TI-83 Plus Developer Guide

Thi rd Rel ease

Hyperlinks
Hyperlinked items are indicated with a thin gray border. All Table of Contents page references are hyperlinked to the appropriate page.

Important information

Texas Instruments makes no warranty, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding any programs or book materials and makes such materials available solely on
an “as-is” basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental,
or consequential damages in connection with or arising out of the purchase or use of
these materials, and the sole and exclusive liability of Texas Instruments, regardless of
the form of action, shall not exceed the purchase price of this product. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever against the use of
these materials by any other party.

The latest version of this Guide, along with all other up-to-date information for
developers, is available at http://education.ti.com.

© 1999, 2001, 2002 Texas Instruments Incorporated

Z80 is a trademark of ZiLOG, Inc.
IBM is a registered trademark of International Business Machines.
Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Table of Contents

Chapter 1: Introduction

TI- 83 Plus Developer GUIdecc.cvoveueeeeeeeeeeeeeeeeeeeeeee,
Conventions Used in this GUIide............ccccocciiiiiiiiiiinii, [
PUIPOSE OF thiS GUITE ...ttt
Structure of thisS GUIEccooviveiiieiiiciee e

Chapter 2: TI-83 Plus Specific Information

JAN o] (= To1 AU] PO
HArdWare LAYccoevvieeeei et e et e e
Z80 CPU and MEMOIYccooiiiiiiiiieee ettt 4]
Z80 RAM SHIUCIUIEoovvreeeeveeeeceeeeeeeteeeseeeeeiesees st eeses s eeeeee e
SYSEEM RAM ...ttt s et een s en s aeaens [6]
USEI RAM ... [6]
TEMPOTANY RAM......ooviieeite ettt te et eteeteene e [6]
FIOAtING POINt SLACKvveeeeeeieceeeieiee s 6]
Free RAM ... 7

(0] 01T 1o B = od S 7
SYMDOI TADIE ...t @
HAIAWAIE SEACKcuvevvevieeeeeeeeeeeeeeeteee e ee e es e en e teen e eeee e,
FIash ROM SIUCIUIEeoveeieeieeie ettt ettt eneas
= ToTo] f (@00 () I AN = PR
CertifiCatioN ANccicuvieeiiie et e et e e e e e e e e e e e nes 0]
Operating System (OS) Araccceeveeieieieeeee e
CertifiCAte LISt AT, .. eeeeeeeee et [LO]
User APPS (Calculator Software Applications)/Data Area................... fiol
Swap Area/User APPS/Data Al acocueeeeuveeiirieeiieeeiieeeeivee e a1
System Development ENVIrONMEeNt.........cccoeevvvviiiiiiiiii e,
SYSLEM ROULINESooveeieieetieete ettt et e et eteeeae e e ereeereeeend
RST ROULINES. ...t 2
SYSIEM RAM ATBAS.....ccvvieiitieeeitiee et e e et et e ette e et e et saae e e eareeenns 12
SYSEM FIAGS ...ttt ettt ettt n s e 12]

OP1 through OP6 RAM REQISIENS.........cveveveeeeeerireeeeeieeeeareeeeanes 7

Safe RAM Locations for Application Use...........cciiiiiiieirieiiinnnnnn. 18

TI-83 Plus Developer Guide Third Release May 28, 2002 [

Table of Contents (continued)

System Variables Ar€a...........cccvceveveveeeereeeeeereeeeseseeeeesseeenns fLol
System Variables that are Both Input and Output.............cccccvvvveeeennn. ol
System Variable CharacteristiCscccovvveeiiiiiieiniee e 9]
Storing and Recalling System Variable Values...........cccccccoovcvvvenneenn. 2a
System Variables that Are Output ONlycccceeviiiiiiiiiieeieee e
USEI RAM ..ottt 22
Variable Data StrUCIUIESuevieiiiiiiee e
NUMETIC BASEA DA TYPESveveeeeeeeeereeeereeeseeseseeeesesesesseeseseenessees [22]
Real Data TYpe STUCIUIEeviiiiiieie e
Complex Data TYPe StrUCUIEc.eeeeveeicreeecie et
Real List Data Type STIUCIUIEc.eeveeiiiiieeiiiieeerieee e
Complex List Data Type StrUuCIUIeccovvvevviieeeeeeiesiiieeeeee e
Matrix Data TYpe STIUCIUIEccovuiiieiiiiiie e 24
Token Based Data TYPESceocveeeiieeeiee ettt
T1-83 PIUS TOKENS.ooovoieaieieeieceise s kg
Program, Protected Program, Equation, New Equation, and String
DAta TYPE SIIUCIUIESveeeveeeeeee ettt eee e ete e ete et eeaeesaee e
Screen Image Data Type StruCtUrecccceeeiiiiiiiiiiiiiei e 25
Graph Database Data Type StrUCtUIecceeeviiciviieeeeeeieciieee e e
Unformatted AppVar Data Type StruCtUre..........occvevernireeeiiineeeninne.
Guidelines for AppVar USAge........cccuvvveeeeeeiiiiiiieiee e sesiiieenaa e pél
Variable Naming Conventions............cccceeeiieeeiiieeiiiiie e P6]
Variable Name SPellings............ccccccueueueueueueececcceeeees e sl
Predefined Variable Namescccccoviiiiiiiiii e
Variables: A—=Z and B......ccceeeeeieeiiiiieeeeeee e 28]
List VariableS: L1 — LBceveveveveeereeeeeeeeeeeeeeeeeeeeeesessnesennennans 8l
Matrix Variables: [A] — [J] «eooeeeeeeee e 28
Equation Variables: Y1 — YO, X1t — X6t, Y1t — X1t, r1 — r6, u(n),
V(2 L (2) NPT 2]
String Variables: Strl — StrO..........cccceeevevevereeeieieiceeeeeveeee e
Picture Variables: Picl — PiCOcccccviiiiiieiiiiie e 30}
Graph Database Variables: GDB1 — GDBOcccccooviiiiiiieneenne
VANADIET ANS ..., B1
User-Defined Variable Names ... Bl
USEI-NAMEA LISES. .. vvveeeeeeeeeeeeeeeeeeeeeee e eee e se s e e eseeesenenenenenenes
User-Named Programsoccveeeiiiiie i e e 32
USEr-Named APPVATSc.coueeeeeeeeeeeeeeeeteeeeeeeeeeeeese e seeaaeenns 33
Accessing User Variables Stored In RAM — (Unarchived)............
Accessing Variables that Are Not Programs or AppVars...............
Accessing Programs and AppVar Variables..............ccccovvvvinnnnnns 34
Output from a Variable Search on the Symbol Table

i Third Release May 28, 2002 TI-83 Plus Developer Guide

Table of Contents (continued)

Creating VariableS............c.ooueoiieeeeeee e
Storing to Variables............ouvvoiiii e 39
Recalling Variables............cc.covueiieeiiiee e, 40|
Deleting Variablesooociuiiiiiiee e 41
Archiving and Unarchiving..............oouuiiiiiiii i
REIALED ROULINES ..ottt et eee et ee e e naeeaeee e

Accessing Archived Variables without Unarchivingc....ccccvveee..n. 45
Manipulation ROULINESccueieeiueeeeeeeeieecee et eve e

LiSt EIEMENT ROULINESeeveeeeeee ettt ettt e e e e e e e e e e e e e e [49]

Matrix Element ROULINEScooeeiiiiiieiiiee e 49

Resizing AppVar, Program, and Equation Variables 50
SYMDBOI TABIE STUCTUIE.ccveeieeeie et 52
Floating PoiNt StACK (FPS)ov oot oo, I5¥i|
Naming CONVENLION.........ciiiie i 58
GeNEral USE RUIES.........veeeieeeeeeeeeeeeeeee e B8

FPS SyStem ROULINEScoouveveeeeieeeeeeeeeteeeeee e [59]

FPS Allocation ROULINESceivieiiiiiiiiiiee e e e 59

FPS Deallocation ROULINEScccccveeiiieiiiiieciec et 60

Copy Data To and From Existing FPS ENtrieS........cccccceveevveverierenane. 61

DIIVEIS LAYET .ottt e e
(=) Lo Y=o [
D] =Y USSR
Displaying Using System ROULINES...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiineenns 71
Display Utility ROULINES........c..ccoveiereiieieieceeeeeeeee e
DISPIAYING TEXL.......vveeeeeeeeeeeeeeeesseresese et n s s s s e
Formatting Numeric Values for Displaycccccvviiimiiiiiiiiiiiiiiiiinnnd el
ENEY POINES ...t e e en e
Modifying Display Format Settings..............uuuuuuiiiiiimiiiiiiiiiiiiiiiiiiiinnnnns
Writing Directly to the Display DrVEr ... |
Reading the Display Driver After Setting X or Y Coordinates 80

(07311 7211 A 010 11 (o) FEN SO 82
SPlit SCrE@N MOUESceeeveeeeeeeeeeeeeeeeeeee e B2
Graphing and Drawing — What's the difference?...........ccccccvvnnnnnn.
DIAWING. ...ttt ettt ettt ettt ettt ettt et et e et e beaae et e e eteareeae e
(€10 o1 o USRS 84
Graphing and Drawing Utility Routines...............cccccoiiiiiiiiieieiiieeeeen 84|
Drawing ROULING SPECIFICSeeiiiiuiiiiiiiiiiie e
Graphing Routine SPecifiCS..........cooovviiiiii

T1-83 Plus Developer Guide Third Release May 28, 2002 i

Table of Contents (continued)

Graph WINDOW SEttNGS......ccvveveeeerieeieeieeeeeeeeseseeseseeseneeeeeenenen,
Graphing in a Split Screencccooeeeiin . B8
Graphing Routines and System Flags.........ccccocveviiiiiiiiiiiiiiiinns
RUN (BUSY) INAICALON ...ttt 91
APDO (Automatic Power DOWND)........c.ccoveveerrereeeeieeeeeeeeeeeeeeneen, [92
g = T
Tools and UtilitiesS Layer ..o 99
Error HANAIEIS.coivieeecee e
Nested Error HANAIEISoovveeeeeeeeeeeeeeeeee e
Utility ROULINES ... 102
FI0AtiNG-POINt MAN ..ot o2
Miscellaneous Math FUNCHIONSuuuuuiuriiiiiiiiiiiiiiiiieiiiiiineeeiinneennane.
Floating-Point Math Functions that Output Complex Results...... 104
Complex Math.........coooii e 105
Other Math FUNCLONScceouiivieeieieeeecte et [1o7l
U aToii[o] g I Y= 1 U= U1 T o R 108
Parse ROULINEcoiiiiieeiiiiiie ettt e e e e e 108]
Temporary Variables...........coooiiiiiiii e
Using Temporary Variables ..o,
Managing Temporary Variablesccccccovviiieiiiiiiiciiee e,
Deleting Temps and Setting (pTempCnt)ccooevirriviiiiinieennnn.
Working with Tl Language Localization Applications....................
Entering and Exiting an Application Properlyccccc
17 1310 B 1o o =S [1ig
11] e o L3RRS 115l
TR @Y [f16]
Stand-alone with Put Away Notification...........cccoeeeiieiiiiiiiiiiiiiienn. f17]
SEArt-UP COUC.....ceiiiiiiiiieee et 118
PUL AWAY COUE ...ttt aneas

Chapter 3: Application Development Process

Programming LaYerccocoiiiiiiiieieiiie e 120
TI=BASIC PrOgramsSuuuuuuimiiiiiiiiiiiiiieeeeee ettt aa e e eeaeeeeeaaaaaaaaens 120
ASM PrOQIAMS.vveeivieiereeeteeeeteeseeeeteeeeteeseeseteesaesasesanseeseeassesaeeeas
APPLICALIONS. ...t et 21
ASM Versus APPlICAIONSccvereeiiiriee e et [z21

iv Third Release May 28, 2002 TI-83 Plus Developer Guide

Table of Contents (continued)

Development Systemccooooviiiiiiiiii e 121

Using the Simulator System — Requirements for Getting Started [121]
Creating an Application for Debugging — One-Page and Multi-Page

Y o o
A Brief Overview of Certificates and Application Signing..............
Creating Applications that Fit On One Pagecccceeeveeeeveeennnn, 122
The Hello APPlICAtIONcooviviiiiiiiiiiie
ACCESSING SYSIEM RESOUICESceviiiiiiiiiiiiiiieeeieeee e
Application HEAAErSc.coveveeeeeeeieeeeeeeeee e
Header Creation...........ooovviiiiiiiiiiiiiiiieeeeeeeeeeeeee e 123
Calling System ROULINESccvevviiriiriirieieciecie e 23
Accessing System Variablesccccoeeiiieieiiceceeeeeee 23
DefiniNng @ StrNG.....covvviiiiiiiiiiieeeeeeeee e
Erasing the SCreen..........ooovvviiiiiiiii
Printing Text to the SCreen...........oovvvvvviiiiiiii 124
CopYiNg the StrNG......c.uviie e [24
System RAM REQISIEISuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiinieeeeeennnneneennes 124
Reading @ KEY PreSS........coiviiuiiieiiecieecie et
EXiting an ApPlCAtioNccecviiieieeieeececeeeee e 23]
Creating a Multiple Page Applicationccovvvviiiiiiiiieeeeeeeeeiis
Branch Table ENtriES.......uuuuuueieiiiiiiiiiiiiiiiieieeeeseessseeeeesseeeeeseeeeeeeeeneeene
Branch Table Placement..............uuviiiiiiiiiiiiiiiiiiiiiiiiieeeeeees 126
Branch Table Equate File.............ccooriiiiiiii 126
Making Off-Page Calls and JUMPSc.covevveireireeieieciecre e 26l
Creating a Zilog Developer Studio Project..................... 127
Creating the Project ... 127
Adding Files t0 the PrOJECtcccviveeeeeee e
Project SEtiNGS....cuvuuiii i 127
Building the Application.............ooooo 128
Loading the Application into the Simulator.............cccccccevvieeiieeenns 129
Debugging the Applicationcccceeviieiiee i,
Signing the APPlICAtIONcoceeviiieeieieceece e,
Downloading the Application............cccooeoiiii 134

