: Utility
Description: Return nine bytes of system information, including current speed.
Inputs:

Registers: HL = RAM location to save system information.

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: (HL)...(HL+8) contain system information.
Registers All
destroyed:
RAM used:
Remarks: This B_CALL is not available on TI-83 Plus version 1.12 and earlier. The

calling routine needs to check the software version before performing this
B _CALL. See GetBaseVer.

This routine returns nine bytes of data representing various aspects of
system operation:

Btye
00 Boot code revision # (Major)
01 Boot code revision # (Minor)
02 Hardware revision # (00 is TI-83 Plus, NZ if not)
03 Lsn = Current Speed
03 Bit 4 reset if TI-83 Plus; set if TI-83 Plus Silver Edition
04 Device code default
05 Reserved
06 Reserved
07 Reserved
08 Reserved
(continued)
Example: Determine if running fast or slow.

TI-83 Plus Developer Guide 16-11 Third Release January 25, 2002

System Routines — Utility

B _CALL Get BaseVer ; OGS versionin A B
CcP 2 ; check nmajor version
JR NC, abovell2 o if 2.x, then > 1.12
; CcP 1
JR NZ, Must BeSl ow if 0.x, then < 1.12
LD A B ; major version =1
CcP 13 ; check m nor version
JR NC, abovell2 ; Cif mnor version < 13
Must BeSl ow:
XOR A ; set Z to show sl ow
JR Done
Abovell2: ; later than 1.12
LD HL, OP1
B _CALL Get Sysl nfo
LD A, OP1+3
AND OFh
Done:

TI-83 Plus Developer Guide 16-12 Third Release January 25, 2002

System Routines — Utility

GetTokLen

Category: Utility
Description: Return the number of characters in a token’s string.
Inputs:
Registers: DE = pointer to either a one or two byte token
Flags: None
Others: None
Outputs:

Registers: A = number of characters in the token’s string
HL = address of string in Flash ROM.

Flags: None
Others: None

Registers All
destroyed:
RAM used:
Remarks:
Example: Find the number of characters in the ‘Sin(* token string.
LD DE, tSin ; Sin(token
B CALL Get TokLen ; ACC = 4, the length of *Sin(’

TI-83 Plus Developer Guide 16-13 Third Release January 25, 2002

System Routines — Utility

Get_Tok_Strng

Category: Utility

Description: Copy a token'’s string to OP3 and return the number of characters in the
string.

Inputs:
Registers: HL = pointer to either a one or two byte token
Flags: None
Others: None

Outputs:

Registers: A = number of characters in the token’s string
BC = also contains the number of characters in the token’s string
HL = address of OP3, location the string was copied to

Flags: None
Others: String copied to RAM, starting at OP3
Registers All
destroyed:
RAM used: OP3 — OP3 + (length of string)
Remarks:
Example: Find the number of characters in the ‘Sin(‘ token string.
LD A tSin ; Sin(token
LD (OP1), A
LD HL, OP1 ; pointer to token
B CALL Get _Tok_Strng

TI-83 Plus Developer Guide 16-14 Third Release January 25, 2002

System Routines — Utility

ISA2ByteTok

Category: Utility
Description: Determines if token in A is a one or two byte token.
Inputs:

Registers: A = First byte of token

Flags: None

Others: None
Outputs:

Registers: None

Flags: Z =1 if Alis the first byte of a two byte token

Z =0 if Ais not a two byte token.

Others: None

Registers None
destroyed:
Remarks: The two byte token identifiers are: t2ByteTok, tVarStrng, tGFormat, tVarSys,

tvarOut, tVarGBD, tVarPict, tVarEqu, tVarLst, and tVarMat.

Example:

TI-83 Plus Developer Guide 16-15 Third Release January 25, 2002

System Routines — Utility

JForceCmdNoChar
Category: Utility
Description: Exits the Application and returns to the home screen.

This should not be used to exit an application if the TI-83 Plus system
monitor is closing the application due to link activity or turning off.

This routine will be the used in most applications to Close the application
and return control to the TI-83 Plus system.

Before an application jumps to this entry point it must make certain the
systems monitor vectors are set to the Application loader context.

See Entering and Exiting an Application Properly.

Inputs:
Registers: None
Flags: None
Others: Monitor vectors should be set to the Application loader.
Outputs:
Registers: None
Flags: None
Others: The home screen is given control.
Registers All
destroyed:
Remarks: Only use a B_JUMP with this entry point.
This can be used by an application anytime — the return stack does not
need to be at any certain level. This routine will set the stack level back to a
safe level.
ASM PROGRAMS SHOULD NOT USE THIS ROUTINE TO EXIT BACK TO
THE SYSTEM.
Example: Set the monitor vectors to the Application loader and exit the application and
return control to the home screen.
Exi t _App:
B CALL Rel oadAppEnt ryVecs | oad the nonitor vectors
; to App | oader
B _Juwr JFor ceCmdNoChar ; exit the app and
; initiate home screen
TI-83 Plus Developer Guide 16-16 Third Release January 25, 2002

System Routines — Utility

JForceGraphKey

Category: Utility

Description: Exits the Application and returns to the graph screen with a key to be
executed in the graph screen.

This should not be used to exit an application if the TI-83 Plus system
monitor is closing the application due to link activity or turning off.

This routine will be the used in most applications to Close the application
and return control to the TI-83 Plus system.

Before an application jumps to this entry point it must make certain the
systems monitor vectors are set to the Application loader context.

See Entering and Exiting an Application Properly.

Inputs:

Registers: ACC = key to execute in the graph screen

Flags: None

Others: None
Outputs:

Registers: None

Flags: None

Others: None

Registers All
destroyed:
Remarks: Only use a B_JUMP with this entry point.

This can be use by an application anytime — the return stack does not need
to be at any certain level. This routine will set the stack level back to a safe

level.
ASM PROGRAMS SHOULD NOT USE THIS ROUTINE TO EXIT BACK TO
THE SYSTEM.
Example: Set the monitor vectors to the Application loader and exit the application and
enter trace mode.
Exi t _App:
B CALL Rel oadAppEntryVecs ; load the nonitor vectors
; to App | oader
LD A, kTr ace
B _Juwr JFor ceG aphKey ; exit the app enter trace

node

TI-83 Plus Developer Guide 16-17 Third Release January 25, 2002

System Routines — Utility

JForceGraphNoKey
Category: Utility
Description: Exits the Application and returns to the graph screen.

This should not be used to exit an application if the TI-83 Plus system
monitor is closing the application due to link activity or turning off.

This routine will be the used in most applications to close the application and
return control to the TI-83 Plus system.

Before an application jumps to this entry point it must make certain the
systems monitor vectors are set to the Application loader context.

See Entering and Exiting an Application Properly.

Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers All
destroyed:
Remarks: Only use a B_JUMP with this entry point.
This can be use by an application anytime — the return stack does not need
to be at any certain level. This routine will set the stack level back to a safe
level.
ASM PROGRAMS SHOULD NOT USE THIS ROUTINE TO EXIT BACK TO
THE SYSTEM.
Example: Set the monitor vectors to the Application loader and exit the application and
give control to the graph context.
Exi t _App:
B CALL Rel oadAppEnt ryVecs | oad the nonitor vectors
; to App | oader
LD A kTrace
B _Juwr JFor ceGr aphNoKey ; exit the app
TI-83 Plus Developer Guide 16-18 Third Release January 25, 2002

System Routines — Utility

MemClear

Category: Utility
Description: Clears a memory block (to 00h’s).
Input:

Registers: BC = number of bytes in block
HL = address of first byte in memory block

Flags: None

Others: None

Outputs:

Registers: None

Flags: None

Others: Memory block cleared
Registers A, BC, DE, HL
destroyed:
Remarks: BC mustbe > 1
Example: TBD

TI-83 Plus Developer Guide 16-19 Third Release January 25, 2002

System Routines — Utility

MemSet

Category: Utility
Description: Sets a memory block to a given value.
Inputs:

Registers: A = value to set all bytes in memory block
BC = number of bytes in block
HL = address of first byte in memory block

Flags: None

Others: None
Outputs:

Registers: None

Flags: None

Others: Memory block set
Registers BC, DE, HL
destroyed:
Remarks: BC mustbe > 1
Example: TBD

TI-83 Plus Developer Guide 16-20 Third Release January 25, 2002

System Routines — Utility

Mov/B, Mov8B, Mov9B, Mov10B, Mov18B

Category: Utility

Description: Copies a short memory block where X = MovXB, where X is the number of
bytes.

Inputs:

Registers: HL = start of source block
DE = start of destination block

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: Block starting at original HL copied to area starting at original DE.
Registers BC, DE, HL
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 16-21 Third Release January 25, 2002

System Routines — Utility

Mov9OP10OP2
Category: Utility
Description: Copies a block of 18 bytes of RAM/ROM to OP1/OP2, with the first nine-

bytes to OP1 and the second nine-bytes to OP2.
This is most commonly used to copy a complex element of either a list or
matrix to OP1/OP2, skipping the 10th and 11th bytes of OP1.

Inputs:
Registers: HL = pointer to start of 18 bytes to copy
Flags: None
Others: None
Outputs:
Registers: DE = DE + 18
Flags: None
Others: First nine-bytes OP1 and first nine-bytes of OP2 contain the 18 bytes
copied.
Registers All but ACC
destroyed:
Remarks:
Example: Copy the first element of complex list L1 to OP1/OP2:
LD HL, L1name
RST r Mov9ToOP1 ; OP1 = L1 nane
B CALL Fi ndSym | ook up, DE = pointer to data
EX DE, HL HL = pointer to data
| NC HL
I NC HL HL = pointer to 1st el ement
B_CALL Mov9OP10P2 ; OP1 = real part, OP2 = inmage
; part, of element 1
RET
TI-83 Plus Developer Guide 16-22 Third Release January 25, 2002

System Routines — Utility

Mov9OP2Cp

Category: Utility
Description: Copies a floating-point number from RAM/ROM to OP2 and compares it to a
floating-point number in OP1.
Inputs:
Registers: HL = pointer to floating point to copy to OP2
Flags: None
Others: OP1 = floating-point number
Outputs:
Registers: None
Flags: Z=1if OP1=0P2
Z=0,CA=1:0P1<0OP2
Z=0,CA=0:0P1 OP2
Others: OP1 = intact
OP2 = floating-point number copied
Registers All
destroyed:
Remarks: Both OP1 and the float copied to OP2 are preserved.
Example: Copy the first element of real list L1 to OP2 and compare it to a floating-
point number in OP1.
LD HL, L1name
RST r Mov9ToOP1 ; OP1 = L1 nane
B CALL Fi ndSym | ook up, DE = pointer to data
EX DE, HL HL = pointer to data
| NC HL
I NC HL HL = pointer to 1st el ement
B CALL Mov9OP2Cp ; copy element to OP2 and
; conpare to OP1
RET
TI-83 Plus Developer Guide 16-23 Third Release January 25, 2002

System Routines — Utility

Mov9ToOP1

Category: Utility

Description: Copies nine-bytes of RAM/ROM to OP1.
Inputs:

Registers: HL = pointer to the nine-bytes to copy
Flags: None
Others: None
Outputs:
Registers: None
Flags: None

Others: OP1 contains the nine-bytes

Registers All but ACC
destroyed:

Remarks:

Example: B_CALL Mov9ToOP1

TI-83 Plus Developer Guide 16-24 Third Release January 25, 2002

System Routines — Utility

Mov9ToOP2

Category: Utility

Description: Copies nine-bytes of RAM/ROM to OP2.
Inputs:

Registers: HL = pointer to the nine-bytes to copy
Flags: None
Others: None
Outputs:
Registers: None
Flags: None

Others: OP2 contains the nine-bytes

Registers All but ACC
destroyed:

Remarks:

Example: B_CALL Mov9ToOP2

TI-83 Plus Developer Guide 16-25 Third Release January 25, 2002

System Routines — Utility

MovFrOP1

Category: Utility
Description: Copies OP1 (nine bytes) to another RAM location.
Inputs:

Registers: DE = pointer to destination of move

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: HL=0OP1+9
DE=DE+9
OP1 copied to (DE)
Registers All but ACC
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 16-26 Third Release January 25, 2002

System Routines — Utility

NZIf83Plus

Category: Utility
Description: Returns status if calculator is TI-83 Plus or not.
Inputs:

Registers: None

Flags: None

Others: None
Outputs:

Registers: None

Flags: NZ = status if TI-83 Plus

Z = status if TI-83 Plus Silver Edition

Others: None

Registers None
destroyed:
Remarks: This B_CALL is not available on TI-83 Plus version 1.12 or earlier. The

calling routine must check the software version before performing this
B_CALL. This routine is not as intrusive as GetSysinfo if all you need to
know is if the calculator is an earlier edition of TI-83 Plus.

See GetBaseVer, GetSysinfo

Example: Return NZ if running on TI-83 Plus

B CALL Cet BaseVer : OGS versionin A B

CP 1 ; check major version

JR C, MustBe83Plus ; if 0.x, then < 1.13

JR NZ, Abovell?2 o if 2.x, then > 1.12

LD A B ; major version =1

CP 13 : check m nor version

JR NC, abovell?2 : Cif mnor version < 13

Must Be83PI us:
RET

Abovell2: : later than 1.12
B _CALL NZI f 83PI us
RET

TI-83 Plus Developer Guide 16-27 Third Release January 25, 2002

System Routines — Utility

OP1ExOP2, OP1ExXOP3, OP1EXOP4, OP1EXOPS5,
OP1ExOP6, OP2ExOP4, OP2EXOP5, OP2EXOPE6,

OP5EXOPG6
Category: Utility
Description: Exchanges 11-byte contents of OP(x) with OP(y).
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP(X) = former contents of OP(Y)
OP(Y) = former contents of OP(X)
Registers A, BC, DE, HL
destroyed:
Remarks: Combinations Available:
(y) OP1 OP2 OP3 OP4 OP5 OP6
(x)
OP1 X X X X X
OoP2 X X X
OP3
OP4
OP5 X
OP6
Example: ; Exchange contents of OP2 and OP4
B_CALL OP2EXOP4

TI-83 Plus Developer Guide

16-28

Third Release January 25, 2002

System Routines — Utility

OP1ToOP2, OP1ToOP3, OP1ToOP4, OP1ToOPS5,
OP1ToOP6, OP2ToOP1, OP2ToOP3, OP2ToOP4,
OP2ToOP5, OP2ToOP6, OP3ToOP1, OP3ToOP2,
OP3ToOP4, OP3ToOP5, OP4ToOP1, OP4ToOP2,
OP4ToOP3, OP4ToOP5, OP4ToOP6, OP5T0OP1,
OP5ToOP2, OP5ToOP3, OP5ToOP4, OP5ToOPS6,
OP6ToOP1, OP6ToOP2, OP6TOOPS

Category: Utility
Description: Copies 11 bytes from OP(x) to OP(y).
Inputs:

Registers: None

Flags: None
Others: OP(X)
Outputs:
Registers: None
Flags: None
Others: OP(y) = former contents of OP(x)
Registers BC, DE, HL
destroyed:
Remarks: Combinations Available:
Dest(y) OP1 OP2 OP3 OP4 OP5 OP6
Source(x)
OP1 X X X X X
OoP2 X X X X X
OP3 X X X X
OP4 X X X X X
OP5 X X X X X
OP6 X X X
Example: B_CALL OP1ToOP3

TI-83 Plus Developer Guide 16-29 Third Release January 25, 2002

System Routines — Utility

PosNoOInt

Category: Utility
Description: Checks if OP1 is a positive non-zero integer floating point.
Inputs:

Registers: None

Flags: None

Others: OPL1 = floating-point number

Outputs:
Registers: None
Flags: Z =1 if OP1 = positive non 0 integer

Z = 0 if non integer or negative or 0

Others: None

Registers ACC

destroyed:

Remarks:

Example:

TI-83 Plus Developer Guide 16-30 Third Release January 25, 2002

System Routines — Utility

PutAway

Category: Utility
Description: Force application to be put away.
Inputs:

Registers: None

Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: Application is terminated.
Registers ALL
destroyed:
Remarks: Applications should not use this routine for normal exit code. Applications

should only use this entry point as part of putaway code in “Stand-Alone with
Putaway Notification” mode. See Chapter 2: “Entering and Exiting an
Application Properly”.

Example: AppPut Anay:

; Application gets itself ready for term nating by cleaning any systemfl ags
; or saving any information it needs to.

RES pl ot Loc, (I Y+pl ot Fl ags) ; draw to display & buffer
RES textWite, (IY+sG Flags) ; small font witten to
; display
; This next call resets the nonitor control vectors back to the App Loader
B CALL Rel oadAppEnt r yVecs ; App Loader in control of
: nonitor
LD (1 Y+t ext Fl ags), O ; reset text flags
; This next call is done only if application used the Graph Backup Buffer
B CALL Set Thl Gr aphDr aw

; Need to check if turning off or not, the following flag is set when
; turning off:

BIT MonAbandon, (| Y+nonFl ags) ; turning off ?
JR NZ, Turni ngOf f ; jump if yes

; if not turning off then force control back to the hone screen

; note: this will termnate the link activity that caused the application

TI-83 Plus Developer Guide 16-31 Third Release January 25, 2002

System Routines — Utility

; to be term nated.

Turni ngOf f

LD

ouT
B_CALL
SET

El

B_JUWP

B_JUWP

A iall ; all interrupts on
(intrptEnPort), A

LCD_DRI VERON ; turn on LCD

onRunni ng, (I Y+onFl ags) ; on interrupt running

; enable interrupts

JFor ceCmdNoChar ; force to hone screen

Put away ; force App |loader to do its

;. put away

TI-83 Plus Developer Guide

16-32 Third Release January 25, 2002

System Routines — Utility

RclAns
Category: Utility
Description: Recalls answer to OP1[,OP2] or at least set up pointers to it.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1[,0P2] if real [or complex]
Registers AF, BC, DE, HL,
destroyed:
Remarks: Entire code:
CALL AnsNanme : see these routines for nore
;info
JP Rcl Var Sym : see these routines for nore
info
AnsName puts the name of Ans into
OP1 = 00h,tAns,00h,00h,.....00h
= 00h,072h,00h,00h,.....00h
RclVarSym will recall the contents of the variable to OP1 if it is real, to OP1
and OP2 if the variable is complex and otherwise leaves the name as is in
OP1 and returns HL as the symbol table pointer and DE as the data pointer
as in ChkFindSym.
Example: B CALL Rcl Ans ; This exanpl e presunes that
; you already know that Ans is
: a Real nunber.
LD A 9 ; display up to 8 digits
B_CALL Di spOP1A
TI-83 Plus Developer Guide 16-33 Third Release January 25, 2002

System Routines — Utility

ReloadAppEntryVecs

Category: Utility
Description: Sets the system monitor vector table to the Application loader context.