Chapter 4: Development Tools

Development Architecture........cccoiiiiiiiiiiiiii, 136

T1-83 Plus Developer Guide Third Release May 28, 2002 \'

Table of Contents (continued)

Z80 Development Systemccccoevveiiiiii i, 136

INStallation ... 136

Tl Software Simulator and Debuggerc.cccooeevveieens 136

INEFOAUCTION ...ttt [136]

INSLAIALION ...ttt eae e

GEtING STAME ...ttt ettt ee e

BreaKPOINtScccvvieeiiiee ettt et

Address WatCh POINtS..........ooviieiiiiiiiiiiiiiicee e I47]

Trace OPUIONS ..ovuiieiiiiii e e e e e e e eaaaaas 142

CPU VIEW WINAOW ..ottt 143

Disassembly View WINAOWcooiiiiiiiiiiiiccccien e 144

Flash VIEW WINQOW..........ccouiiiiiiiiec et

Flash Monitor WINAOW............uuuuiiiiiiiiiiiiiie e 145

RAM VIEW WINGOW. ...t e e e

RAM Monitor WINAOWcoooeiiiiiieieeieieeeiie e 147

Memory Map WINAOWcooiiiiiiiieciiie et 148

Calculator Simulator WindOowcceuviiiiiiiiniiiiiiiiiiiie e 148

SYMDBOl TabIe ... 150

Trace LOg WINAOWuiiiiiiiiecceie e 150

@ oo I YA/ T (o [0 1 U 152

Loading Applications and RAM Filescccoovoviiiiiiiiiiiiieeecei, 152

LINK SEHNGS c.vvniieiiiiii e e 154

Key Press Recording and Playback..........c......ccooooiiii 155
Save/Display/Compare Calculator Screens............ccceeeeevvvieeeennns 156

Terminating @ SESSIONuiiiiiiiiie e e 156

Support in Writing AppliCatioNSccocvviviiiiiiiiii e 156

GlOS S AN e 151
TI83 Plus “Large” Character FONtS........c.cccoeveviiiiiiiiiiecineee 156
T1-83 Plus “Small” Character FONntS.........cccooevviiiiiiiiiiiieeeenn. 163

Vi Third Release May 28, 2002 TI-83 Plus Developer Guide

Figures

Fig. 2.1: TI=83 PIUS ArCHILECIUE ...ttt e et s e e eeenas
Fig. 2.3: Z80 MEMOIY SPACEvecveeeeeieeeeeeeetee et eeeeeeeetee e e e et e e eassessaeesteeeteeeeeresareesteeeteseeereesree e
Fig. 2,20 TITB3 PIUS RAM w....oooiiiieiiecseceseeseeesees oo |
Fig. 2.4: TI=83 PIUS RAM SIIUCIUIE........ecveveeeeieeeiee e eeeeeesee e e e ete e e etestesaeeaeeene e seenas 5]
Fig. 2.5: TI=83 Plus FIash ROM StrUCLUIE.......ccooii i
Fig. 2.5b: TI-83 Plus Silver Edition Flash ROM Structureccccooviiiiiiiiiiiciiicccec e
Fig. 2.6: SYymbol Table StrUCTUIEcoviiiiii e e e e
Fig. 2.7: Floating Point Stack StHUCIUIEcoiiiiiiiiiiii e B7
Fig. 2.8: Calculator SCAN COAEooeiiiiiii e e e e
Fig. 2.9: Home Screen Display Mappingcoiiiii e e e
Fig. 2.10: Pen Display Mappingcoooee e it e e e e e e e e n e e e 74
Fig. 2.11: COMMANA VAIUES ...ttt et et e ettt e e e e e ee e e eee e [77]
Fig. 2.12: PiX€l COOMINALESccvveiveeitieeitieeeee et etieeteeeee et e steeeteeeeteeeaeesraeaeteeseeesreeeereeaneeend 85
Fig. 2.13: Graph WINDOW SEttiNGc.uuvviiiieeiiiiiiiiii e ettt e ettt e e eeiaaae e e e e e enaanees
T 2 S o o Tl oV SRS
Fig. 2.15: TI=83 PIUS SYSIEM RAMootiiiiii ettt e e 112
Fig. 2.16: CONTIOI FIOW ... 116
Fig. 2.17: EVENE SEOUEINCEeiieiiieeiiie et e et e aiee e et e e snteeesstee e saeeaaseeeaneeesnseeesnseeeanseeenneeeenes
Fig. 2.18: Application LOBUET PrOCESSoiiiieieeieee e 119
Fig. 3.1: Application Development FIOW ... 119

XViii Third Release May 28, 2002 T1-83 Plus Developer Guide

Tables

TablE 2.1: SYSEM FIAGS ...eoveeveeieieceee et eeee e e et ee et e e te e e et e s teeeteeeeeneeeseeeteeeeeeneeanee e
TADIE 2.2: OP REGISIEISecevcveeeeeceeeteee et teee ettt et ee et ee e ee et e s et e s et e s ete s ste s eaeneeennaee
Table 2.3: Transfer one OP register to another (11 byte Operation)ccccccveeeeeeinniniiiiicinns
Table 2.4: Exchange one OP register with another (11 byte operation)cccooeiiiiiiiiinnnnnn.
Table 2.5: Load a floating-point value into an OP register (9 byte operation)ooeeeieeeee
Table 2.6: Miscellaneous floating-point utility routines in OP registerscccccvveeeveeeeeennnnnnnd
Table 2.7: Set an OP register to all zeros (11 byte Operation)..............ccccueeeeeemmmmmmemenemeeiennninnnnd
Table 2.8: Variable Name, RAM Equate, and SysTok Value............cccccoeeiiiiiiiiiiiiiiiiiiiieeee
Table 2.9: Floating-Point NUMDEr FOIMMALuuuiiiiiiiiiiiiiiiiiiiiiiiiiieiii e
Table 2.10: Variable Name FOIMALuuuuiiiiiiiiiiiiiiiiiiiiiiiieiib bbb eeeeeeenennnnne
Table 2.11: Format of Archive Stored Variables...............uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeneeeees
Table 2.12: Format of Archive Stored VariableS...........oouiieiiiiiiii e
Table 2.13: Program, APPVar, GIOUP i i uueeeeueeeuueeeneennnesnsssssnnsnssnsssssnsssssssessssesseeeeeesnennnene
TADIE 2,147 LISTS....eeiueiiteeite ettt ettt et e et et e s e et e e be e be et eeae e e b e et e e te et e raeereeeteeneenee e
Table 2.15: Real, Cplx, Mat, EQU, GDB, PiCL..........ouiiiiiii e
Table 2.16: FOrmMUIA EXAMPIEc.ooueiuiiiiieeieeeete ettt e et e e eae e
Table 2.17: Floating-Point Basic Math FUNCLIONScooiiiiiiiiiiiie e 102

Tab le 2.18: Trigonometric and Hyperbolic FUNCLIONSoooiiiiiiiiiiiee e 103

Table 2.19: Floating-Point Power and Logarithmic Math Functions.................cccccvviiiiiiiiiinnnns
Table 2.20: Floating-Point Miscellaneous Math FUNCHONS................ccoii,
Table 2.21: Complex Math Basic MH1 FUNCHONSuuuuiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeees
Table 2.22: Comple Math Power and Logarithmic Math Functions.................ccccooeiiiiiinnn
Table 2.23: Complg Math M iscellaneous Math FUNCLIONS.............ouvviiiiiiiiiieiee
Table 2.24: Temporary VariableE Xampleuuuuuiiiiiiiiiiiiiiiiiiiiie e
Tab e 2.25: Language TaADIEcciiuiiuiiiiieieie ettt ettt an,

TI-83 Plus Developer Guide Third Release May 28, 2002 XiX

Introduction

TI-83 PLUS DEVELOPER GUIDE

This guide contains information necessary to develop applications for the TI-83 Plus
calculator. It addresses basic environmental specifics and development guidelines. This
guide covers TI-83 Plus calculator specific information, processes, and development
tools.

The TI-83 Plus Developer Guide is one of a set of documents supporting the TI-83 Plus
calculator. The set includes:

» TI-83 Plus Graphing Calculator Guidebook — Describes how to use the calculator
(provided with the TI-83 Plus calculator).

e TI-83 Plus Tutorial — Provides examples that introduce the developer to application
creation.

e TI-83 Plus User Interface Guide — Provides information on the design and
construction of the user interface.

To access these guides visit our web site.

Conventions Used in this Guide

The following conventions were adopted for this guide to help make the material easier
to read.

Program text: All of the program examples are in a non-proportional font that can be
distinguished from the guide text.

LD HL, L1nane
B CALL Mov9ToOP1 ; OP1 =1list L1 nane
B CALL Fi ndSym ; look up list variable in OP1

Syntax: Program instructions (commands and directives) are in all upper case letters.

Example:
B CALL routine

Optional parameters: These parameters are enclosed in square brackets. Part of a
program instruction may be in italics to describe the type of information.

Example:

[label][:] oper ation [oper ands] [; coment]

TI-83 Plus Developer Guide Third Release May 28, 2002

2 Chapter 1: Introduction

Program layout: The program statements appear in columns.

Example:
Thi sl sALabel :
LD A5
B _CALL Syst enRout i ne ; call to a systemroutine
DEC A
JR NZ, Thi sl sALabel
RET

Purpose of this Guide

The types of programs that can be created on the TI-83 Plus calculator include
RAM-based TI-BASIC programs, RAM-based assembly programs, and

Flash ROM-based applications. This guide addresses Flash ROM-based application
development and RAM-based assembly programs.

Structure of this Guide
» Chapter 2 provides an in-depth view of the TI-83 Plus physical and logical memory
structures, and the various drivers, tools, and utilities available to the developer.

» Chapter 3 presents several processes including the application development
process, the signature process, the testing process, and the release/distribution
process.

» Chapter 4 provides a view of the various development tools.

TI-83 Plus Developer Guide Third Release May 28, 2002

T1-83 Plus Specific
Information

ARCHITECTURE

Fig. 2.1 represents the TI-83 Plus architecture, which is composed of several layers
and elements.

Programming

Tools and Utilities

Drivers

Hardware

Fig. 2.1: TI-83 Plus Architecture

The Hardware layer contains the functional components of the unit — the Z80
processor, Random Access Memory (RAM), Flash ROM (also called Flash), Read Only
Memory (ROM), and Tl BASIC (not included in this guide).

The Drivers layer contains assembly language-controlled functions such as the keypad,
battery, display, and input/output.

The Tools and Utilities layer contains the elements that provide text, drawing tools,
and utility routines.

The Programming layer contains the user interface — screen, keyboard, and the basic
unit functionality. In addition, it provides the capability to load Tl BASIC programs
(keystroke), assembly programs that execute in RAM, and application programs that
execute in Flash ROM.

This chapter explains the Hardware layer, Drivers layer, and Tools and Utilities layer.
Chapter 3 explains the Programming layer.

TI-83 Plus Developer Guide Third Release May 28, 2002

4 Chapter 2: TI-83 Plus Specific Information

HARDWARE LAYER

Loading and debugging an application requires a general understanding of the memory
layout of the calculator.

Other manuals and guides cover TI-83 Plus operation including keys, screens, menus,
etc. This discussion covers the TI-83 Plus internal hardware components —
Zilog Z80™ CPU, RAM, and Flash ROM.

Z80 CPU and Memory

The TI-83 Plus uses a Z80 processor with a 64K byte logical address space. To provide
more than 64K bytes of physical RAM, this logical memory space is divided into four
16K byte pages (see Fig. 2.3). Physical memory is also divided into two 16K byte pages
(see Fig. 2.3), and a physical page is mapped into each logical page as it is needed.

There are two types of physical memory in the calculator — Z80 RAM and Flash ROM.
The following sections address the composition, structure, and uses of these memory
types.

e 780 Logical Memory Space

The Z80 logical memory size is 64K bytes, which is divided into four 16K byte
pages — 0000h to 3FFFh, 4000h to 7FFFh, 8000h to BFFFh, and CO00h to FFFFh.
A physical memory page is mapped into each logical page.

0000h
4000h 16K Always Flash ROM Page 0 3EEEh
8000h 16K RAM Page 0,1 or Flash ROM Pages 0-31 7EEEh

16K RAM Page 0,1 or Flash ROM Pages 0-31
C000h BFFFh

16K Always RAM Page 0

FFFFh
Fig. 2.3: Z80 Memory Space

The 16K byte address space from 0000h to 3FFFh is ROM page 0 from the Flash
ROM. It is always present.

The 16K byte address space from 4000h to 7FFFh is used for swapping a 16K byte
ROM page from the Flash ROM. This allows the TI-83 Plus system to extend
beyond its 64K byte physical addressing capabilities.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

/80 RAM Structure

Z80 Physical RAM Structure

TI-83 Plus physical RAM consists of 32K bytes starting at address 8000h.

8000h

16K

Page 2

C000h
16K

Page 3

Fig. 2.2: TI-83 Plus RAM

BFFFh
FFFFh

The TI-83 Plus has 32K bytes of RAM. The system code partitions the RAM into a
number of areas, which it uses to maintain different types of information. Applications
that need RAM must reuse some of the RAM not currently in use by the system code.
They must request an allocation from the system code User RAM area. Fig. 2.4 shows
how RAM is partitioned.