This routine is used by advanced applications that override the system
monitor vector table. This routine should be called by the application just
before exiting.

This routine should only be used by applications, not ASM programs.
Inputs:
Registers: None
Flags: None

Others: None

Outputs:
Registers: None
Flags: None
Others: Monitor system vectors are now set to the application loader.
Registers All
destroyed:
Remarks:
Example: Assume we have an application that overrode the monitor vectors and our
application is exiting because the user pressed the [Quit] key.
ChkFor Qui t:
CcP kQui t ; quit key?
JR NZ, not Qui t ; jump if no
B CALL Rel oadAppEnt ryVecs ; restore nonitor to
; application | oader
B _JUWP JFor ceCndNoChar : switch to the hone
, Screen

TI-83 Plus Developer Guide 16-34 Third Release January 25, 2002

System Routines — Utility

SetExSpeed

Category: Utility
Description: Set execution speed to fast or slow.
Inputs:
Registers: A =0 to set slow speed (6Mhz)
A =1 to set 15Mhz

A = FF to set fastest future speed

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers Flag register modified
destroyed:
Remarks: This B_CALL is not available on TI-83 Plus version 1.12 or earlier. The

calling routine must check the software version before performing this
B_CALL. This routine is not as intrusive as GetSysinfo if all you need to
know is if the calculator is an earlier edition of TI-83 Plus.

See GetBaseVer, GetSysinfo

This routine can be called on a TI-83 Plus unit running software version 1.13
and higher, but will not effect the operating speed of that unit.

On the TI-83 Plus Silver Edition, the operating system will set the speed
back to fast once the application or assembly program returns, regardless of
any settings changed. An exception to this is that the error handler will
leave the speed setting intact in the event a GoTo is desired.

Some system routines such as the 10 utilities may set slow speed for certain
operations. These routines will restore the current speed upon completion.
Other routines, such as JforceCmdNoChar force fast speed. Normally an
application will not execute these routines except on completion.

(continued)

TI-83 Plus Developer Guide 16-35 Third Release January 25, 2002

System Routines — Utility

Example: Set fast speed if running on 1.13 or higher.
B _CALL CGet BaseVer ; OGS versionin A B
CcP 2 ; check nmajor version
JR NC, Abovell2 ;o if 2.x, then > 1.12
CcP 1 ; if 0.x, then < 1.12
JR NZ, Bel owl12 ; major version =1
LD A B :
CP 13 ; check m nor version
JR C, Belowll2 : Cif mnor version < 13
Abovell2:
LD A, OFFh ; set fastest speed possible
B _CALL Set ExSpeed
JR Done
Bel owl12: ; earlier than 1.12
Done:

TI-83 Plus Developer Guide 16-36 Third Release January 25, 2002

System Routines — Utility

SetXXOP1

Category: Utility
Description: Sets OP1 equal to a floating-point integer between 0 and 99.
Inputs:
Registers: ACC = integer value to set OP1 equal to
Flags: None
Others: None
Outputs:
Registers: None
Flags: None

Others: OPL1 = floating-point integer between 0 — 99

Registers All
destroyed:
RAM used: OP1
Remarks: No error checking is done for invalid input.
Example: Set OP1 =75.
LD A 75
B CALL Set XXOP1 ; OP1 = floating point 75

TI-83 Plus Developer Guide 16-37 Third Release January 25, 2002

System Routines — Utility

SetXXOP2

Category: Utility
Description: Sets OP2 equal to a floating-point integer between 0 and 99.
Inputs:
Registers: ACC = integer value to set OP2 equal to
Flags: None
Others: None
Outputs:
Registers: None
Flags: None

Others: OP2 = floating-point integer between 0 — 99

Registers All
destroyed:
RAM used: OoP2
Remarks: No error checking is done for invalid input.
Example: Set OP2 = 75.
LD A 75
B CALL Set XXOP2 ; OP2 = floating point 75

TI-83 Plus Developer Guide 16-38 Third Release January 25, 2002

System Routines — Utility

SetXXXXO0P2

Category: Utility
Description: Sets OP2 equal to a floating-point integer between 0 and 65535.
Inputs:

Registers: HL = integer value to set OP2 equal to

Flags: None
Others: None
Outputs:

Registers: None
Flags: None
Others: OP2 = floating-point integer between 0 — 65535

Registers All
destroyed:
RAM used: OoP2
Remarks:
Example: Set OP2 = 7523.
LD HL, 7523
B CALL Set XXXXOP2 ; OP2 = floating point 7523

TI-83 Plus Developer Guide 16-39 Third Release January 25, 2002

System Routines — Utility

StoRand

Category: Utility

Description: Initializes random number seeds on OP1 value.
Inputs:

Registers: None

Flags: None

Others: OP1 = real number 0e0 ... < 1E9
Outputs:

Registers: None

Flags: None

Others: OP1 = same value as unmodified input.
Registers All
destroyed:

RAM used: OP1, OP2, OP6

Remarks: Storing a 0 to the seed will reinitialize the random number generator to its
original state from the factory.

The input value in OP1 must be a real number, but it does not have to fall
within the specified range. If it does not, it will be modified (exponent
reduced, sign changed, and truncated) to fit in the range.

Example:

TI-83 Plus Developer Guide 16-40 Third Release January 25, 2002

System Routines — Utility

StrCopy

Category: Utility
Description: Copy a null-terminated string in memory.
Inputs:

Registers: HL = starting address of source string

DE = starting address of destination

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers A, DE, HL
Destroyed:
Remarks: This is like a C language StrCpy() function.

When complete:
? HL is left pointing to the null terminator of the source string.
? DE is left pointing to the null terminator of the destination string.

Example:

TI-83 Plus Developer Guide 16-41 Third Release January 25, 2002

System Routines — Utility

StrLength

Category: Utility
Description: Returns the length of a zero (0) terminated string residing in RAM.
Inputs:

Registers: HL = pointer to start of zero terminated string, in RAM

Flags: None
Others: None
Outputs:
Registers: BC = length of string, not including terminating 0
Flags: None
Others: None
Registers BC
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide 16-42 Third Release January 25, 2002

System Routines - Miscellaneous

17/

System Routines —
Miscellaneous

ConvOP1

TI-83 Plus Developer Guide

Third Release January 25, 2002

System Routines - Miscellaneous

ConvOP1

Category: Miscellaneous

Description: Converts a floating-point number in OP1 to a two-byte hexadecimal number
in DE.

Inputs:
Registers: OP1 = floating-point number
Flags: None
Others: None

Outputs:

Registers: A =LSB hex value
DE = entire hex value
If OP1 exponent > 3 error

Flags: None
Others: None

Registers
destroyed:

Remarks:

Example:

TI-83 Plus Developer Guide 17-1 Third Release January 25, 2002

Reference List - System Routines

Reference List —
System Routines

A
ADSOLO2CP oot [10-1] See Math
ADSOLPADBSOZ ... , See Math
ACOS ..ottt See Math
ACOSH ..o ettt 10-4, See Math
ACOSRAUo See Math
AILEIE.......ooiiiiii See List
AGIMEIR. ..., See Matrix
AAIMROW. ... See Matrix
AlIEQ..cc e See Graphing and Drawing
AlIOCFPS.......oooiiiii See Floating Point Stack
AOCFPSL.....ovvoieeieeeeese e See Floating Point Stack
ANGIE ..o See Math
ANSNAIMIE. ... See Utility
APASEIUP. ..o See Keyboard
APPGELCAICuuiii i See IO
APPGELCDL ... See lO
APPINIE @ See Utility
ArC_UNAICcoiiiiiiiii |1_2_-—1[See Memory
ASIN ..o See Math
ASINH See Math
ASINRAG ... See Math
ATAN ..ottt ettt See Math
ATANZ ..o See Math
ATAN2RAUc.ocviieiieieete e See Math
ATANH Lo 10-13| See Math
ATANRAG ...ttt See Math
B
BINOPEXECoiiiiiiiiic e m See Parser
Bit_VertSplit.........oooviiiiiii See Display
BUFCIr e, See Graphing and Drawing
BUFCPY oo See Graphing and Drawing

T1-83 Plus Developer Guide R-l Third Release January 25, 2002

Reference List — System Routines

C
CADS oot See Math
CAAD .ot See Math
CanAIPNINS ... See Keyboard
CDIV i See Math
CDIVBYREA! ... See Math
(071 70) G See Math
(07 =17 o See Math
CRECKSPIFIAQ ...t See Display
CHKFINASYM ..ottt en et See Memory
CINtGE See Math
CIrcCmd ..o See Graphing and Drawing
L1 4 | 10-22] See Math
CKOAA ... 10-23| See Math
CKOPLCO ...t See Math
CKOPLCPIX ettt 10-25} See Math
CKOPLFPO ..ot See Math
CKOPLPOS. ...ttt 10-27} See Math
CKOPLREA ...t See Math
CKOP2FPO ...t See Math
CKOP2POS. ...ttt See Math
CKOP2REAIcoeiiiiiiiiiieeeee e 10-31} See Math
CKPOSINE. ..o See Math
CRVAlIANUM .o 10-33| See Math
CIEANAIL ..o See Memory
ClearRecCtccoovvviviiiicee e, See Graphing and Drawing
ClEAMROW.ovieeeeeeeteeeeteeeeee et See Display
CLING e See Graphing and Drawing
CLINES... ..ttt See Graphing and Drawing
CLN oo See Math
CLOG... it See Math
(3 (oYY e 1118 7N See Edit
ClOSEEAItBUINOR.oviiiiiiteeie et , See Edit
CIOSEEAIEGU ..o See Edit
ClOSEPIOQ. ...ttt See Memory
CIrGraphREfvecveveeeeeveeeeeeeeeeee e, [5-11], See Graphing and Drawing
CITLCD s See Display
CIFLCDFUIL ..o See Display
CIPLP ettt See Math
TI-83 Plus Developer Guide R-2 Third Release January 25, 2002

Reference List — System Routines

CIFOPLS ..ot See Math
CIFOP2S .. , See Display
CIESCIN oottt et ettt See Display
CIFSCINFUIL ...t See Display
CIFTXISNA oo See Display
(0411111237 =T | See Math
CIMPSYMS ..ottt ettt e, See Memory
CMUIL..... e See Math
(7o) o | R 10-40| See Math
CONVDIM ..ttt See List
CONVDIMOO........cooereeeeeetereeeeee e, See Utility
1O] 01V I o o N See List
CONVLITOLC ..citiiieieei et See List
CONVOP L. , See Miscellaneous
COPLSELO .ottt [10-41], See Math
(0 S , See Math
COSH e , See Math
CPHLDE .oooovevveeiseee e See Utility
CPOINt it See Graphing and Drawing
CPOINES ...t See Graphing and Drawing
CPOPLOPZ ..ottt See Math
CPOPAOPS ...t See Math
CpYOLTOFPSL ..., 4-4| See Floating Point Stack
CPYOLTOFPS2 ..o 4-4) See Floating Point Stack
CpYOLTOFPS3 ... 4-4| See Floating Point Stack
CPYOLTOFPSA ... 4-4) See Floating Point Stack
CPYOLTOFPSS ... 4-4| See Floating Point Stack
CPYOLTOFPSE ... 4-4) See Floating Point Stack
CPYOLTOFPST ..o 4-4| See Floating Point Stack
CPYOLTOFPST ..o 4-4) See Floating Point Stack
CPYO2TOFPSL ..o 4-4| See Floating Point Stack
CPYO2TOFPS2 ... 4-4) See Floating Point Stack
CPYO2TOFPS3 ... 4-4| See Floating Point Stack
CPYO2TOFPSA ... 4-4) See Floating Point Stack
CPYO2TOFPST ..o 4-4| See Floating Point Stack
CPYO3TOFPSL ... 4-4) See Floating Point Stack
CPYOSTOFPS2 ... 4-4| See Floating Point Stack
CPYO3TOFPST ..ot 4-4) See Floating Point Stack
CPYOSTOFPSL ..o 4-4| See Floating Point Stack
CPYOSTOFPS3 ... 4-4) See Floating Point Stack

T1-83 Plus Developer Guide

Third Release January 25, 2002

Reference List — System Routines

CpYOBTOFPS2 ..., 4-4} See Floating Point Stack
CPYOBTOFPST ..ot 4-4} See Floating Point Stack
CpYStaCK ..., [4-3 See Floating Point Stack
CPYTOLFPSL ... 4-5 See Floating Point Stack
CpYTOLFPS10....ciiiiieeeiiie e, 4-5 See Floating Point Stack
CPYTOLFPSLL ..ouiiiiiiii e 4-5 See Floating Point Stack
CPYTOLFPS2....coviiiiiieeie e, 4-5|, See Floating Point Stack
CPYTOLFPSS ... 4-5 See Floating Point Stack
CPYTOLFPSA ..., 4-5, See Floating Point Stack
CPYTOLFPSS ... 4-5 See Floating Point Stack
CPYTOLFPSH ...t 4-5, See Floating Point Stack
CPYTOLFPST ..o 4-5 See Floating Point Stack
CPYTOLFPSS.....coviiieeeie e, 4-5|, See Floating Point Stack
CPYTOLFPSI ... 4-5 See Floating Point Stack
CPYTOLFPST ..., 4-5|, See Floating Point Stack
CPYTOZFPSL ... 4-5 See Floating Point Stack
CPYTO2FPS2....coviiieieeeeiee e, 4-5|, See Floating Point Stack
CPYTOZ2FPS3 ... 4-5 See Floating Point Stack
CPYTO2FPSA ..., 4-5|, See Floating Point Stack
CPYTOZ2FPSS ... 4-5 See Floating Point Stack
CPYTO2FPSH......cvvveeieeeeiieiie e 4-5|, See Floating Point Stack
CPYTOZFPST .. 4-5 See Floating Point Stack
CPYTO2FPS8......ovviiiieeeeeeii e, 4-5|, See Floating Point Stack
CPYTOZFPST .. 4-5 See Floating Point Stack
CpYTO3FPSL....ooviiiieie e, 4-5|, See Floating Point Stack
CPYTO3FPS2....ooiiiiiiie e 4-5 See Floating Point Stack
CPYTOBFPST .. 4-5, See Floating Point Stack
CPYTOAFPST ..o 4-5 See Floating Point Stack
CPYTOSFPST ... 4-5, See Floating Point Stack
CPYTOBFPS2.....ooviiiiiiiei 4-5 See Floating Point Stack
CPYTOBFPS3 ... 4-5, See Floating Point Stack
CPYTOBFPST ... 4-5 See Floating Point Stack
CPYTOFPSL ..o [4-7} See Floating Point Stack
CPYTOFPS2. .. , See Floating Point Stack
CPYTOFPS3....oiiceeeeeeeeeeeeeee e, See Floating Point Stack
CPYTOFPST .. , See Floating Point Stack
CPYTOSLACKo, [4-10] See Floating Point Stack
CreateOEQUuu i , See Memory
CreateAPPVAro , See Memory
(O 1T 11T O I 1 See Memory

TI-83 Plus Developer Guide R-4 Third Release January 25, 2002

Reference List — System Routines

CIEAECPIX eevveeereeeeeee oottt et enena, See Memory
CreateEqU ... , See Memory
CIEALEPAIN ...ttt e, [12-12] See Memory
CrEALEPICT. ...ttt , See Memory
CreateProg.....ccccee i , See Memory
CreatePrOtPIOPvvveeveeeeeeeee e n e, [12-15 See Memory
CreateRealcccoeiiiiiiiiii See Memory
CreateRLISTccciiiiiic e , See Memory
CreateRMaLtoooeviiieiie e , See Memory
CreateStINguvviiiiiiiiiiiiiii e , See Memory
CREBCID. ettt , See Math
(OFSTo |2 e o] SRRSO 10-47|, See Math
CSQUATE ..ttt [10-48, See Math
CSUD e See Math
(08 =110 G TP See Math
(O I 1 Lo See Math
CUDB e 10-52| See Math
(0101101 (O) 1 T , See Edit
(Ol [T0]{© o TSRS , See Edit
CXIOOtY ..o See Math
CYLOX et s, See Math
D
DarkLine......ccooveieiiiiiiiee See Graphing and Drawing
DarkPnt ..., , See Graphing and Drawing
DataSiZe....cevveeii e See Memory
DAtaSIZEAooeieeeiee e See Memory
DealloCFPSccoooiiiii See Memory
DealloCFPSL.......o o See Memory
DECOLEXD ..otvviieceeiieieieies et nseees See Math
DEILISIEcvoeveeieece e See List
DEIMEM ...t See Memory
DEIRES....cc i See Statistics
DEIVAT ..ot See Memory
DEIVAIAIC ...t See Memory
DEIVAINOAIC ..ottt See Memory
DISADIEADT ...t See Utility
DISP e See Graphing and Drawing
DISPDONE. ..., See Display
DISPEOL ...ttt See Edit

TI-83 Plus Developer Guide R-5 Third Release January 25, 2002

Reference List — System Routines

Displaylmage
DispOP1A
DivHLBy10
DivHLBYA
DrawCirc2
DrawCmd
DrawRectBorder
DrawRectBorderClear

EditProg
EnableApd
EnoughMem
EOP1NotReal
Equ_or_NewEqu
EraseEOL
EraseRectBorder
ErrArgument
ErrBadGuess
ErrBreak
ErrD_ OP1 0O
ErrD_OP1_LE O
ErrD_OP1Not R
ErrD_OP1NotPos
ErrD_OP1NotPosInt
ErrDataType
ErrDimension
ErrDimMismatch
ErrDivByO
ErrDomain
Errincrement
Errinvalid
Errlterations
ErrLinkXmit
ErrMemory
ErrNon_Real
ErrNonReal
ErrNotEnoughMem