System RAM
(Fixed Size)

User RAM
(Grows Up)

Temporary RAM
(Grows Up)

Floating Point Stack
(Grows Up)

Free RAM

Operator Stack
(Grows Down)

Symbol Table
(Grows Down)

Hardware Stack
(Fixed Size)

Addr
8000h

FFFFh

Fig. 2.4: TI-83 Plus RAM Structure

Legend

Fixed Area

Dynamic Area

Fig. 2.4 shows the addresses of Z80 logical address space. RAM is always mapped into
the 32K space beginning at logical address from 8000h to FFFFh. The areas (System

TI-83 Plus Developer Guide

Third Release May 28, 2002

6 Chapter 2: TI-83 Plus Specific Information

RAM and Hardware Stack) at each end of RAM are fixed size. All other areas are
dynamic. The positions of the areas in RAM with respect to each other never changes
and never overlaps; however, their sizes grow and shrink and boundaries move as the
calculator operates. The area labeled Free RAM is a leftover area. As the other areas
grow, they push into the Free RAM area making it smaller. As the other areas shrink,
the Free RAM area gets larger.

Following is a brief overview of each of these areas in RAM.

System RAM

This area contains system preallocated RAM structures.

» System Flags (Modes, Indicators)

* System Variables (for example, Xmin, Ymin...)
e OP1 through OP6 RAM Registers

* Memory Pointers

» Safe RAM Locations for Applications Use

» State Monitor Control RAM

* Graph Backup Screen — bit image

» Utility Backup Screens (two) — bit image

» Text Backup Screen

User RAM

Variables created by the calculator user are stored in User RAM. Each variable stored in
User RAM has a Symbol Table entry associated with it.

Temporary RAM

This area is used during equation parsing and execution. It contains the data for the
temporary variables that are created during parser execution. Some applications may
need to perform housekeeping of this area if they invoke the equation parser and if
temporary variables are returned as a result.

Floating Point Stack

This area is used during equation parsing and execution. It provides temporary storage
outside the User RAM area.

Free RAM

This is the RAM that is currently not in use. The arrows in Fig. 2.4 show that the
structures below and above Free RAM grow toward it.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 7

Note: Applications should never use this area. Information about which RAM areas are available for
applications will be provided, as well as how to create variables for long-term storage of data.

Operator Stack

This area of RAM is used by the system code for math expression evaluation and
equation parsing (execution). No detailed description of this RAM area is provided since
applications do not use the Operator Stack.

Symbol Table

This area of RAM is used to keep track of all of the variables, resident in both RAM and
Flash ROM. The names, data types, pointers to the data, and where the variables reside
in RAM or in Flash ROM (archived) are stored in the Symbol Table.

Hardware Stack

This is the area to which the Z80 Stack Pointers (SP) register points. This stack area is
400 bytes. The Hardware Stack starts at address FFFFh and it grows from high to low
memory.

There are no safeguards against overflowing the stack and corrupting other RAM areas.
The amount of space allocated for the stack should be sufficient for applications needs.
Applications should avoid the use of recursive routines that can easily and quickly
overflow the Hardware Stack. The Hardware Stack should not be used for saving large
amounts of data. Using the Hardware Stack to save register values upon entry to
routines should not cause problems.

None of the TI-83 Plus system routines use recursion that will overflow the Hardware
Stack.

TI-83 Plus Developer Guide Third Release May 28, 2002

8 Chapter 2: TI-83 Plus Specific Information

Flash ROM Structure

The TI-83 Plus Flash ROM is composed of 512K bytes divided into 32 pages, each of
which is 16K bytes in size. Fig. 2.5 represents the Flash ROM structure.

00000 Addr Page(s) Size
oS 03 - 00 03-00 64 K
oS 07-04 07 -04 64K

SWAP/USER DATA 0B -08 11-08 64K
SWAP/USER APPS/DATA OF -0C 15-12 64K
USER APPS/DATA 13-10 19-16 64 K
USER APPS/DATA 15-14 21-20 32K
oS 1B-18 27-24 64K

1b-1C 29 -28 32K
1E 30 16K
1F 31 16K

Fig. 2.5: TI-83 Plus Flash ROM Structure

7FFFF

Legend

SWAP and/or User APPS Area

Update System (OS) Area

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 9

The TI-83 Plus Silver Edition Flash ROM is composed of 2048K (2M) bytes divided into 128
pages, each of which is 16K bytes in size. The structure is generally the same as the TI-83
Plus except for the inclusion of 96 additional 16K pages (24 additional 64K sectors).

The TI-83 Plus Flash structure chart (Fig. 2.5) is correct up to page 14h; at that point, the TI-83
Plus Silver Edition includes more data pages. The TI-83 Plus Silver Edition also has OS
residing at the high 8 pages of Flash, 78h...7Fh. The TI-83 Plus high memory is 18h... 1Fh.

00000 Addr Page(s) Size

Legend

SWAP and/or User APPS Area

Update System (OS) Area

SWAP/USER DATA O0Bh-08h 11-08 64K
SWAP/USER APPS/DATA OFh-0Ch 15-12 64K
USER APPS/DATA 13h-10h 19-16 1334K
USER APPS/DATA 67h—14h 103-20 32K
USER APPS/DATA 69h—68h 105-104 32K
FUTURE OS USE 77h—6Ch 119-108 192K

7Bh—-78h 123-120 32K

7Dh -7Ch 125-124 32K
7Eh 126 16K

7Eh 127 16K Fig. 2.5b: TI-83 Plus Silver

FFFF Edition Flash ROM structure

TI-83 Plus Developer Guide Third Release May 28, 2002

10 Chapter 2: TI-83 Plus Specific Information

The explanations of some Flash ROM areas below are for informational purposes only.

Boot (Code) Area

This area contains the following unalterable items.

* Boot-strap code

e System initialization code
» Software validation routine
* Program download routine
e Software product ID

e Product code update loader

Certification Area
This area contains program authentication information.

» Calculator serial number

* Unit certificate public key

» Date-stamp public key

» Date-stamp certificate

» Unit certificate and license status

* Group certificates

Operating System (OS) Area

This area contains the operating system of the calculator — math, display, keyboard,
1/0, etc. routines.

Certificate List Area

This area contains a list of unit certificates for the specific calculator.

User APPS (Calculator Software Applications)/Data Area

This area is shared by applications and variables archived by the user for long-term
storage.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 11

Swap Area/User APPS/Data Area

This area is dynamically allocated for use by the system as needed in the space
indicated in Fig. 2.5 and 2.5b.

System Development Environment

All TI-83 Plus applications are developed in Z80 assembly language. Chapter 3 contains
more specific information and examples. This section provides in-depth information
about the use of System RAM, User RAM, Floating Point Stack, etc. (see Fig. 2.4).

System Routines

Entry points for a set of TI-83 Plus system routines are provided in the TI-83 Plus
System Routine Documentation (separate document). A list of entry point equated
labels is provided in the file, TI83plus.inc. Later in this chapter, source code examples
are included with detailed explanations of how to access system routines.

To access these system routines use the Z80 RST instruction. Two macro-instructions
(macro) are provided for simplification. Each of these macros uses three bytes of code
space.

If your assembler does not support macro calls, substitute:

B _CALL | abel

with

RST r BR_CALL
DW | abel
B_JuwP | abel

with

CALL BRT_JUMPO
DW | abel

The following section is a detailed explanation of the various RAM areas shown in
Fig. 2.4.

TI-83 Plus Developer Guide Third Release May 28, 2002

12 Chapter 2: TI-83 Plus Specific Information

RST Routines

The Z80 restart instruction, RST, can be used in place of B_CALL for some entry points.
Using the RST instruction only takes one byte of ROM space as opposed to three bytes
for a B_CALL. There are five routines set to use this method of access. These were
chosen because of high-frequency use in the operating system.

e RST rMov9ToOP1 used instead of B_CALL Mov9ToOP1
e RST rFindSym used instead of B_CALL FindSym

e RST rPushRealO1 used instead of B_CALL PushRealO1
« RST rOP1ToOP2 used instead of B _CALL OP1ToOP2
e RST rFPAdd used instead of B_CALL FPAdd

Details on these routines can be found in this chapter or in the System Routine
Documentation.

System RAM Areas

The details about system RAM follow.

System Flags

This area of RAM is used for bit flags. The TI-83 Plus accesses these flags through the
Z80's IY register. The 1Y register is set to the start of this flag area and does not
change, resulting in easy bit manipulation.

Example:

SET trigDeg, (I Y+trigFl ags) ; set to degree angl e node
trigFlags is the byte offset from the start of the flag area.

Some system flags that an application might use are listed in Table 2.1, along with
information needed to support basic ASM programming on the TI-83 Plus.

The values for these symbols are located in the include file, TI83plus.inc.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

13

Flag Name lY Offset Equate Description Comments
trigDeg trigFlags 0 = radian angle mode
1 = degree angle mode
plotLoc plotFlags 0 = write to display and buffer Determines whether the graph line
1 = write to display only and point routines draw to the
display or to the graph backup
buffer, plotSScreen.
plotDisp plotFlags 0 = graph screen not in display
1 = graph in display
grfFuncM grfModeFlags 1 = function graph mode
grfPolarM grfModeFlags 1 = polar graph mode
grfParamM grfModeFlags 1 = parametric graph mode
grfRecurM grfModeFlags 1 = sequence graph mode
graphDraw graphFlags 0 = graph is up to date
1 = graph needs to be updated
grfDot grfDBFlags 0 = graph connected draw mode
1 = graph dot draw mode
grfSimul grfDBFlags 0 = sequential graph draw mode
1 = simultaneous graph draw mode
grfGrid grfDBFlags 0 = graph mode grid off
1 = graph mode grid on
grfPolar grfDBFlags 0 = graph — rectangular coordinates
1 = graph — polar coordinates
grfNoCoord grfDBFlags 0 = graph coordinates off
1 = graph coordinates on
grfNoAXxis grfDBFlags 0 = graph draw axis
1 = graph no axis
grfLabel grfDBFlags 0 = graph labels off
1 = graph labels on
textEraseBelow | textFlags 1 = erase line below small font when Deals with displaying small variable
writing small font font characters, when set the pixels
below the character displayed are
cleared. See routines VPutMap
and VPutsS.
textinverse textFlags 1 = write in reverse video Affects both the normal 527 font

and the small variable width font.

Table 2.1: System Flags

TI-83 Plus Developer Guide

Third Release May 28, 2002

14

Chapter 2: TI-83 Plus Specific Information

Flag Name Y Offset Equate Description Comments
oninterrupt onFlags 1= key interrupt occurred The key is interrupt driven, but
it does not automatically stop
execution. Flag is set by the
interrupt handler when the key
is pressed. An application must poll
(test) this flag to implement the
key press as a break.
statsValid statFlags 1 = stat results are valid
fmtExponent fmtFlags 1 = scientific display mode Resetting signifies NORMAL mode
setting.
fmtEng fmtFlags 1 = engineering display mode Resetting signifies NORMAL mode
setting.
fmtReal fmtFlags 1 = real math mode See Comment 1 below.
fmtRect fmtFlags 1 = rect complex math mode See Comment 1 below.
fmtPolar fmtFlags 1 = polar complex math mode See Comment 1 below.
curAble curFlags 1 = cursor flash enabled
curOn curFlags 1 = cursor is showing
curLock curFlags 1 = cursor is locked off
appTextSave appFlags 1 = save characters written in Places a copy of the character,
textShadow normal font only, written to the
display into the textShadow buffer.
appAutoScroll appFlags 1 = auto-scroll text on last line Causes the screen to automatically
scroll when the normal font is
written to the display and goes
beyond the last row of the screen.
indicRun indicFlags 1 = run indicator is enabled Controls the run indicator that is
0 = run indicator is disabled displayed in the upper right corner
of the display. See Run Indicator
section.
comFailed getSendFlg 1 = com failed
0 = com did not fail
apdRunning apdFlags 1 =APD™ is running
0 = APD™ is not running
Table 2.1: System Flags (continued)
Comment 1: Controls the mode setting: REAL a + bi re”8i located on the mode screen.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

15

Flag Name Y Offset Equate Description Comments

indicOnly indicFlags 1 = only update run indicator Sets the interrupt handler to update
the run indicator, but not to process
APD, blink the cursor, or scan for
keys. It is useful when executing
1/O link port operations for speed.

shift2nd shiftFlags 1 = second key pressed

shiftAlpha shiftFlags 1 = alpha mode

shifLwrAlpha shiftFlags 1 = lower case, shift alpha set also

shiftALock shiftFlags 1 = alpha lock, shift alpha set also

grfSplit sGrFlags 1 = horizontal graph split mode

vertSplit sGrFlags 1 = vertical graph split mode

textWrite sGrFlags 1 = small font writes to buffer Use when writing small font

0 = small font writes to display characters. Determines if the

character will be written to the
display or to the corresponding
location in the graph backup buffer,
plotSScreen. Useful for building a
screen in RAM and then displaying
it in its entirety at once.

fullScrnDraw apiFlag4 1 = allows draws to use column 95 and

row 0

bufferOnly plotFlag3 1 = draw to graph buffer only Causes all of the graph line and
point routines (pixel coordinates as
inputs) to be drawn to the graph
backup buffer instead of to the
display.

fracDrawLFont fontFlags 1 = draw large font in UserPutMap Enables the normal font to be
drawn using the small font
coordinate system. See section on
Display in the System Routine
Documentation.

customFont fontFlags 1 = draw custom characters Allows an application to have the
small font routines display a font
defined by an application. See
section on Display in the System
Routine Documentation.

IwrCaseActive appLwrCaseFlag |1 = enable lower case in GetKey loop | Causes the GetKey routine to

recognize lower case alpha key
presses. When set, the key

sequence [ALPHAJ[ALPHA]causes
lower case alpha mode to be set.

Table 2.1: System Flags (continued)

TI-83 Plus Developer Guide

Third Release May 28, 2002

16

Chapter 2: TI-83 Plus Specific Information

Flag Name Y Offset Equate Description Comments
asm_Flagl 0 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl_1 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl_ 2 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl_3 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 4 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 5 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 6 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl_7 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flag2_0 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_1 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_2 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_3 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_4 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_5 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_6 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_7 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag3_0 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_1 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_2 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_3 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_4 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_5 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_6 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_7 asm_Flag3 available for ASM programming See Comment 2 below.
Table 2.1: System Flags (continued)
Comment 2: Used by applications to provide easy bit flag implementation. Once an application completes, flag will

most likely be changed by another application. It will not hold its state.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 17

OP1 through OP6 RAM Registers

This area of RAM is used extensively by the TI-83 Plus system routines for such things
as:

* Executing floating-point math

* Passing arguments to and from system routines
» Extracting elements out of lists or matrices

* Executing the parser

* Formatting numbers for display

There are six OP registers allocated — OP1, OP2, OP3, OP4, OP5, and OP6. Each of
these labels are equated in the include file, TI83plus.inc.

Each of these OP registers is 11 bytes in length; they are allocated in contiguous RAM.

OP1 11 bytes
OP2 11 bytes
OP3 11 bytes
OP4 11 bytes
OP5 11 bytes
OP6 11 bytes

Table 2.2: OP Registers

The size of these registers was determined by the size of the TI-83 Plus floating-point
number format and by the maximum size (nine bytes) of a variable name. The 10th and
11th bytes in each register are used by the floating-point math routines for extra
precision.

Below are the Utility routines that manipulate the OP registers. See the System Routine
Documentation for details.

OP1ToOP2 | OP2ToOP1 | OP3ToOP1 | OP4ToOP1 | OP5ToOP1 | OP6TOOP1
OP1ToOP3 | OP2ToOP3 | OP3ToOP2 | OP4ToOP2 | OP5ToOP2 | OP6TO0OP2
OP1ToOP4 | OP2ToOP4 | OP3ToOP4 | OP4ToOP3 | OP5ToOP3 | OP6TOOPS5
OP1ToOP5 | OP2ToOPS5 | OP3ToOPS5 | OP4ToOPS5 | OP5ToOP4
OP1ToOP6 | OP2ToOP6 OP4ToOP6 | OP5ToOP6

Table 2.3: Transfer one OP register to another (11 byte operation)

TI-83 Plus Developer Guide

Third Release May 28, 2002

18

Chapter 2: TI-83 Plus Specific Information

OP1EXOP2

OP1EXOP3

OP1ExOP4

OP1ExOP5

OP1ExOP6

OP2ExOP4

OP2ExOP5

OP2EXOP6

OP5EXxOP6

Table 2.4: Exchange one OP register with another (11 byte operation)

OP1Set0 OP1Set4 OP2Set3 OP2Set8 OP3Set2
OP1Setl OP2Set0 OP2Set4 OP2SetA OP4Set0
OP1Set2 OP2Setl OP2Set5 OP3Set0 OP4Setl
OP1Set3 OP2Set2 OP2Set60 OP3Setl OP5Set0
SetXXOP1 SetXXOP2 SetXXXXO0P2

Table 2.5: Load a floating-point value into an OP register (9 byte operation)

Ckint CkOdd CkOP1FPO CkOP1Pos CkOP1Real
CkOP2FPO CkOP2Pos CkOP2Real CIrOP1S ClrOP2S
InvOP1S InvOP2S CpOP10OP2 ConvOP1

Table 2.6: Miscellaneous floating-point utility routines in OP registers

ZeroOP1

ZeroOP2

ZeroOP3

ZeroOP

Table 2.7: Set an OP register to all zeros (11 byte operation)

The OP registers are also used as inputs and outputs for floating-point and complex
number math. See Floating Point and Complex Math sections.

Safe RAM Locations for Application Use

If the amount of RAM an application needs is not too great, use safe pieces of RAM that
exist in the System RAM area. These are chunks of RAM that are not used by system
routines except under rare circumstances. They are, therefore, available as scratch
RAM for the application.

saveSScreen
(86ECh)

This is 768 bytes used by the system code only if the calculator
automatically powers down (APD). This RAM is safe to use as
long as an APD™ cannot occur. See the Keyboard and Automatic
Power Down™ (APD™) sections.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 19

statVars This is the start of 531 bytes of RAM used to store statistical

(8A3AN) results. If you use this area, do not compute statistics in your
ASM program. Make this B_CALL to invalidate statistics, as well.

B _CALL Del Res

appBackUpScreen This is the start of 768 bytes of RAM not used by the system. It is

(9872h) intended for ASM and applications. Its size is large enough to
hold a bit image of the display, but it can be used for whatever
you want.

tempSwapArea This is the start of 323 bytes used only during Flash ROM
(82A5h) loading. If this area is used, avoid archiving variables.

WARNING: The RAM is safe to use only until the application exits. Data in any of these areas of RAM may
be destroyed between successive executions of an application. Therefore, any data that must
remain between executions cannot be kept in these areas. This RAM is only for the variables
that can be discarded when the application exits.

System Variables Area

This area of system RAM consists of preallocated variables needed by much of the TI-
83 Plus built-in functionality. Because they are floating-point numbers these variables
are all nine bytes. Because these variables are always needed, the system always
keeps them around and never changes their addresses.

There are two classes of system variables — those that you can store to and recall
from, and those that are referred to as output only variables because the system
routines can store to them.

System Variables that are Both Input and Output

In general, these values should only be changed by system routines that applications
can call. Modifying these variables directly, rather than modifying them through the
appropriate system routine, could corrupt the state of the system. Most of these system
variables have restrictions on what values are valid to store to them. Using the system
routine to store to them guarantees that the proper checks are made on the values
being stored to them.

System Variable Characteristics

* There are no Symbol Table entries for system variables.

» These variables can be changed by the user, but cannot be deleted or renamed. For
example, you can change Xmax, but you cannot delete it.

» These variables are initialized to a predetermined value upon reset.

» These variables always reside in RAM. For example, it is not possible to archive
Xmin.

TI-83 Plus Developer Guide Third Release May 28, 2002

20

Chapter 2: TI-83 Plus Specific Information

Storing and Recalling System Variable Values

Since system variables are located at a fixed location in RAM, an application can access
the contents of a system variable directly. This method is safe only when recalling a
single system variable.

There is also a system routine that copies the contents of a system variable to OP1; the
value in the accumulator determines what system variable is recalled. See SysTok
values in Table 2.8.

RclSysTok Copies the contents of a system variable to OP1.

StoSysTok Stores the contents of OP1, if valid, to a system variable.

Note: An application should not modify the contents of a system variable directly; it should always use
this system routine.

The system variable stored to is determined by the value in the accumulator.

Example: If you want to store -3 in Xmin:

B CALL OP1Set 3 ; Reg OP1 = Floating point 3

B CALL | nvOP1S ; Negate FP nunber in OP1, OP1 = -3
LD A, XM Nt : ACC = Xmin variabl e token val ue

B CALL St oSysTok ; store OP1 to Xnmin,

Example: If you want to recall the contents of Xmin to OP1:

LD A, XM Nt
B _CALL Recl SysTok ; OP1L = contents of Xmn, -3

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

21

Table 2.8 lists each system variable, its RAM address equate, and the token values
used to access them with the routines above.

Variable Name RAM Equate SysTok Value

Xscl Xscl XSCLt

Yscl Yscl YSCLt

Xmin Xmin XMINt

Xmax Xmax XMAXt

Ymin Ymin YMINt

Ymax Ymax YMAXt

tMin TMin TMINt

tMax TMax TMAXt

Bmin ThetaMin THETMINt

Bmax ThetaMax THETMAXt

PlotStart PlotStart PLOTSTARTt

nMin NMin NMINt

nMax NMax NMAXt

deltaThl TbiStep TBLSTEPt

Tstep Tstep TSTEPt

Bstep ThetaStep THETSTEPt

deltaX DeltaX DELTAXt

delta¥ DeltaY DELTAYt

XFact Xfact XFACTt

YFact Yfact YFACTt

Xres XresO XRESt

PlotStep PlotStep PLOTSTEPt

N (TVM) fin_N FINNt

1% fin_I FINIt

PV fin_PV FINPVt

PMT fin_PMT FINPMTt

FVv fin_FV FINFVt

Cly fin_CY FINCYt

PIY fin_PY FINPYt

Table 2.8: Variable Name, RAM Equate, and SysTok Value

TI-83 Plus Developer Guide Third Release May 28, 2002

22 Chapter 2: TI-83 Plus Specific Information

System Variables that Are Output Only

These are the statistical output variables. They are stored to after executing either the
1-varstat, 2-varstat, or a regression command. The TI-83 Plus system considers these
variables invalid if no statistical command was executed; therefore, values are not
stored to them.

Recall these values using the following system routine.

Rcl_StatVar Recalls a statistical result into OP1, if statistics are valid. The
accumulator contains a token value of the statistical variable to recall.

The token values are contained in the include file, TI83plus.inc.

User RAM

User RAM (see Fig. 2.4) is used to store the data structures of variables that are
dynamically created. These variables are created by both users and the TI-83 Plus
system.

The following sections contain an overall description of TI-83 Plus variable naming
conventions, data structures, creation, and accessing.

Variable Data Structures

Numeric Based Data Types

This class of data types is built of floating-point numbers, and in some cases, a size
field. These data types include Real, Complex, Real List, Complex List, and Matrix.

9 Bytes
+1 +2 +3 +4 +5 +6 +7 +8
T EXP DD DD DD DD DD DD DD

| > First byte of
Table 2.9: Floating-Point Number Format mantissa

T = object type where:

Bit Description

0-4 0 if a real variable’s data,
OCh if part of a complex variable’s data

5-6 Future use
7 Mantissa sign — O = positive/1 = negative
EXP = 00h to FFh 80h to FFh = Exponent of (0) to (128)
7Fh to 00h = Exponent of (®1) to (®127)
DD = two digits of the mantissa, two per byte

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 23

A floating-point number has a left-justified mantissa (the most significant digit is always
the first digit). If the MSD is 0, the TI-83 Plus system assumes it is floating-point 0. A
floating-point number has a 14-digit mantissa and an exponent range of -128 to 127.
For example:

T EXP Mantissa
80 82 23450000000000 =-234.5

Real Data Type Structure

This data type structure is simply a floating-point number with bits 0 — 4 of its sign
byte = 0. For example:

80 82 23 45 00 00 00 00 00 = -234.5

Complex Data Type Structure

Complex numbers stored in a variable are two consecutive floating-point numbers, with
the first value being the real part and the second value being the imaginary part. Each
part of the complex number has bits 0 — 4 of its sign byte = 0Ch, the complex object
value. For example:

8C 82 23 45 00 00 00 00 00
O0C 7F 25 00 00 00 00 00 00 =-234.5 + 0.25i

Note: When complex numbers are handled in the OP1 to OP6 areas, the real and imaginary parts are
not in consecutive RAM locations. They are, however, in consecutive OP registers.

Real List Data Type Structure

This data type consists of a two-byte size field with the number of elements in the list,
followed by a real number for each element in the list. The maximum number of
elements is 999. For example, a Real List with two elements, -234.5 and 230 would look
like:

size | element number 1 | element number 2
02 00 8082 23450000000000 008223000000000000

The size bytes are stored with the least significant byte first.

TI-83 Plus Developer Guide Third Release May 28, 2002

24

Chapter 2: TI-83 Plus Specific Information

Complex List Data Type Structure

This data type consists of a two byte-size field with the number of elements in the list,
followed by a complex number for each element in the list. The maximum number of
elements is 999. For example, a complex list with two elements (1,2) and (4,5):

size | element number 1 — real part | element number 1 — imaginary part
0200 0C 80 10000000000000 0OC 8020000000000000

| element number 2 — real part | element number 2 — imaginary part
0C 8040 00 00 00 00 00 00 0OC 8050 000000000000

Matrix Data Type Structure

This data type consists of a two byte-size field with the number of columns and rows in
the matrix, followed by a real number for each matrix element.

Matrices are stored in row major order, that is, each element of a given row is stored in
contiguous RAM. For example, given the following structure:

size bytes row 1
.row 2
.row 3
matrix
size | element

0302 0080 10000000000000 element(1,1)
00 80 20 00 00 00 00 00 00 element (1,2)
00 80 30 00 00 00 00 00 00 element (1,3)
00 80 40 00 00 00 00 00 00 element (2,1)
00 80 50 00 00 00 00 00 00 element (2,2)
00 80 60 00 00 00 00 00 00 element (2,3)

A row or column dimension cannot be 0, and it cannot be greater than 99. If an
application creates a matrix with either of these illegal dimensions, the TI-83 Plus
system may lock up.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 25

Token Based Data Types

This class of data types is made up of a size field and tokens that represent TI-83 Plus
functions, commands, programming instructions, variable names — essentially anything
that can be entered into an TI1-83 Plus BASIC program.

TI-83 Plus Tokens

A token can be comprised of one or two bytes which represents system functions,
commands, and variables. Instead of having to store the entire spelling of a function
inside a program, the function can be stored as a token that uses only one or two bytes.
For most applications, the tokens are only necessary when using variables. This will be
explained in the section on Variable Naming.

A list of tokens and their values can be found in the include file, TI83plus.inc.

Program, Protected Program, Equation, New Equation, and
String Data Type Structures

All of these data types have the same storage structure — a two-byte size field, the
number of bytes for token storage (not the number of tokens), followed by the tokens
themselves. For example, if graph equation Y1 = LCM(X,5), it would be stored as:

Two-byte
token
Size byte LCM (X , 5)
07 00 BB 08 10 58 2B 35 11

Note: New Equation type should be treated like any other equation.

Screen Image Data Type Structure
There is only one data type for this class of data structures — the Pict data type.