See Display
See Display
See Display
See Interrupt
See Interrupt
, See Graphing and Drawing
[5-23} See Graphing and Drawing
[5-24] See Graphing and Drawing
, See Graphing and Drawing
See Math

See Memory
See Utility
[12-30] See Memory
See Utility
See Utility
See Display
, See Graphing and Drawing
, See Error
[3-2] See Error
, See Error
, See Error
See Error
[3-6] See Error
See Error
, See Error
.............................. , See Error
............................ See Error
............................ See Error
............................ See Error
............................ See Error
............................ See Error
............................ See Error
............................ See Error
............................ See Error
............................ See Error
See Error
............................ See Error
See Error

T1-83 Plus Developer Guide

Third Release January 25, 2002

Reference List — System Routines

EFTOVEITIOW ..ottt en e eesen v See Error
ErrSignChange.........cccooviiiiiiiiiiicc e See Error
ErrSingularMat............ooiiiiiiiiiiie e 3-24) See Error
EITSTAL ...ttt [3-25] See Error
ENTSEAPIOLcvoevececeveee e See Error
ENTSYNEAX. c..vveveiveiteeeieie e ete et eeee et ete et eteeve et eetesaeeveennen) See Error
ErrTOITOOSMAcvieeeieceee e See Error
Errundefinedccovvveiiiiii See Error
ETOX et 10-57} See Math
EXCRO oo , See Memory
EXLD vttt See Memory
EXPTOHEX .o , See Math
=
FACKOMA. ...ttt See Math
FIlIRECT ... See Graphing and Drawing
FillRectPattern........ccccccccvicicen e, See Graphing and Drawing
Find_Parse_FOrmula...............ceeeviiiiiiiiiii See List
FINAAIDNADNcoouieeeeeeceeeeee e See Memory
FINAAIPNAUD ... See Memory
FINAADD e, See Memory
FINAAPPDN oo See Memory
FINdAPPNUMPAQEScovvviiiiiieiiiecce e, See Memory
FINAAPPUD oo See Memory
FINASYM <o See Memory
FIVEEXEC.....cciiiiiiiiciiiicc e See Parser
FIXTEMPCNE .ottt ettt See Memory
FlashToORaMccoiiiiiiii e, See Memory
FOrCEFUIISCIEEN ... See Screen
FOMMBASEcvviiecieieicieieiee et See Display
FOTMDCPIX vttt ettt et ee e en e See Display
FOrmEReaAl ..., See Display
FOrMREAL.......uiiii e @ See Display
FOUMEXEC ...t n s, See Parser
FPAGG ..o See Math
FPDIV. .. See Math
FPMUI ..o See Math
e o o o TSRS See Math
FPSQUANE ..ottt 10-64| See Math
FPSUD .ot See Math

TI-83 Plus Developer Guide R-7 Third Release January 25, 2002

Reference List — System Routines

FrAC ... See Math
G
Get_TOK_StINQ ...ttt e e See Utility
GIBASEVETceeeeeeeeeeee ettt eeeeet ettt [16-1d, See Utility
GEICSC . See Keyboard
GEEKBY ettt ettt e et See Keyboard
GetLTOOPL ... See List
GEIMTOOPL ..ttt ettt See Matrix
GEITOKLEN .ottt n e [16-11] See Utility
GIBUFCIF e , See Graphing and Drawing
GIBUFCPY...uvviiiiiiiiiiiiiiiieieiteieee e , See Graphing and Drawing
GIrphCirC..coiiii i , See Graphing and Drawing
H
HLTIMESO ..ottt See Math
HOMHZCMG .o See Graphing and Drawing
HTIMESL 1.ttt en et en et See Math
I
IBOUNASoovviiiiiiiieeceece e See Graphing and Drawing
IBoundsFull ..o See Graphing and Drawing
ILINE oo , See Graphing and Drawing
INCLSESIZE . ..vcveee ettt en et en et n e en e See List
INSEILIST......iiiiiiii i See List
INSErtMeM ... See Memory
I ettt ettt ettt See Math
INEGr See Math
INVCMd ..., See Graphing and Drawing
INVEMRECEveeeveeeeeeeeeeeeeee e, See Graphing and Drawing
INVOPILS ...t See Math
INVOPLSC ... See Math
INVOP2S ...ttt See Math
INVSUD . See Math
TOFFSEL 1o [10-41] See Graphing and Drawing
IPOINT ..o See Graphing and Drawing
ISA2BYLETOK ... See Utility
ISEAITEMPLY ..t See Edit
J
JEITOr oo See Error

TI-83 Plus Developer Guide R-8 Third Release January 25, 2002

Reference List — System Routines

JEITOINO ..ot en s [3-31] See Error
JForceCmdNOCRAr.........cvviiiiiiiee See Utility
JForceGraphKeyceiiiiiiiieieeeee e See Utility
JFOrCeGraphNOKEYcoveereeeeieeerereeeeeeeenee e, See Utility
K
KEY TOSHING ettt e See Edit
L
(0 | 11 [o See Memory
LineCmd......ovvceeiiiiiieeicee e, See Graphing and Drawing
0) PPN See Math
LA SFONL ...t eeeeeee et eeee et ee e ee e, See Display
LoadClINdPaged............cvvvviiiiiiiiiiiiiiiieeeeeeeeee See Memory
LoadDEINdPagedcccooeiiiiiiiiiiic e See Memory
LOAAPALEINe.vveeeeeeeeeee et en e en e e See Display
100) G PTTT 10-76| See Math
M
MAX .t See Math
MEMCIK c...cvoeivece e See Memory
MEMCIBAN ... See Utility
MEMSEE ...ttt See Utility
Y, R See Math
YT 10 31 See Math
MOVLOB ... 16-21| See Utility
MOVLBBceviiiiie it e e 16-21(See Utility
MOVTB ... 16-21| See Utility
MOVBB ... e 16-21(See Utility
MOVOB ... 16-21| See Utility
MOVIOPLOP2 ...t See Utility
MOVOOP2CP .ttt ettt See Utility
MOVOTOOPL ..o See Utility
MOVIOTOOPZoviiiiiiiiiiii See Utility
MOVFTOPL ...t See Utility
N
NEWLINE ..o See Display
@)
L0 1o £ | SR See Statistics

TI-83 Plus Developer Guide R-g Third Release January 25, 2002

Reference List — System Routines

OPLEXOP2 ...ttt 16-28| See Utility
OPLEXOPS ... e 16-28) See Utility
OPLEXOPA ...t 16-28| See Utility
OPLEXOPS ... 16-28) See Utility
OPLEXOPGceeiiieiiiiiiiiieee ettt 16-28| See Utility
OPLEXPTODEC.civiuieiiiiieie ettt See Math
OPLSELO ...ttt 10-81}, See Math
OP LS. 10-81], See Math
OPLSEL2....eeeeeieieeeee ettt 10-81}, See Math
(O] BT =Y G 2 10-81], See Math
OPLSEUA ...t 10-81}, See Math
OPLTOOP2..... e 16-29| See Utility
OPLTOOP3 ...t 16-29| See Utility
OPLTOOPA ... 16-29| See Utility
OPLTOOPS ...ttt 16-29| See Utility
OPLTOOPG ..ot 16-29| See Utility
OP2EXOP ...ttt 16-28| See Utility
OPZ2EXOPS ... 16-28| See Utility
OP2EXOPGceiiiieiiiiiiiiiiee ettt 16-28| See Utility
OP2SEI0... . 10-81} See Math
OP2SELEL....eiieeieiee et 10-81f See Math
OP2SEL2....e 10-81} See Math
OP2SEL3... et 10-81f See Math
OP2SEEA 10-81} See Math
OP2SEIS ...t 10-81f See Math
OP2SELB0.... oo 10-81} See Math
OP2SELB....ceeeeieee e 10-82] See Math
OP2SEEA ettt e, 10-83] See Math
OP2TOOPL ...t 16-29| See Utility
OP2TOOP3.. e 16-29| See Utility
OP2TOOPA ...t 16-29| See Utility
OP2TOOPS.... e 16-29| See Utility
OP2TOOPG.....ceiiiieiiiiiie ettt 16-29| See Utility
OP3BSEE0... e 10-81] See Math
OPBSELEL....eeieiiiieee ettt 10-81f See Math
OPBSEL2...ce e 10-81] See Math
OP3TOOPL ...t 16-29| See Utility
OP3TOOP2..... e 16-29| See Utility
OP3TOOPA ...t 16-29| See Utility
OP3TOOPS.... e 16-29| See Utility