This variable’s data is a bit image of a graphic screen minus the bottom row of pixels. It
is made up of a two-byte size field, which is always equal to 756d (2F4h) and followed
by the 756 bytes. The first byte represents the first eight pixels of the display’s top pixel
row. Each successive byte represents the next eight pixels. When the end of a row is
reached, the next byte is the first eight pixels of the following row.

Example:

size | First 12 bytes is the top row of pixels
F4 02 12 3456 78 09 23 45 98 A3 CB DE 12
7065349856 7709 06 80 C54D 00 Second row of pixels

TI-83 Plus Developer Guide Third Release May 28, 2002

26 Chapter 2: TI-83 Plus Specific Information

Graph Database Data Type Structure

There is only one data type for this class of data structures — the GDB data type.

The variable data is a collection of graph equations, window variables, and mode flags
that have been saved.

Unformatted AppVar Data Type Structure

This data type was created solely for use by applications. It allows you to save and
restore a state after an application is exited and then re-entered by users.

Since you can put almost anything into an AppVar, the system does not know the format
of these variables. The system only shows the amount of memory taken by AppVars. It
also allows them to be deleted and to be sent/received through the link port.

The system code does not modify or destroy this memory between one execution of an
app and the next.

Users cannot access the contents of an AppVar, but they can delete, archive, and send
the contents over the link port to another TI1-83 Plus, Tl Connect™ or the TI-83 Plus
GRAPH LINK™,

Guidelines for AppVar Usage

» To avoid conflicts with other application’s AppVars, use unique names that tie an
AppVar to the application.

* To verify that an application is using an AppVar that is intended for that application,
an expected value for the first four bytes of the AppVar should be written when it is
created and checked before it is used.

For example, my application uses AppVars to save some information about different
users who have run the application at sometime. When the application is started it
will search for all of the AppVars that represent users of the application, and ask the
user to choose their AppVar from a list. The application will know which AppVars to
display by looking at the first four bytes of the AppVar for a certain set of values. The
AppVars that contain the correct first four bytes are assumed to contain user
information.

» Applications must make sure that an AppVar that it uses is Unarchived before
attempting to modify it. See Archiving/Unarchiving.

Variable Naming Conventions

The OP registers are used to input variable names for many system routines. They are
used here to illustrate variable naming conventions.

Every variable name is a nine-byte entry that is moved in and out of system routines. All
of the utility routines that move floating-point numbers in RAM can be used to move
variable names.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

27

The general format of variable names is illustrated here using OP1.

OP1 | +1

+2

+3 | +4 | +5 | +6

+7 +8

T

Variable Name

Table 2.10: Variable Name Format

T = object type where:

Bit
0-4

N o o

Flag

Object Type
Future use
Future use

Future use

* See also: Symbol Table Structure

Every variable name has associated with it an object (data) type, which is
always stored in the first byte of the variable name format.

Object Type Value Object Type

00h Real

0lh List

02h Matrix

03h Equation

04h String

05h Program

06h Protected Program
07h Picture

08h Graph Database
0Bh New EQU Obj
0Ch Complex Obj
ODh Complex List Obj
14h Application Obj
15h AppVar Obj

17h Group Obj

Object Type Equate

RealObj
ListObj
MatObj
EquObj
StrngObj
ProgObj
ProtProgObj
PictObj
GDBObj
NewEquObj
CplxObj
CListObj
AppObj
AppVarObj
GroupObj

Note:

B_CALL

CkOP1Real
CcP CLi st Obj

To check the type of a variable name in OP1, use the system routine CKOP1Real, which
places the type value from OP1 into the accumulator.

type of OP1 to ACC
see if conplex list

TI-83 Plus Developer Guide

Third Release May 28, 2002

28

Chapter 2: TI-83 Plus Specific Information

Variable Name Spellings

There are two classes of variable names for the TI-83 Plus — predefined and user
defined. All variables are comprised of TI-83 Plus tokens, which are part of the include
file, TI83plus.inc.

Predefined Variable Names

These variable’s names are fixed by the TI-83 Plus and can only have a predetermined
data type.

Variables: A —Z and 0

These variables can only be of type RealObj or CpIxObj.

They are all spelled with one token, tA to tTheta, followed by two zeros.

Example: Real Variable A

OP1 +1 +2 |43 |[+4 | +5 | +6 |+7 | +8
RealObj tA 00 (00 |? ? ? ? ?
00h 41h
Example: Complex Variable 6
OP1 +1 +2 | +3 | +4 [+5 | +6 |[+7 | +8
CplxObj |tTheta [00 |00 |2 |2 |2 |2 |2
0Ch 5Bh

List Variables: L1 -L6

These variables can be either ListObj or CListOb.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarLst, which labels it as a list variable name. The

second token signifies which predefined list name it is, tL1 — tL6.

Example: Complex List Variable L3

OP1 +1 +2 +3 |+4 [+5 | +6 | +7 | +8
CListObj tVarLst tL3 00 |7 ? ? ? ?
0Dh 5Dh 02h

Note: Lists can also be user-defined, see section entitled User-Defined Variable Names in this chapter.

Matrix Variables: [A] —[J]

These variables can only be type MatObj.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 29

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarMat, which labels it as a matrix variable name. The
second token signifies which predefined matrix name it is, [A] — [J].

Example: Matrix Variable [J]

OP1 +1 +2 +3 | +4 | +5 |+6 |+7 | +8
MatODbj tvarMat | tMatJ 00 |7 ? ? ? ?
02h 5Ch 09h

Equation Variables: Y1 — YO, X1t — X6t, Y1t — X1t, r1 —r6, u(n), v(n), w(n)

These variables can be type EqQuObj or NewEquOb;.
They are all spelled with two tokens followed by one zero.

The first token of the name is tVarEqu, which labels it as an equation variable name.
The second token signifies which predefined equation name it is:

tYl —tYO for Y1-YO
tX1T —tX6T for X1t — X6t
tY1T —tY6T for Y1t- Y6t
tR1 — tR6 for rl1-r6
tun for u(n)
tvn for v(n)
twn for W(n)
Example: Function Equation Variable Y6
OP1 +1 +2 +3 | +4 |+5 | +6 |+7 | +8
EquObj tVarEqu tY6 00 |2 ? ? ? ?
03h 5Eh 05h
Example: Parametric Equation Variable Y6t
OP1 +1 +2 +3 | +4 | +5 [+6 | +7 | +8
EquObj tvVarEqu tyeT |00 | ? ? ? ? ?
03h 5Eh 2Bh
Example: Polar Equation Variable rl
OP1 +1 +2 +3 |+4 |45 |+6 |+7 |+8
EquObj tvVarEqu tR1 00 |2 ? ? ? ?
03h 5Eh 40h

TI-83 Plus Developer Guide

Third Release May 28, 2002

30

Chapter 2: TI-83 Plus Specific Information

Example: Sequence Equation Variable w(n)

OP1 +1 +2 +3 |+4 [+5 | +6 | +7 | +8
EquObj tvVarEqu twn 00 |7 ? ? ? ?
03h 5Eh 82h

String Variables: Strl — Str0

These variables can only be type StrngOb.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarStrng, which labels it as a string variable name. The
second token signifies which predefined string name it is, tStrl — tStrO.

Example: String Variable Str5

OP1 +1 +2 +3 |+4 [+5 | +6 | +7 | +8
StrngObj tVarStrng tStr5 00 |7 ? ? ? ?
04h AAh 04h

Picture Variables: Picl — PicO

These variables can only be type PictOb;.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarPict, which labels it as a picture variable name. The
second token signifies which predefined picture name it is, tPicl — tPicO.

Example: Picture Variable PicO

OP1 +1 +2 +3 |+4 |+5 [+6 | +7 | +8
PictObj tVarPict tPicO 00 |2 ? ? ? ?
07h 60h 09h

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 31

Graph Database Variables: GDB1 — GDBO

These variables can only be type GDBODb;.
They are all spelled with two tokens followed by one zero.

The first token of the name is tVarGDB, which labels it as a graph database variable
name. The second token signifies which predefined graph database name it is,
tGDB1 - tGDBO.

Example: Graph Database Variable GDBO

OP1 +1 +2 +3 | +4 |+5 |+6 |+7 | +8

GDBODbj tvarGDB tGDBO 00 |? ? ? ? ?
08h 60h 09h

Variable: Ans

This is a special variable that can be a string or any numeric data type. This variable
should not be used for long-term storage since the system updates it automatically.

It is spelled with one token, tAns followed by two zeros.

Example: Matrix Variable Ans

OP1 +1 +2 |43 |+4 |45 |+6 |+7 |+8
MatODbj tAns 00 00 |7 ? ? ? ?
02h 72h

User-Defined Variable Names

The TI-83 Plus allows open naming for some data types. Listed below are the naming
rules that these variables have in common. The restriction on the length of the name
varies by data type and is detailed for each data type.

» All variable names must start with a token in the range
tA —tTheta (A — Z or 6).

» All subsequent tokens can be a token in the range of
tA—tTheta (A—Zor8) ort0 —t9 (0 -9).

+ Do not use lowercase or international character tokens.

TI-83 Plus Developer Guide Third Release May 28, 2002

32

Chapter 2: TI-83 Plus Specific Information

User-Named Lists

These variables can be either ListObj or CListOb.

They are all spelled with the token tVarLst followed by up to a five-token name for the
list. List names are zero (0) terminated.

Example: Real List Variable LST1

OP1 +1 +2 | +3 | +4 |45 |+6 |+7 |+8
ListObj tVarLst tL tS tT t1 oo |7 ?
01lh 5Dh 4Ch [53h | 54h | 31h
Example: Complex List Variable LIST1
OP1 +1 +2 +3 | +4 +5 +6 | +7 | +8
ClListObj tVarLst tL tl tS tT t1 00 |2
0Dh 5Dh 4Ch | 49h | 53h | 54h | 31h

Note: There are lists with predefined names also. See the section entitled Predefined Variable Names.

User-Named Programs

These variables can be either ProgObj or ProtProgOb;j.

Unlike other variable names detailed so far, these do not have a leading token to signify

that they are a program name.

The sign byte of a program name must be set to one of the program types.

Program names can be up to eight tokens in length. If less than eight tokens, the name
must be zero (0) terminated.

Example: Program Variable ABC

OP1 +1 | +2 |43 | +4 |[+5 | +6 | +7 | +8
ProgObj tA |t | TC |00 [2 |2 |2 |2
05h 41h | 42h | 43h

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 33

User-Named AppVars

These variables must be type AppVarOb;j.

Like program names, these variables do not have leading tokens to signify that they are
AppVar names.

The sign byte of AppVar names must be set correctly.

AppVar names can be up to eight tokens in length. If less than eight tokens, the name
must be zero (0) terminated.

Example: AppVar Variable AppVarl

OP1 +1 +2 +3 +4 +5 +6 +7 +8
AppVarObj tA tP tP tVv tA tR tl 00
15h 41h | 50h 50h 56h | 41h | 52h | 31h

Accessing User Variables Stored In RAM — (Unarchived)
There are two ways to access variables.

* Use system routines that return pointers to them.

» Use system routines that recall the contents of variables.

This section addresses using system routines that return pointers.

Every variable that exists in the user data area has an entry in the variable Symbol
Table structure. To access the data for a particular variable, the Symbol Table is
searched for the variable’s entry.

Applications can use system routines to search the Symbol Table.

There are two main search routines that are used to find variables in the Symbol Table.
The routine you use depends on the type of variable being looked up. Program and
AppVar variables have separate search routines from all other data types.

Accessing Variables that Are Not Programs or AppVars

All of these variables have a type designator (e.g., tVarLst) as the first token in their
variable name. See the naming conventions section above.

The routine to search the Symbol Table for these variables is FindSym.
e Input: OP1 = name of variable to search for

The sign byte need not have the correct data type of the variable; the search is done
on the name alone.

For example, if an application looks up variable A, the data type cannot be known
before searching because A can be a real or a complex data type.

The same applies to lists, which can be either real or complex.

TI-83 Plus Developer Guide Third Release May 28, 2002

34

Chapter 2: TI-83 Plus Specific Information

Output: See Output from a variable search on the Symbol Table section below.

Accessing Programs and AppVar Variables

This type of variable does not have as part of its name a token that signifies its data
type.

The routine to search the Symbol Table for these variables is ChkFindSym.

Input: OP1 = name of variable to search for

For this routine, the input name must have the data type in the sign byte set
correctly.

If the search is for a program variable having the data type in OP1 set to ProgObj,
the search also finds variables of the ProtProgObj data type.

For example, if an application wants to look up program ABC but does not know
whether it is a normal program, ProgObj, or a protected program, ProtProgObj,
using OP1 as indicated below finds program ABC if it exists and is set to either
program data type.

OP1 +1 | +2 |+3 | +4 [+5 |+6 [+7 |+8

Progobj |tA | tB | tCc |00 |? |2 |2 |2
05h 41h | 42h |43h

Output: Output from a variable search on the Symbol Table section below.

Output from a Variable Search on the Symbol Table

The output is the same for both search routines above.

Does the variable exist?
The carry flag is set if the variable is not found.
The carry flag is reset if the variable is found.

Example:

B CALL Fi ndSym ; look up variable in OP1
JR C, Not Found ; junp if it is not created

What data type is the variable?
When searching for some variables, the type is not always known.
ACC (accumulator) = data type of the variable

OP1 object type is also set to the variable data type.

Note: Only the lower five bits of both the ACC and OP1 are set. The remaining bits are random and
must be masked off to get the correct data type when checking.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 35

Example: Search for list L1 to determine if it is a real or complex list.

LD HL, L1nane

B CALL Mov9ToOP1 ; OP1 =1list L1 nane

B CALL Fi ndSym ; look up list variable in OP1

JR C, Not Found ; junp if it is not created

AND 1Fh ; renopve none data type bits

cP CLi st Obj

JR Z, Conpl exLi st ; junp if the list was conplex
Linane:

DB Li stObj, tvarlLst, tL1, O

 |s the variable’s datain RAM or archived in Flash ROM?

This is important information since variables that are archived need to be unarchived
for use by nearly all system routines and also for easier direct access by
applications.

— B register = 0 if the variable resides in RAM.
DE register = address in RAM of the first byte of the variable data structure.

The address returned is valid as long as no memory is created or deleted by
archiving, unarchiving, creating, or deleting variables. If any of these actions are
taken, it is necessary to relook up the variable and get the new address of the
data structure.

— B register does not = 0 if the variable resides in archive.

Note: An archived variable may need to be unarchived to be used in certain system routines.

Example: Look up program ABC. If it is archived, then unarchive it.

LD HL, Pr ogABC
B _CALL Mov9ToOP1 ; OP1 = program ABC nane
B CALL ChkFi ndSym ; 1 ook up program
JR C, Not Found ; junp if it is not created
LD A B : ACC = archived/unarchived info
OoR A : is it archived?
JR Z, Not Ar chi ved ; junp if not
B CALL Arc_Unarc ; unarchive the var
Not Ar chi ved:
Pr ogABC:
DB Proglbj, ‘ABC, O

TI-83 Plus Developer Guide Third Release May 28, 2002

36 Chapter 2: TI-83 Plus Specific Information

Example: Search for list L1 and set DE = to the number of elements in the list.
Assume it is not archived.

LD HL, L1Nane
B CALL Mov9ToOP1 ; OP1 =1list L1 nane
B CALL Fi ndSym ; look up list variable in OP1
JR C, Not Found ; junp if it is not created
EX DE, HL ; HL = pointer to data structure
LD E, (HL) ; get the LSB of the nunber el ements
I NC HL ;. nove to MSB
LD D, (HL) : DE = nunber elenents in L1
L1Narme:
DB Li stObj, tvarlLst, tL1, O

e A pointer to the variable’s Symbol Table entry.

The HL register = address of the variable’s Symbol Table entry.

This is returned for both archived and unarchived variables. The Symbol Table
entries for all variables reside in RAM.

Creating Variables
There are two ways that variables can be created.
* Use system routines that create them directly.

» Use system routines that store a value to a variable, creating that variable if it does
not already exist.

This section addresses the first method, and the following section deals with the second
method.

e Variables can only be created in RAM. Once created, they can be archived to the
Flash ROM.

* Avariable that already exists, even if archived, should not be recreated without first
deleting the current one. See Deleting Variables section below.

Routines that create variables do not check to see if a variable currently exists
before creating it. An application must check by searching the Symbol Table for the
variable. See routines FindSym and ChkFindSym. If this is not done, multiple
versions of the same variable exist leading to unpredictable side effects.

* The graphing equations always exist, and therefore must be deleted before
recreating them. Always create the equation immediately after deleting it to avoid
system crashes.

» Do not create variables with sizes outside of their specified limits. For example, do
not create a list with 1000 elements. The system does not check for these types of
errors when creating a variable.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 37

Some system routines will fail and may cause a lock-up condition if bad data is input
to them.

For more information see the Variable Data Structure section earlier in this chapter.

» If there is not enough free memory available to create a variable, a system memory
error is generated, and the system’s error context will take over execution.

This can be avoided in two ways.

— Use the routine MemChk to see if there is enough free memory available before
attempting to create the variable.

— Use an error exception handler to trap the memory error (if one is generated).

To use option one, the size of the Symbol Table entry and the data structure must
be computed by the application. Therefore, the easiest is option two.

See the Error Handlers section.

* When avariable is created, its data structure is not initialized. Only the two-byte
size field, if one is part of the structure, is initialized to the size the variable was
created at. For example, after creating a complex variable, the entire 18 bytes of the
data structure contain random values.

After creating a list with 23 elements, the first two bytes of the data structure are set
to the number of elements, 17h 00h, the number of elements in hex, with the LSB
followed by the MSB.

If created data structures are not initialized by applications before returning to
normal system operation, the potential for a lock-up condition is very high.

* Routines for creating variables:

CreateOEqu CreateEqu CreatePair CreateStrng
CreateRList CreateCList CreateRMat

CreateReal CreateCplx CreatePict

CreateAppVar CreateProg CreateProtProg

— Inputs:

OP1 = variable name to create.
HL = Number of bytes, number of elements or a dimension for some.

See the System Routine Documentation for exact inputs for each routine.

— Outputs:
Possible memory error, see above.
OP4 = variable name created with its sign byte set to the correct data type
OP1 =random
DE = pointer to data structure

HL = pointer to Symbol Table entry

TI-83 Plus Developer Guide Third Release May 28, 2002

38 Chapter 2: TI-83 Plus Specific Information

For example, create a real list CAT with one element and initialize that element
to a value of five. Return CA = 0 if the variable is created, else CA = 1 if there is
not enough memory.

Cr eat e_CAT:
LD HL, Cat Nane
B CALL Mov9ToOP1 ; OP1 = nane
AppOnErr NoMem ; install error handler
LD HL, 1 ;1 element |ist
B _CALL Creat eRLi st ; ret fromcall if no nemerror
I NC DE
I NC DE ; DE = pointer to start of element 1
LD HL, FP_5
LD BC, 9
LD R ; set first elenent =5
AppOF fErr ; renove error handl er
oR A ; CA=0if successful
RET
Cat Nane:
DB Li stQbj, tvarLst, ‘CAT', O
FP_5:
DB 00h, 80h, 50h, 00h, 00, 00, 00, 00, 00

control comes here if nmenory error during create
NoMem
SCF ; CA=1if not successful
RET
Storing to Variables

There are system routines that can be used to store to the entire contents of a variable’s
data structure.

These routines store a real or complex variableto N, X, Y, R, T, 6.
StoN StoX StoY

StoR StoT StoTheta

StoAns stores any numeric, equation or string to Ans.

StoOther stores to any numeric, equation or string variable.
Attributes of these routines include:

» If the variable that is being stored to does not exist, it is created if enough free RAM
is available.

* The current contents of the variable are not deleted if the new data being stored to
the variable does not fit in memory.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

39

» Error checking is done to make sure that the data type being stored to the variable is

valid for that variable.

» If the variable being stored to is archived, a system error is generated.

» Since system errors can be generated by these routines, an error handler should be
placed around calls to them. See the Error Handlers section.

The details on inputs and outputs for these routines can be found in the System Routine

Documentation.

details.

Note: The following example uses the routine PushRealO1. See the Floating Point Stack section for

Example: Store a value of 1.5 to variable Z

return CA = 0 if successful
CA = 1 if failed to store

Sto_Z:
B CALL OP1Set 1
LD A, 15h
LD (OP1+2), A
B _CALL PushReal O1
B CALL Zer oOP1
LD A'Z
LD (OP1+1), A
AppOnErr Fai |
B _CALL St oQx her
AppOF fErr
oR A
RET

Fai | :
SCF
RET

Recalling Variables

oP1 =1

oP1 = 1.5

1.5 -> FPST

OP1 = 00000000000
OP1 = Z VAR NAMVE

install error handler
attenpt to store, RET if no error
renove error handl er

CA =0 for store is good

CA =1 for no store

There are system routines that can be used to recall the contents of real and complex

variables to OP1/0OP2.
RclVarSym RclY RcIN

Attributes of these routines include:

RclX RclAns

» If the variable does not exist or if it is archived, a system error is generated.

« |f the variable is real, OP1 = the value.

» If the variable is complex, OP1 = real part; OP2 = imaginary part.

around calls to them.

Note: Since system errors can be generated by these routines, an error handler should be placed

TI-83 Plus Developer Guide

Third Release May 28, 2002

40

Chapter 2: TI-83 Plus Specific Information

The details on inputs and outputs for these routines can be found in the System Routine
Documentation.

Example: Recall the contents of variable C, assume it is created and not archived, and
check if it is real.

B CALL Zer oOP1 ; OP1 = 00000000000

LD A’'C

LD (OP1+1), A ; OP1L = C var nane

B _CALL Rcl Var Sym ; OP1l/ OP2 = val ue

B _CALL CkOP1Real ; ACC = type, Z=1if real

Deleting Variables

Any variable that has an entry in the Symbol Table can be deleted, even if the data
is archived.

Preallocated system variables located in system RAM, such as Xmin, cannot be
deleted.

There are some system variables that also reside in user RAM. They are created in
the same way as user variables and have Symbol Table entries. All of these system
variables are spelled with an illegal first character so that they are excluded from any
menus that show the current variables that exist.

Some of these variables include # and ! which are two program variables used for
home screen entry and the first level of last entry. None of these variables should be
deleted.

The graph equations should not be deleted without immediately recreating them.
The TI-83 Plus system will crash if these equations are not created.

If an application wants to free the RAM used by a graph equation, it can delete the
equation and immediately recreate the equation with a size of 0 bytes. See the
CreateOEqu routine for further information.

When a variable is deleted, its Symbol Table entry and its data structure are
removed from RAM. If the data was archived, only the Symbol Table entry is
removed from RAM and the archive space made available. Deleting an archived
variable will not free much RAM space for other uses.

There are no holes left in RAM when a variable is deleted. Both the user memory
and Symbol Table are immediately compressed, and all of the freed RAM now
becomes part of the free RAM area.

There are three routines for deleting variables — DelVar, DelVarArc, and
DelVarNoArc. The difference between them is how an archived variable is handled.

Common inputs:
HL = pointer to the variable’s Symbol Table entry

DE = pointer to the variable’s data structure

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 41

Note: These inputs are output from a successful Symbol Table search, such as FindSym.

DelVar

DelVarArc

DelVarNoArc

Error if the variable is archived. This routine checks the contents of
the b register to be non-zero. If the contents is non-zero, it
assumes the variable is archived and generates a system error.
Otherwise, delete it from RAM. The b register is set by any of the
Symbol Table search routines to reflect whether or not a variable is
archived.

Delete the variable if archived or unarchived. This routine checks
the contents of the b register to be non-zero. If the content is non-
zero, then it assumes the variable is archived and deletes it from
the archive. Otherwise, it deletes it from RAM. The b register is set
by any of the Symbol Table search routines to reflect whether or
not a variable is archived.

Assumes the variable is not archived and deletes it from RAM.
This routine does not check the contents of the b register and
assumes the pointers input are RAM pointers, not pointers into the
archive space. Only use this routine if you are absolutely sure that
the variable resides in RAM.

Note: OP1 through OP6 are kept intact.

For example, if matrix [A] exists and is not archived, delete it and recreate it with a
dimension of five rows and three columns.

return CA = 0 if successful, or
CA = 1if it was archived or there was not enough free RAM to create it.

TI-83 Plus Developer Guide

Third Release May 28, 2002

42

Chapter 2: TI-83 Plus Specific Information

Creat e_Mat A:

Createlt:

Mat ANane:

; control

Fai | ed:

LD

B CALL

B CALL
JR

LD

oR

JR

B CALL
AppOnErr

LD
B_CALL

AppOF fErr

R
RET

DB

SCF
RET

HL, Mat Anane
Mov9ToOP1

Fi ndSym

C Createlt

A B

A

NZ, Fai | ed
Del Var NoAr c
Fai |l ed

HL, 5*256+3
Cr eat eRVat

Mat Cbj ,

Archiving and Unarchiving

t Var vat ,

OP1 = nane

| ook up

junp if it does not exist
ar chi ved?

junp if it is archived

delete it, it is not archived

install error handler

di m want ed 5x3
ret fromcall if no nemerror
renove error handl er

CA =0 if successful

tMatA O

cones here if menory error during create

CA =1 if not successful

Applications can use the Flash archive area in the same way as users do during normal
system operation. Variables can be archived - moved from RAM to the archive area.
They can also be unarchived - removed from the archive area and placed into RAM.
More information on the uses of archiving can be found in the TI-83 Plus Graphing
Calculator Guidebook.

Note: Most system routines are not designed to work with variables stored in the Archive area, and
many do not check for this condition. Be sure to check where variables are located, RAM or
Archive, before using them as inputs to system routines.

« What can be archived?

All user variables can be archived, except the following (listed by type):

RealObj / CplxObj:
ListObj / CListObj:

EquObj, NewEquODbj:

« What cannot be unarchived?

The following can not be unarchived:

GroupOhbj

X, Y, T,0
RESID, IDList
Any

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 43

AppObyj
e Entry Point

Arc_Unarc If the variable in OP1 is archived, unarchive it, otherwise archive it.
See the System Routine Documentation for further information.

System errors can be generated. See the Error Handlers section for further
information.

A battery check should be done before attempting to archive a variable. There is a
risk of corrupting the archive if the attempt fails due to low batteries. Applications
should display a message informing users to replace the batteries if low batteries are
detected.

As an Archive example, archive the variable whose name is in OP1.

B _CALL Chk_Batt_Low ; check battery |evel
RET z ; ret if low batteries
B _CALL ChkFi ndSym
RET C ; return if variable does not exist
LD A B ; get archived status
oR A ; if non zero then it is archived
; al ready
RET Nz ; ret if archived
AppOnErr error Hand ; install error handler
B _CALL Arc_Unarc ; archives the variable
AppOF fErr ; renove error handl er
error Hand:
RET

Related Routines
ChkFindSym Searches the Symbol Table for a variable.
MemChk Returns the amount of free RAM available.

See the System Routine Documentation for further information.

TI-83 Plus Developer Guide Third Release May 28, 2002

44

Chapter 2: TI-83 Plus Specific Information

Accessing Archived Variables without Unarchiving

Variable data residing in the archive can be accessed without unarchiving the data to
RAM. This is a read-only operation, an application cannot write data directly to the
archive.

Locating archived variables

Archived variables will have an entry in the Symbol Table that contains information
on where the data resides in the archive.