T1-83 Plus Developer Guide Third Release January 25, 2002

Reference List — System Routines

OPASELO ...ttt 10-81f See Math
OPASELL.... i 10-81f See Math
OPATOOPL ... 16-29] See Utility
OPATOOP2. ... 16-29| See Utility
OPATOOPS ...t 16-29] See Utility
OPATOOPS....c e 16-29| See Utility
OPATOOPG......ceiiiiiiiiiiiiie et 16-29] See Utility
OPSEXOPG.....coeiiiiiiiiie et 16-28| See Utility
012 To1T L0 T JL0-81] See Math
OPSTOOPL.. .o e 16-29| See Utility
OPBSTOOP2......eoeiieeeee et 16-29| See Utility
OPSTOOP3 ... e 16-29| See Utility
OPBSTOOPA ...t 16-29| See Utility
OPSTOOPG ..ot 16-29| See Utility
OPBTOOPL.....coiiiiiiiiie et 16-29| See Utility
OPBTOOP2......ee e 16-29| See Utility
OPBTOOPS ...t 16-29| See Utility
OULPULEXPI .. See Display
P
PagedGetcooiiiiiiiecce e See Memory
Parselnp.......ccccc See Parser
PDSPGIPN. vt See Graphing and Drawing
PiXeITeSt .cceiiiiiiieie e See Graphing and Drawing
PIUSL .ot 10-84| See Math
PoiNtCmMd........ooooiiiii See Graphing and Drawing
PointON ..., See Graphing and Drawing
POPMCPIXOL ... See Floating Point Stack
POPOPL.....ooiiiici e, 4-12| See Floating Point Stack
POPOP3... . 4-12| See Floating Point Stack
POPOPS.....coieiiee e 4-12| See Floating Point Stack
POPREAE.........cueveeeeeeeeeeeeeeeeeeee e [4-13] See Floating Point Stack
PopRealOl......cccooooiiiiiiiiieeiee e, 4-14| See Floating Point Stack
POPRealO2.........coovvviiiiiiiiiiiiiii 4-14| See Floating Point Stack
PopRealO3.......cccoooeiiei e 4-14| See Floating Point Stack
POpRealOA4.........oovvviiiiiiiiiiii 4-14| See Floating Point Stack
POpREalOS ..., 4-14| See Floating Point Stack
POPRealOB.........ccovvviiiiiiiiiiiiiiiiiiie 4-14| See Floating Point Stack
POSNOOINT... ..o e See Utility
PEOR ...ttt See Math

T1-83 Plus Developer Guide

Third Release January 25, 2002

Reference List — System Routines

PUushMCPIXOL ..., 4-15| See Floating Point Stack
PUshMCPIXO3coovviiiiiiiiiiiiiiiiieieeeeeeeee 4-15] See Floating Point Stack
PUSNOPL ..., 4-16| See Floating Point Stack
PUShOP3 ..., 4-16) See Floating Point Stack
PUSNOPS ..., 4-16| See Floating Point Stack
PushReal.........ccccccvviiiiiiiiiiiiie, [4-17] See Floating Point Stack
PushRealOl ..., 4-18| See Floating Point Stack
PushRealO2..........ccccvvvviviiiiiiiiiiiiiiiiii 4-18) See Floating Point Stack
PushRealO3 ..., 4-18| See Floating Point Stack
PushRealO4 ... 4-18) See Floating Point Stack
PushRealO5 ..., 4-18| See Floating Point Stack
PushRealO6ccoevvviviiiiiiiiiiiiiiiiiiiiiie, 4-18) See Floating Point Stack
PULC . See Display
PUIMAD ..ottt See Display
PUEPS .o, See Display
PULS Lo, See Display
PULTOKSEING...ueiiiieeiieeiee e See Display
PULTOL e r e e eae See List
PUITOMALcvoveeeececeeeeeeeee e en s s See Matrix
R
RANGINIE ..ottt e et e e ee e e e e e e, See Math
=T o (o)1 1 USRS See Math
Rel_StatVar ... See Statistics
RCIANS ..ottt ettt See Utility
RCIGDB2oooiiiiieiie See Memory
RCIN oottt See Memory
RCISYSTOK ..o See Parser
RCIVAISYIM <ottt See Memory
L) GO See Memory
RCIY oo, See Memory
RECLSIBYLEcvivecececee et n et n e See 10
RECLSIBYLENC ...t e et eee e See 10
RECABYIEIOcucuieiieeeieeeeeeeeeeeteeee e n e See 10
REAIMMAL ... See Memory
Regraph ... See Graphing and Drawing
REIEASEBUFEN.........cocveveeeeeeeeeeeeeieeeeeeeee et See Edit
ReloadAPPENTIYVECS.uiiiiiiiiiiiiiiieeeeeee e See Utility
RESLOTEDISP ...t eeeeeeee e e ee e en e, See Display
RNGAIME ... See Math

TI-83 Plus Developer Guide R-12 Third Release January 25, 2002

Reference List — System Routines

RNAGUAIT.........oiiiiiiiiiie e 10-89| See Math
RIFX ettt See Math
ROUN. ...t See Math
RTOD ..ttt See Math
RTOP e 10-93| See Math
RUNINAICOT .. See Display
RUNINAICON ...eeiiccc e See Display
S
SAVEDISP ..ttt See Display
SENAABYLE ..o e e eee e s ene See 10
SENAVArCMAeeiiii e e See 10
SEetAlIPIOtSccoeiiieececee e, See Graphing and Drawing
SetFUNCM ... See Graphing and Drawing
SetNOrM_ValS ... See Display
SEtPANM ... See Graphing and Drawing
SEetPOIM....coiiii e, See Graphing and Drawing
SetSeqM.....oo See Graphing and Drawing
SetThlGraphDraw.............ccooeevvviviiiinnnnn. See Graphing and Drawing
SetupPagedPIruuiiiiiiiiiiiiiii See Memory
SEIXXOPL ..o See Utility
SEXXOPZ...oiiiiiiiiiiii See Utility
(Y0 0 6.0 (0] =S See Utility
SFONt_LEN ..o See Display
SN e See Math
SINCOSRAT ... e See Math
SINH .o, See Math
SINHCOSH......cviiii See Math
SOROOE ..ttt See Math
SrchVLStDN, SIChVLSUP ...cveveivieiccieciecveeeecieee e See Memory
SSUNGLENGN. ...ttt See Display
StMALEL.....c.oooi See Memory
STOANS ...t See Memory
STOGDB2 ...t See Memory
SEON <.ttt See Memory
SEOOTNET ...t See Memory
SEOR e See Memory
SORANG ... See Utility
SEOSYSTOK vttt See Memory
SHOT ittt See Memory

T1-83 Plus Developer Guide

Third Release January 25, 2002

Reference List — System Routines

STOTRELA. ..o See Memory
STOX oo See Memory
SEOY oot See Memory
SEICOPY oot See Utility
SHLENGEN .. See Utility
T
TAN e See Math
TANH oo 10-100] See Math
TanknF ... See Graphing and Drawing
TENX ettt See Math
THEtANGME.viiviieeceeeeceeeee et See Math
TRFEEEXEC ...ttt [13-10]See Parser
THMES2 .ottt See Math
TIMESPLS ... ceeeeeeee et See Math
TNGITIE .ot re e See Math
TOFTACcvveveeeeeeeeceeeeeeee s ee e sttt eeeeees See Math
TIUNC ..o See Math
TWOVArSEL.....cooviiiiiiiiiii See Statistics
U
UCLINES ..o See Graphing and Drawing
UNnLINeCMdccoeeieiiiiiiieee e, See Graphing and Drawing
UNOPEXEC......eeiveeeeeeeeeeee et sn et n e See Parser
\%
VertCmd ... See Graphing and Drawing
VPUIMAP....cc e See Display
VPULS .. See Display
VPUISN. ... See Display
VIOWHLDE ..., See Graphing and Drawing
X
XFEOL ..t See Graphing and Drawing
XIEOT oo, See Graphing and Drawing
XINBITIE .o e e See Math
XROOLY L.t nsnnnnnee See Math
Y
YOI See Graphing and Drawing
YNGIME oottt ettt See Math

TI-83 Plus Developer Guide R-14 Third Release January 25, 2002

Reference List — System Routines

Y T 0K ettt See Math
Z
ZEIOLOD ...t See Math
ZEIOOP See Math
ZEIOOP L. .. e e 10-114,|See Math
ZEIOO P 2 .. 10-114 | See Math
ZEr00OP . e 10-114,|See Math
ZMDECM ..o See Graphing and Drawing
A (0 | PP PPPPPPPPPPPPPPPRR See Graphing and Drawing
ZMINE oot See Graphing and Drawing
ZMPIEV. ..ottt See Graphing and Drawing
ZMSQUATE.......cceeeeiiiiiiieee e See Graphing and Drawing
ZMSEALS ... See Graphing and Drawing
A 1 1 1 [T UUPUPUPPRRSORRRIN See Graphing and Drawing
ZMUST ot See Graphing and Drawing
ZooDefault.........ccoeeeiiiii, See Graphing and Drawing

TI-83 Plus Developer Guide R-15 Third Release January 25, 2002

Glossary

Glossary

TI-83 Plus Developer Guide Third Release January 25, 2002

Glossary

ACC
Address

APD™
API

Applet
Archive
memory

ASAP
ASCII

Assembler

Assembly
language

Binary

Bit

ACC stands for accumulator.

A number given to a location in memory. You can access the location by
using that number, like accessing a variable by using its name.

Automatic Power Down™.

Application Programmer’s Interfacel] the set of software services available
to an application and the interface for using them.

A stand-alone application, usually in Flash ROM, with the associated
security mechanisms in place. See ASAP.