The Symbol Table search routines used to locate variables in RAM, FindSym and
ChkFindSym, are also used to locate variables in the archive. See the Accessing
User Variables Stored in RAM section for a detailed explanation of these routines.

If a variable is archived, the output from the Symbol Table search routine will return
two key pieces of information.

B register = ROM page of the start of the archived data.
DE register = the offset on the ROM page to the start of the archived data.

How is variable data stored in the archive?

The actual data for a variable has the same structure as when it resides in RAM.
See Variable Data Structures section for further information.

In addition to the variable’s data structure, a copy of the variable’s Symbol Table
entry is also stored in the archive. Fig. 2.11 below shows the format used for each
variable stored in the archive.

Data Size of symbol | Size varies by the name Size computed the same

valid entry + Data size and data type as variables in RAM

Flag LSB MSB Symbol Table Entry Variable Data Structure
Increasing addresses -------- >

Table 2.11: Format of Archive Stored Variables

Archived data for a single variable can cross ROM page boundaries. System
routines to read from the archive are provided to make this cross boundary situation
transparent to applications.

Reading bytes from the archive

There are two methods provided for reading data from the archive — direct and
cached.

— Direct

This method involves an application reading either one or two bytes at a time
from the archive — supplying both the ROM page and offset to the data to be
read.

Inputs: B register = ROM page of byte(s) to copy

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 45

HL register = offset on the ROM page to the byte(s) to copy
Routines:

LoadCindPaged Copies a byte from the archive to C
C = byte from archive
B, HL = intact

LoadDEIndPaged Copies two bytes from the archive to DE
E = first byte read
D = second byte read

B, HL = location of the second byte, crossing a ROM
page boundary is handled

Recommended support routines that an application should include as part of
the application.

LoadCl ndPaged_i nc:
B CALL LoadCl ndPaged ; read byte from archive

fall thru and | NC poi nter past byte read

i nc_BHL:

I NC HL ; increnent offset in page
BIT 7,h ; Cross page boundary?
RET Z ; no, B, HL = ROM page and
of f set
I NC B i ncrease ROM page nunber
RES 7,H
set 6, H adjust offset to be in
4000h to 7FFFh
RET
LoadDElI ndPaged_i nc:
B CALL LoadDEl ndPaged ; read 2 bytes from
; archive
JR i nc_BHL ; nmove pointer to byte

after 2 read

— Cached

This method provides management of the ROM page and offset of data in the
archive while reading multiple bytes. These values are stored in predefined
system RAM locations. A 16 byte RAM cache is used to queue up consecutive
data from the archive. There are two routines used.

SetupPagedPtr Sets the initial value of the system RAM used to track
the current read location and the current amount of data
in the cache. This must be called before any data is
actually read.

Inputs: B register = ROM page of first byte to copy.
HL register = offset on the ROM page to the first byte(s) to copy.

TI-83 Plus Developer Guide Third Release May 28, 2002

46 Chapter 2: TI-83 Plus Specific Information

PagedGet This routine has two functions. First is to fill the 16 byte cache
with mode data from the archive, whenever it has been
completely read. Second, is to return the next byte from the
cache to the caller. The first byte returned is at the location
input to SetupPagedPtr, followed by each consecutive byte
that follows.

Inputs: Initial inputs are set by SetupPagedPtr, and are updated after
each subsequent call to PagedGet.

Outputs: ACC = byte read.
Cache pointers updated.
Cache reloaded with next 16 bytes of archive if exhausted.

Note: Both of these methods, direct and cached, will force an application to read data
from the archive sequentially. This can be very inefficient if the eightieth byte of an
archived equation needed to be read. An application would have to read through the
first 79 bytes one at a time.

In Ram, the solution would be to add 80 to the address of the start of the equation
and then do one read. In the archive, it is not as simple. An application has to be
wary of ROM page boundaries and offsets into a ROM page.

Applications can use the following code to add a two byte value to a ROM page
and offset archive address, so that page boundary crossing is adjusted for. This
routine will work for adding values up to 4000h (16K) maximum.

; Add DE to ROM page and offset: B, HL

BHL_PI us_DE:

ADD HL, DE ; add DE to the offset HL
BI T 7, H ; Cross page boundary?
RET Z ; no, B, HL = ROM page and of f set
I NC B ; increase ROM page nunber
RES 7,H
SET 6, H ; adjust offset to be in 4000h
;. to 7FFFh
RET

For example, look up archived AppVar MYAPPVAR, and read past its Symbol
Table entry in the archive to reach the data. Then read the two size bytes of the

AppVar.
Data Size of Symbol | Size varies by the name | Size computed the same
valid entry + Data size and data type as variables in RAM
Flag LSB MSB | Symbol Table entry Variable Data Structure
Increasing addresses -------- >

Table 2.12: Format of Archive Stored Variables

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 47

LD HL, MyAppVar
RST r Mov9ToOP1 ; OP1 = AppVar name
B CALL ChkFi ndSym ; find Synmbol Table entry,

; and get pointers

; B = ROM page and DE = offset, to start of data in the archive

EX DE, HL ; B, HL now points to the
; data of the variable

CALL LoadCl ndPaged_i nc ; skip data valid flag

CALL LoadDEl ndPaged_inc ; skip data length, B, HL

; at synbol entry

; now the size of the Synbol Table entry needs to be computed so that
; it can be skipped over to get to the AppVar’s data structure

LD DE, 5 ; DE = offset to name
; length of AppVar

CALL BHL_pl us_DE ; add DE to B, HL:
; page, offset

CALL LoadCl ndPaged_i nc ; C=nane length, B, HL
; advanced

LD E, C ; DE = offset to start of

; AppVars data

CALL BHL_pl us_DE ; add DE to B, HL: page,
;. of fset
CALL LoadDEl ndPaged_inc ; DE = size bytes of
; AppVar,
RET
MyAppVar :
.asciz AppVar bj, ‘ MYAPPVAR
BHL_PI us_DE:
ADD HL, DE ; add DE to the offset HL
BIT 7, H ; Cross page boundary?
RET Z ; no, B, HL = ROM page and
;. of fset
I NC B ; increase ROM page nunber
RES 7,H
SET 6, H ; adjust offset to be in
; 4000h to 7FFFh
RET

Manipulation Routines

List Element Routines

These routines are used for storing and recalling list element values and for changing
the dimension of a list.

AdrLEle Returns the RAM address of a list element.

TI-83 Plus Developer Guide Third Release May 28, 2002

48 Chapter 2: TI-83 Plus Specific Information

GetLToOP1 Recalls an element of a list to OP1 if Real or OP1/OP2 if Cplx.

PutToL Stores OP1 if Real or OP1/OP2 if Cplx, to an element of a list.

IncLstSize Increments the size of an existing list by adding an element to the end
of the list.

InsertList Inserts one or more elements into an existing list.

DelListEl Deletes one or more elements from an existing list.

See the System Routine Documentation for detalils.

Matrix Element Routines

These routines are used for storing and recalling matrix element values and for
changing the dimension of a matrix.

AdrMEle Returns the RAM address of a matrix element.
GetMToOP1 Recalls an element of a matrix to OP1.
PutToMat Stores OP1 to an element of a matrix.
RedimMat Redimensions an existing matrix in RAM.

See the System Routine Documentation for details.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

49

Resizing AppVar, Program, and Equation Variables

These data types can be resized in place without having to make an additional copy of
the variable. Following are the two routines, with examples, used to increase the data
size and to decrease the data size.

Increasing the data size.

InsertMem

Increases the size of an existing variable by inserting space at a given
address.

For example, insert 10 bytes at the beginning of an existing AppVar. If there is not
enough free RAM, the AppVar does not exist, or if the AppVar is archived, CA=1is

returned.

Insert_10:

AppVar Nane:

LD
B_CALL
RET

LD
B_CALL
B_CALL
RET

LD

ADD
RET

PUSH

I NC
I NC

LD
B _CALL
POP
PUSH

B_CALL

LD
ADD

POP
LD
I NC
LD

RET

DB

HL, 10
EnoughMem
C

HL, AppVar Nanme

Mov9ToOP1
ChkFi ndSym
C

A B

OFFh

C

DE

DE
DE

HL, 10

| nsert Mem
HL

HL

| dHLi nd

BC, 10
HL, BC
DE, HL
HL
(HL), E
HL
(HL), D
A

AppVar Obj , ' AVAR , 0

nunmber bytes to insert
check for free RAM
ret CA=1if not

OP1 = nane of AppVar

DE = pointer to data if exists
ret if not found

ar chi ved status

if archived then CA =1

ret if archived

save pointer to size bytes of
dat a

nove DE past size bytes

nunmber bytes to insert
insert the nenory

HL = pointer to size bytes
save

HL = ol d size of AppVar,
number bytes

i ncrease by 10, anount inserted
DE = new si ze
pointer to size bytes |ocation

wite new size.
CA=0

See the System Routine Documentation for details on InsertMem.

TI-83 Plus Developer Guide

Third Release May 28, 2002

50

Chapter 2: TI-83 Plus Specific Information

» Decreasing the data size

DelMem Decreases the size of an existing variable by removing data at a given

address.

For example, delete 10 bytes at the beginning of an existing AppVar. If the AppVar
does not exist or if it is archived, CA = 1 is returned.

Del ete_10:
LD
B _CALL
B _CALL
RET

LD
ADD
RET

PUSH

I NC
I NC

LD

B _CALL
POP
PUSH

RET
AppVar Nane:

DB

HL, AppVar Nanme

Mov9ToOP1 ; OP1 = nanme of AppVar

ChkFi ndSym ; DE = pointer to data if exists

C c ret if not found

A B ; archi ved status

OFFh : if archived then CA =1

C ; ret if archived

DE ; save pointer to size bytes of
; data

DE

DE ; move DE past size bytes

HL, 10 ; nunber bytes to insert

DE, HL ; HL = pointer to start of delete,
; DE = nunber bytes

Del Mem ; delete the menory

HL ; HL = pointer to size bytes

HL . Save

| dHLi nd ; HL = ol d size of AppVar,
; nunber bytes

BC, 10

A

HL, BC ; decrease by 10, ampunt del et ed

DE, HL ;. DE = new size

HL ; pointer to size bytes location

(HL), E

HL

(HL), D . wite new size.

A i CA=0

AppVar Obj , ' AVAR , 0

See the System Routine Documentation for details on DelMem.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 51

Symbol Table Structure

This structure contains an entry for each variable that is created. It contains information
about a variable’s type, name, and location in RAM or in the archive. The Symbol Table
begins in high memory at the end of the hardware stack and grows towards low memory
(backwards).

Addr
8000h

System RAM
(Fixed Size)

User RAM l
(Grows Up)

Temporary RAM
(Grows Up) l

Floating Point Stack
(Grows Up) l

Free RAM Ptemp - 1)

Programs, Lists,

Operator Stack T AppVars, Groups

(Grows Down)

Symbol Table T (ProgPtr)

(Grows Down) Real, Complex, Matrix
Picture, Graph Database,

Hardware Stack \ Equation

(Fixed Size) FEEEh Symtable

Fig. 2.6: Symbol Table Structure

The Symbol Table is divided into two sections by data type.

The first byte of the Symbol Table for Real, Cplx, Mat, Pict, GDB, and EQU is at address
symTable and ends at address (progPtr-1).

The first byte of the Symbol Table for Prog’s, List AppVar and Group is at address
(progPtr) and ends at (pTemp-1).

symTable is a fixed address and never changes.
(progPtr) and (pTemp) are not fixed addresses.

For example, load the current start address of the Program/List/AppVar/Group Symbol
Table into register HL.

LD HL, (progPtr)
The Symbol Table is split by the structure of the entries.

Each entry is written from high memory to low memory (backwards).

TI-83 Plus Developer Guide Third Release May 28, 2002

52 Chapter 2: TI-83 Plus Specific Information

Start of
Program, AppVar, Group Entry
-14 -13 -12 -11 -10 9 (-8 -7 -6 -5 -4 -3 -2 -1 0
Variable Name NL | Page | DAH | DAL | Ver | T2 T
8 characters max
Table 2.13: Program, AppVar, Group
: Start of
Lists Entry
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
F Variable Name tVarLst | NL | Page | DAH | DAL | Ver | T2 T
5 characters max 5Dh
Table 2.14: Lists
) Start of
Real, Cplx, Mat, EQU, GDB, Pict Entry
-8 -7 -6 -5 -4 -3 -2 -1 0
00 Second token | First token of Page DAH | DAL | Ver | T2 T
of name name

Table 2.15: Real, Cplx, Mat, EQU, GDB, Pict

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

53

e T = object type where:

Bit Flag
—4 Object Type

0

5 Graph equation selected

6 Variable used during graphing
7

Link transfer flag

Object Type Value Object Type

Object Type Equate

00h Real RealObj
01lh List ListObj

02h Matrix MatObj

03h Equation EquObj

04h String StrngObj
05h Program ProgObj
06h Protected Program ProtProgObj
07h Picture PictObj

08h Graph Database GDBODbj
0Bh New EQU Obj NewEquObj
0Ch Complex Obj CplxObj
ODh Complex List Obj CListObj
14h Application Obj AppObj

15h AppVar Obj AppVarObj
17h Group Obj GroupObj

e T2 = Reserved for future use.

e Ver = Version number.

— Each variable’s Symbol Table entry contains a byte field for its version.

— The version of a variable determines its scope of compatibility with future

upgrades of the TI-83 Plus.

— Afuture TI-83 Plus release may create a new data type that the earlier releases
do not know how to handle. This variable’s version number would be set higher
than the version number of the previous code released.

— If a new variable type is sent to an TI-83 Plus running an earlier version of
product code, the variable would not be accepted by the earlier product code
since the variable’s version number is higher than that of the product code.

* DAL = Data structure pointer’s low (LSB) byte.

TI-83 Plus Developer Guide Third Release May 28, 2002

54

Chapter 2: TI-83 Plus Specific Information

* DAH = Data structure pointer’s high (MSB) byte.