Part of Flash ROM. You can store data, programs, or other variables to the
user data archive, which cannot be edited or deleted inadvertently.

Assembly Application Program[] a RAM-resident application.

American Standard Code for Information Interchangel] a convention for
encoding characters, numerals in a seven or eight-bit binary number.

A program that converts source code into machine language that the
processor can understand, similar to compilers used with high-level
languages.

A low-level language used to program microprocessors directly. Z80
assembly language can be used on the T1-83 Plus to write programs that
execute faster than programs written in TI-BASIC. See Chapter 3 for
advantages and disadvantages.

A system of counting using 0's and 1's. The first seven digits and the
decimal equivalents are:
0 0
1
10
11
100
101
110
111 7

o Ol A WN B

See also Hexadecimal.

Short for binary digit — either 1 or 0. In computer processing and storage, a
bit is the smallest unit of information handled by a computer and is
represented physically by an element such as a single pulse sent through a
circuit or a small spot on a magnetic disk capable of storing either a 1 or a 0.
Considered singly, bits convey little information a human would consider
meaningful. In groups of eight, however, bits become the familiar bytes used
to represent all types of information, including the letters of the alphabet and
the digits 0 through 9. (Microsoft Encarta ‘97)

TI-83 Plus Developer Guide G-l

Third Release January 25, 2002

Glossary

Boot (code)

Byte

Calculator
serial number

Character

Compiled
language

Compiler
D-Bus

Decimal

E-Bus
Entry points

Execute
Flash-D

Freeware

Garbage
collection

TI:GRAPH
LINK™

Group
certificate

A small amount of software that resides in ROM:; therefore, it cannot be
overwritten or erased. Boot code is required for the calculator to manage the
installation of new base code.

A unit of information consisting of 8 bits, the equivalent of a single character,
such as a letter. 8 bits equal {0-255} and there are 256 letters in the
extended ASCII character set. Standard ASCII uses a 7-bit value (0-127),
thus there are 128 characters.

An electronic serial number that resides in a calculator’s Flash memory. It is
used to uniquely identify that calculator.

A single letter, digit, or symbol. Q is a character. 4 is a character. % is a
character. 123 and yo are not characters.

A language that must be compiled before you can run the program.
Examples include C/C++ and Pascal.

A compiler translates high-level language source code into machine code.

A proprietary communication bus used between calculators, the
Calculator-Based Laboratory™ (CBL™) System, the Calculator-Based
Ranger™ (CBR™) and personal computers.

The standard (base 10) system of counting, as opposed to binary (base 2)
or hexadecimal (base 16).

Enhanced D-Bus.

Callable locations in the base code corresponding to pieces of code that
exhibit some coherent functionality.

To run a program or carry out a command.

A PC program that is the integration of a PC downloader application with a
calculator application. When the Flash-D program is executed on the PC,
the calculator application is transferred to the calculator via a

TI-GRAPH LINK™ cable.

Programs or databases that an individual may use without payment of
money to the author. Commonly, the author will copyright the work as a way
of legally insisting that no one change it prior to getting approval. Commonly,
the author will issue a license defining the terms under which the
copyrighted program may be used. With freeware, there is no charge for the
license.

A procedure that automatically determines what memory a program is no
longer using and recycles it for other use. This is also known as automatic
storage (or memory) reclamation.

An optional accessory that links a calculator to a personal computer to
enable communication.

Used to identify several calculators as a single unit. This allows the group of
calculators, or unit, to be assigned a new program license using only one
certificate (instead of requiring a new unique unit certificate for each

TI-83 Plus Developer Guide G-2 Third Release January 25, 2002

Glossary

Hexadecimal

High-level
language

IDE

Immediate

Interpreted
language

Instruction

I/0 port

LCD port

Low-level
language

Machine
language

Mac Link
Marked Dirty

Memory

Microprocessor

Operating
System (OS)

calculator in the group). The group certificate must be used in conjunction
with the unit certificate.

Base 16 system, which is often used in computing. Counting is as follows:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.

Any programming language that resembles English. This makes it easier for
humans to understand. Unfortunately, a computer cannot understand it
unless it is compiled into machine language. See also low-level language.
Examples of high-level languages are C/C++, Pascal, FORTRAN, COBOL,
Ada, etc.

Integrated Development Environment.

An addressing mode where the data value is contained within the instruction
instead of being loaded from somewhere else. For example, in LD A, 17, 17
is an immediate value. In LD A, B, the value in B is not immediate, because
it is not written into the code.

A language that is changed from source code to machine language in real-
time. Examples are BASIC (for the PC and the Tl version, TI-BASIC) and
JavaScript. Interpreted languages are often much simpler, which helps
beginners get started and allows experienced programmers to write code
quickly. Interpreted languages, however, are restricted in their capability,
and they run slower.

A command that tells the processor to do something, for example, add two
numbers or get some data from the memory.

An input/output interface from the calculator to the external world. It allows
communication with other units, CBL™ and CBR™, and personal computers.

An output port that drives LCD display device for use on overhead
projectors. Available on the teacher’s ViewScreen™ calculator only.

Any programming language that does not look like English but is still to be
understandable by people. It uses words like add to replace machine
language instructions like 110100. See also high-level language.

Any programming language that consists of 1's and 0’s (called binary),
which represents instructions. A typical machine instruction could be
110100, which means add two numbers together.

Maclntosh resident link software that can communicate with the calculator.

The graph is marked as needing to be updated. The next system routine
that will affect the graph contents will cause the system to regraph all of the
equations selected thereby making the graph clean.

Memory is where data is stored. On the T1-83 Plus, the main memory is the
built-in 32K of RAM. This memory is composed of one-byte sections, each
with a unique address.

See processor.

The software included with every new calculator. OS contains the features
that are of interest to customers, as well as behind-the-scenes functionality

TI-83 Plus Developer Guide G-3

Third Release January 25, 2002

Glossary

Processor

Program

Program ID
number

Program
license

Register

Register pair

Run (Busy)
Indicator

SDK

Shareware

that allows the calculator to operate and communicate. In our newer
calculators, the OS is in Flash ROM, so the user can electronically upgrade
it with OS.

A large computer chip that does most of the work in a computer or
calculator. The processor in the TI-83 Plus is the Zilog Z80 chip.

A program is a list of instructions written in sequential order for the
processor to execute.

An ID number assigned to a particular software program. It is used during
the program authentication process to match the program licenses in a
unit/group certificate to the program being downloaded into the calculator.

A digital license purchased by a customer allowing the customer to authorize
the download/execution of a particular software program to a specific
calculator. The program licenses are assigned to and listed in the calculator
unit/group certificates.

A register is high-speed memory typically located directly on the processor.
It is used to store data while the processor manipulates it. On the TI-83 Plus
there are 14 registers.

Two registers being used as if they were one, creating a 16-bit register.
Larger numbers can be used in registered pairs than in single registers. The
register pairs are AF, BC, DE, and HL. Register pairs are often used to hold
addresses.

When the T1-83 Plus is calculating or graphing, a vertical moving line is
displayed as a busy indicator in the top-right corner of the screen. When you
pause a graph or a program, the busy indicator becomes a vertical moving
dotted line.

Software Development Kit[J a set of tools that allow developers to write
software for specific platforms.

Sometimes called User Supported or Try Before You Buy software.
Shareware is not a particular kind of software, it is a way of marketing
software. Users are permitted to try the software on their own computer
systems (generally for a limited period of time) without any cost of obligation.
Payment is required if the user has found the software to be useful or if the
user wishes to continue using the software beyond the evaluation (trial)
period.

Payment of the registration fee to the author will bring the user a license to
continue using the software. Most authors will include other materials in
return for the registration fee like printed manuals, technical support,
bonus or additional software, or upgrades.

Shareware is commercial software, fully protected by copyright laws. Like
other business owners, shareware authors expect to earn money from
making their software available. In addition, by paying, the user may then be
entitled to additional functions, removal of time limiting or limits on use,

TI-83 Plus Developer Guide G-4 Third Release January 25, 2002

Glossary

Signed
application

Silent link

Software
owner’s
account

Source code

TASM

TI-BASIC

Tl sighature

User Data
Archive

Unique
owner ID

Unit
certificate

Z80

ZDS

removal of so-called nag screens, and other things as defined in the
documentation provided by the program'’s author.

An application that has been digitally signed by TI.

Computer-initiated requestl] protocol version of communications between
the computer and the calculator.

An account set-up in the Tl database listing all of the program licenses
owned by a particular customer or group. The account also allows the
software owner to assign a particular program to a specific calculator.

A text file containing the code, usually in a high-level or low-level
programming language.

Table Assembler—a PC program that assembles source code for the Z80
and other processors. This has been one of the more popular tools for
developing calculator ASM programs.

The programming language commonly used on the TI-83 Plus. It is the
language that is used for PROGRAM variables. Its main drawback is that
these programs run slower, since it is an interpreted language, rather than a
compiled language.

A digital signature placed on secured documents/files such as unit and
group certificates, as well as software program images.

Storage for user data in the Flash ROM. In some cases, the user can
choose between the amount of Flash for applets versus user data.

An alphanumeric ID assigned to the owner of a software owner’s account as
a way of authorizing access to this account. Examples of the ID are mother’s
maiden name, social security number, birth date, etc.

A digital certificate signed by TI that lists all of the program and group
licenses issued to a specific calculator. The unit certificate also includes
owner ID information and the calculator serial number.

This processor is used in the TI1-83 Plus. Z80 assembler is the language
used to program the Z80 chip.

Zilog Development Studio a tool used by developers to write software for
Zilog products. This tool can be used to develop T1-83 Plus calculator
applications and ASM programs.

TI-83 Plus Developer Guide G-5

Third Release January 25, 2002

	Contents
	Overview
	System Routines - Display
	Bit_VertSplit
	CheckSplitFlag
	ClearRow
	ClrLCD
	ClrLCDFull
	ClrOP2S
	ClrScrn
	ClrScrnFull
	ClrTxtShd
	DispDone
	DispHL
	DisplayImage
	DispOP1A
	EraseEOL
	FormBase
	FormDCplx
	FormEReal
	FormReal
	LoadPattern
	Load_SFont
	NewLine
	OuputExpr
	PutC
	PutMap
	PutPS
	PutPSB
	PutS
	PutTokString
	RestoreDisp
	RunindicOff
	RunIndicOn
	SaveDisp
	SetNorm_Vals
	SFont_Len
	SStringLength
	VPutMap
	VPutS
	VPutSN

	System Routines - Edit
	CloseEditBuf
	CloseEdtiBufNoR
	CloseEditEqu
	CursorOff
	CursorOn
	DispEOL
	IsEditEmpty
	KeyToString
	ReleaseBuffer

	System Routines - Error
	ErrArgument
	ErrBadGuess
	ErrBreak
	ErrD_OP1_0
	ErrD_OP1LE_0
	ErrD_OP1Not_R
	ErrD_OP1NotPos
	ErrD_OP1NotPosInt
	ErrDataType
	ErrDimension
	ErrDimMismatch
	ErrDivBy0
	ErrDomain
	ErrIncrement
	ErrInvalid
	ErrIterations
	ErrLinkXmit
	ErrMemory
	ErrNon_Real
	ErrNonReal
	ErrNotEnoughMem
	ErrOverflow
	ErrSignChange
	ErrSingularMat
	ErrStat
	ErrStatPlot
	ErrSyntax
	ErrTolTooSmall
	ErrUndefined
	JError
	JErrorNo

	System Routines - Floating Point Stack
	AllocFPS
	AllocFPS1
	CpyStack
	CpyOxToFPSy
	CpyToxFPSy
	CpyToFPST
	CpyToFPS1
	CpyToFPS2
	CpyToFPS3
	CpyToStack
	PopMCplxO1
	PopOP1, PopOP3, PopOP5
	PopReal
	PopRealOx
	PushMCplxO1, PushMCplxO3
	PushOP1, PushOP3, PushOP5
	PushReal
	PushRealOx

	System Routines - Graphing and Drawing
	AllEq
	BufClr
	BufCpy
	CircCmd
	ClearRect
	CLine
	CLineS
	ClrGraphRef
	CPoint
	CPointS
	DarkLine
	DarkPnt
	Disp
	DrawCirc2
	DrawCmd
	DrawRectBorder
	DrawRectBorderClear
	EraseRectBorder
	FillRect
	FillRectPattern
	GrBufClr
	GrBufCpy
	GrphCirc
	HorizCmd
	IBounds
	IBoundsFull
	ILine
	InvCmd
	InvertRect
	IOffset
	IPoint
	LineCmd
	PDspGrph
	PixelTest
	PointCmd
	PointOn
	Regraph
	SetAllPlots
	SetFuncM
	SetParM
	SetPolM
	SetSeqM
	SetTblGraphDraw
	TanLnF
	UCLineS
	UnLineCmd
	VertCmd
	VtoWHLDE
	XftoI
	Xitof
	YftoI
	ZmDecml
	ZmFit
	ZmInt
	ZmPrev
	ZmSquare
	ZmStats
	ZmTrig
	ZmUsr
	ZooDefault

	System Routines - Interrupt
	DivHLBy10
	DivHLByA

	System Routines - IO
	AppGetCalc
	AppGetCbl
	Rec1stByte
	Rec1stByteNC
	RecAByteIO
	SendAByte
	SendVarCmd

	System Routines - Keyboard
	ApdSetup
	CanAlphIns
	GetCSC
	GetKey

	System Routines - List
	AdrLEle
	ConvDim
	ConvLcToLr
	ConvLrToLc
	DelListEl
	Find_Parse_Formula
	GetLToOP1
	IncLstSize
	InsertList
	PutToL

	System Routines - Math
	AbsO1O2Cp
	AbsO1PAbsO2
	ACos
	ACosH
	ACosRad
	Angle
	ASin
	ASinH
	ASinRad
	ATan
	ATan2
	ATan2Rad
	ATanH
	ATanRad
	CAbs
	CAdd
	CDiv
	CDivByReal
	CEtoX
	CFrac
	CIntgr
	CkInt
	CkOdd
	CkOP1C0
	CkOP1Cplx
	CkOP1FP0
	CkOP1Pos
	CkOP1Real
	CkOP2FP0
	CkOP2Pos
	CkOP2Real
	CkPosInt
	CkValidNum
	CLN
	CLog
	ClrLp
	ClrOP1S
	CMltByReal
	CMult
	Conj
	COP1Set0
	Cos
	CosH
	CpOP1OP2
	CpOP4OP3
	CRecip
	CSqRoot
	CSquare
	CSub
	CTenX
	CTrunc
	Cube
	CXrootY
	CYtoX
	DecO1Exp
	DToR
	EToX
	ExpToHex
	Factorial
	FPAdd
	FPDiv
	FPMult
	FPRecip
	FPSquare
	FPSub
	Frac
	HLTimes9
	HTimesL
	Int
	Intgr
	InvOP1S
	InvOP1SC
	InvOP2S
	InvSub
	LnX
	LogX
	Max
	Min
	Minus1
	OP1ExpToDec
	OPxSety
	OP2Set8
	OP2SetA
	Plus1
	PToR
	RandInit
	Random
	RName
	RndGuard
	RnFx
	Round
	RToD
	RToP
	Sin
	SinCosRad
	SinH
	SinHCosH
	SqRoot
	Tan
	TanH
	TenX
	ThetaName
	Times2
	TimesPt5
	TName
	ToFrac
	Trunc
	XName
	XRootY
	YName
	YToX
	Zero16D
	ZeroOP
	ZeroOP1, ZeroOP2, ZeroOP3

	System Routines - Matrix
	AdrMEle
	AdrMRow
	GetMToOP1
	PutToMat

	System Routines - Memory
	Arc_Unarc
	ChkFindSym
	CleanAll
	CloseProg
	CmpSyms
	Create0Equ
	CreateAppVar
	CreateCList
	CreateCplx
	CreateEqu
	CreatePair
	CreatePict
	CreateProg
	CreateProtProg
	CreateReal
	CreateRList
	CreateRMat
	CreateStrng
	DataSize
	DataSizeA
	DeallocFPS
	DeallocFPS1
	DelMem
	DelVar
	DelVarArc
	DelVarNoArc
	EditProg
	EnoughMem
	Exch9
	ExLp
	FindAlphaDn
	FindAlphaUp
	FindApp
	FindAppNumPages
	FindAppDn
	FindAppUp
	FindSym
	FixTempCnt
	FlashToRam
	InsertMem
	LdHLInd
	LoadCIndPaged
	LoadDEIndPaged
	MemChk
	PagedGet
	RclGDB2
	RclN
	RclVarSym
	RclX
	RclY
	RedimMat
	SetupPagedPtr
	SrchVLstDn, SrchVLstUp
	StMatEl
	StoAns
	StoGDB2
	StoN
	StoOther
	StoR
	StoSysTok
	StoT
	StoTheta
	StoX
	StoY

	System Routines - Parser
	BinOPExec
	FiveExec
	FourExec
	ParseInp
	RclSysTok
	ThreeExec
	UnOPExec

	System Routines - Screen
	ForceFullScreen

	System Routines - Statistics
	DelRes
	OneVar
	Rcl_StatVar
	TwoVarSet

	System Routines - Utility
	AppInit
	AnsName
	Chk_Batt_Low
	ConvDim00
	CpHLDE
	DisableApd
	EnableApd
	EOP1NotReal
	Equ_or_NewEqu
	GetBaseVer
	GetSysInfo
	GetTokLen
	Get_Tok_Strng
	IsA2ByteTok
	JForceCmdNoChar
	JForceGraphKey
	JForceGraphNoKey
	MemClear
	MemSet
	Mov7B, Mov8B, Mov9B, Mov10B, Mov18B
	Mov9OP1OP2
	Mov9OP2Cp
	Mov9ToOP1
	Mov9ToOP2
	MovFrOP1
	NZIf83Plus
	OPxExOPy
	OPxToOPy
	PosNo0Int
	PutAway
	RclAns
	ReloadAppEntryVecs
	SetExSpeed
	SetXXOP1
	SetXXOP2
	SetXXXXOP2
	StoRand
	StrCopy
	StrLength

	System Routines - Miscellaneous
	ConvOP1

	Reference List - System Routines
	Glossary