« PAGE = ROM page the data structure resides on if archived, if it resides in RAM,

unarchived, this byte is zero (0).

* NL = Name length of the variable.

Note: For lists include the byte tVarLst in the length.

e F = Formula number attached to a list.

— Lists can have a formula attached to them that is executed every time the list is
accessed. The result of the execution is stored into the lists data structure.

— If this value is 0, there is no formula.

— This value is used to generate a unique name for the formula attached to a
particular list variable.

— The Symbol Table entry for one of these formulas would be:

-8

-7

-6

-5

-4

-3

-2

00

F#

?
3Fh

Page

DAH

DAL

Ver

T2 EquObj

» Variable names — See Naming Conventions.

Table 2.16: Formula Example

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 55

Example: A routine that traverses both sections of the Symbol Table.

Traver se_syniabl e:

LD HL, synirabl e ; HL = pointer to first synbol entry

LD D0

LD BC, (pTenp) ; BC = pointer to byte after the end
; of the Synbol Table

| oop

oR A

SBC HL, BC ; current - end, if CA then done with
; search

RET C ; return if no nore syns to check

RET z ; return if no nore to check

ADD HL, BC ; restore current search pointer

LD A (HL) ; get synbol entry type

AND 1Fh ; mask off variable type

LD E, 6 ; DE = offset to NL or first byte of
; name

SBC HL, DE ; (HL) = NL or first byte of nane

LD E, 3 ; DE = offset to next entry if not a
; progranilist/group/ AppVar

CcP AppVar Obj ; current entry an AppVar

JR Z, novet onext ; yes, get NL to find next entry

CcP Pr ogObj ; current entry a program

JR Z, novet onext ; yes, get NL to find next entry

CcP Pr ot Pr ogoj ; current entry a program

JR Z, novet onext ; yes, get NL to find next entry

CcP TenpPr oj Obj ; current entry a program

JR Z, novet onext ; yes, get NL to find next entry

CcP gr ouppr ogobj ; current entry a group var

JR Z, novet onext ; yes, get NL to find next entry

DEC HL ; (HL) = tVarLst if a list

LD A (HL)

I NC HL ; fix

CcP t Var Lst ; current entry a list

JR NZ, nrovet onextl ; no

Movet onext :
LD E, (HL) ; DE = length of nanme
I NC E ; DE = length of nane + 1

; move HL to next synbol table entry sign digit

Movet onext 1:

OR A
SBC HL, DE ; HL = next synbol table entry address
JR | oop

TI-83 Plus Developer Guide Third Release May 28, 2002

56 Chapter 2: TI-83 Plus Specific Information

Floating Point Stack (FPS)

The Floating Point Stack (FPS) is a TI-83 Plus system RAM structure that begins at the
end of the variable data storage area and grows toward the Symbol Table storage area.

The stack grows and shrinks in size in multiples of nine bytes ONLY. This entry size is
the size of a floating-point number.

This does not mean that only floating-point numbers may be pushed onto the stack. The
content of the nine bytes, in most cases, can be random data. The only exception is
when system routines are used to manipulate the Floating Point Stack expecting data
type information to be stored in the entry to be placed on, removed from, copied to, or
copied from the FPS.

Many of the TI-83 Plus system routines will use the FPS for argument passing and
temporary storage during computations.

Addr
8000k

System RAM
(Fixed Size)

User RAM l

{Grows Up) fpBase: 2 byte RAM
pointer to the start of
Temporary RAM the stack.

(G rows Up) l

Floating Point Stack
(G rows Up)

-

Floating Point Stack

(G rows Up) i FPS: 2 hyte RAM
pointer to the end of

Free RAM the stack + 1.

Operator Stack T
(G rows Down)

Symhbol Table T
(G rows Down)

Hardware Stack
(F ixed Size)

FFFFh

Fig. 2.7: TI-83 Plus System RAM

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 57

Naming Convention

The following abbreviations are used when dealing with the Floating Point Stack.
FPS = Floating Point Stack

FPST = Floating Point Stack Top. This is the last nine bytes of the FPS.

FPS1 = Floating Point Stack minus 1 entry. This is the second to last nine bytes of the
FPS. Each previous nine bytes would continue this scheme FPS2,
FPS3 ... FPSnh.

For example, assume the FPS is empty, (FPS) = (FPSBASE) and OP1 = floating-point
value 1, and OP2 = floating-point value 2.

B _CALL PushReal O1 ; pushed 9 bytes of OPl -> FPST
B_CALL PushReal &2 ; OP2 -> FPST, FPST -> FPS1
RAM would look similar to this depending on fpBase value.
Address
(fpBase)-----> 9C00 80h 10h 00 00 00 00 00 00 00 (1.00000000) FPS1
9C09 80h 20h 00 00 00 00 00 00 00 (2.00000000) FPST
(FPS)--------- > 9C12

General Use Rules
The following are some general use rules when manipulating the FPS.
* The FPS can be used by applications at anytime.

* The only time that the FPS cannot be allocated or deallocated to is during a system
edit input session.

* Any allocations (pushes) to the FPS are the responsibility of the routine that made
the allocation. Some system routines will take arguments that have been put onto
the FPS and will remove them.

* Not cleaning the FPS properly could cause system lockups during application
execution or after the application is exited.

» If the system’s error context is invoked, (e.g., ERR:DOMAIN), the FPS will be reset.

e If an attempt is made to allocate space on the FPS with insufficient free RAM
available, a system error is generated.

These system errors can be avoided in the same manner as creating variables are, with
the use of an error handler invoked before the allocation is attempted. See the section
on Error Handlers later in Chapter 2.

TI-83 Plus Developer Guide Third Release May 28, 2002

58 Chapter 2: TI-83 Plus Specific Information

FPS System Routines

The OP registers are used extensively by the system’s FPS routines for input and
output.

FPS Allocation Routines

These routines are separated by either the size of the allocation or by a Data Type of a
value, Real/Complex.

» Pushes nine bytes onto the FPS. For these routines, the word Real implies nine
bytes.

PushReal Pushes nine bytes pointed to by HL onto the FPS.

PushRealO1 Allocates nine bytes on FPS then OP1 is copied to FPST.
PushReal 02 Allocates nine bytes on FPS then OP2 is copied to FPST.
PushRealO3 Allocates nine bytes on FPS then OP3 is copied to FPST.
PushRealO4 Allocates nine bytes on FPS then OP4 is copied to FPST.
PushRealO5 Allocates nine bytes on FPS then OP5 is copied to FPST.
PushRealO6 Allocates nine bytes on FPS then OP6 is copied to FPST.

e Pushes a complex number from two consecutive OP registers onto the FPS.

For these routines, the REAL part of the complex number is in the OP register
specified and the IMAGINARY part is in the following OP register. Only nine bytes of
each of the registers are pushed onto the FPS.

PushMCplIxO1 Pushes OP1 onto FPS then pushes OP2 onto FPS. FPS1 = OP1,

FPST = OP2.
PushMCplIxO3 Pushes OP3 onto FPS then pushes OP4 onto FPS. FPS1 = OP3,
FPST = OP4.

» Checks the data type of a value in an OP register for either Real or Cplx, and
pushes the value onto the FPS.

These routines check the specified OP register’'s data type byte, and if CplxObj, then
pushes a complex number from the OP registers in the same way as the
PushMCplx routines above. Otherwise, pushes nine bytes from the register
specified onto the FPS.

PushOP1 Pushes OP1 or OP1/0OP2, checks OP1 = CplIxObj.
PushOP3 Pushes OP3 or OP3/OP4, checks OP3 = CplIxObj.
PushOP5 Pushes OP5 or OP5/0OP6, checks OP5 = CplIxObj.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 59

* Block allocates space on the FPS with no data transfer. This is done to preallocate
space needed on the FPS in one step. To set the values, the CopyToFPS routines
need to be used. They are described later in this section.

AllocFPS Allocates HL number of nine-byte entries.

AllocFPS1 Allocates HL number of bytes, which must be a multiple of nine.

FPS Deallocation Routines

* Pops nine bytes off of the FPS. For these routines, the word Real implies nine bytes.

PopReal Removes nine bytes off of the FPS and writes to RAM pointed to
by DE.
PopRealO1 Removes nine bytes from FPS then copies to OP1.

PopRealO02 Removes nine bytes from FPS then copies to OP2.
PopRealO3 Removes nine bytes from FPS then copies to OP3.
PopRealO4 Removes nine bytes from FPS then copies to OP4.
PopRealO5 Removes nine bytes from FPS then copies to OP5.
PopRealO6 Removes nine bytes from FPS then copies to OP6

* Pops a complex number, or two nine-byte entries, off of the FPS into two
consecutive OP registers.

For this routine, the first nine-bytes removed from the FPS are written to the OP
register following the one specified, and the preceding nine bytes are written to the
OP register.

PopMCpIxO1 Removes nine bytes from FPS then copies to OP2 and removes
next nine bytes from FPS then copies to OP1.

* Checks the data type of a value in FPST for either Real or Cplx, and pops the value
into one or two OP registers.

These routines check FPST entry’s data type byte, and if CplxObj, then pops FPST
and FPS1 entries into the specified OP registers. Otherwise pops nine bytes FPST
into the specified OP register.

PopOP1 Removes nine or 18 bytes from the FPS placing them into OP1/OP2.

PopOP3 Removes nine or 18 bytes from the FPS placing them into OP3/OPA4.
PopOP5 Removes nine or 18 bytes from the FPS placing them into OP5/OP6.

TI-83 Plus Developer Guide Third Release May 28, 2002

60 Chapter 2: TI-83 Plus Specific Information

+ Block deallocates entries from FPS with no data transfer.

These routines remove entries starting at FPST by modifying the value of the pointer
FPS.

DeallocFPS Removes HL number of nine byte entries from the FPS.
DeallocFPS1 Removes DE number of bytes from the FPS, this must be a
multiple of nine.
Copy Data To and From Existing FPS Entries

» Accesses entries on the FPS by using the RAM pointers FPS and FPSBASE, which
define the boundaries of the FPS.

» Copies nine bytes from RAM to an FPS entry.

CpyToStack If this routine is to be used, it is recommended that you create this
routine in your APP/ASM:

; input: C = offset from(FPS) to start of 9
; byte entry to wite to. nax = 252

ex: C=9 -> FPST
18 -> FPS1

DE = pointer to 9 bytes of RAMto copy to FPS

Cpy ToFPS:

LD HL, (FPS)

B _CALL CpyToSt ack
CpyToFPST Copies nine bytes at DE to FPST.
CpyToFPS1 Copies nine bytes at DE to FPS1.
CpyToFPS2 Copies nine bytes at DE to FPS2.
CpyToFPS3 Copies nine bytes at DE to FPS3.

CpyO1ToFPST Copies nine bytes in OP1 to FPST.
CpyO1ToFPS1 Copies nine bytes in OP1 to FPS1.
CpyO1ToFPS2 Copies nine bytes in OP1 to FPS2.
CpyO1ToFPS3 Copies nine bytes in OP1 to FPS3.
CpyO1ToFPS4 Copies nine bytes in OP1 to FPS4.
CpyO1ToFPS5 Copies nine bytes in OP1 to FPS5.
CpyO1ToFPS6 Copies nine bytes in OP1 to FPS6.
CpyO1ToFPS7 Copies nine bytes in OP1 to FPS7.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

61

CpyO2ToFPST Copies nine bytes in OP2 to FPST.
CpyO2ToFPS1 Copies nine bytes in OP2 to FPS1.
CpyO2ToFPS2 Copies nine bytes in OP2 to FPS2.
CpyO2ToFPS3 Copies nine bytes in OP2 to FPS3.
CpyO2ToFPS4 Copies nine bytes in OP2 to FPS4.
CpyO3ToFPST Copies nine bytes in OP3 to FPST.
CpyO3ToFPS1 Copies nine bytes in OP3 to FPS1.
CpyO3ToFPS2 Copies nine bytes in OP3 to FPS2.
CpyO3ToFPS3 Copies nine bytes in OP3 to FPS3.
CpyO5ToFPS1 Copies nine bytes in OP5 to FPS1.
CpyO5ToFPS3 Copies nine bytes in OP5 to FPS3.
CpyO6ToFPST Copies nine bytes in OP6 to FPST.
CpyO6ToFPS2 Copies nine bytes in OP6 to FPS2.

Copies nine bytes from a FPS entry to RAM.

CpyStack If this routine is to be used, it is recommended that you create this

routine in your APP/ASM.

input: C = offset from(FPS) to start of 9
byte entry to copy. max = 252

ex: C=9 -> FPST
18 -> FPS1

DE = pointer to 9 bytes of RAMto copy to

Cpyfr FPS:

LD HL, (FPS)

B _CALL Cpy St ack
CpyFPST Copies nine bytes from FPST to DE.
CpyFPS1 Copies nine bytes from FPS1 to DE.
CpyFPS2 Copies nine bytes from FPS2 to DE.
CpyFPS3 Copies nine bytes from FPS3 to DE.
CpyTolFPST Copies FPST to OPL1.
CpyTolFPS1 Copies FPS1 to OP1.

TI-83 Plus Developer Guide Third Release May 28, 2002

62

Chapter 2: TI-83 Plus Specific Information

CpyTolFPS2
CpyTolFPS3
CpyTolFPS4
CpyTolFPS5
CpyTolFPS6
CpyTolFPS7
CpyTolFPS8
CpyTolFPS9
CpyTolFPS10
CpyTolFPS11

CpyTo2FPST
CpyTo2FPS1
CpyTo2FPS2
CpyTo2FPS3
CpyTo2FPS4
CpyTo2FPS5
CpyTo2FPS6
CpyTo2FPS7
CpyTo2FPS8

CpyTo3FPST
CpyTo3FPS1
CpyTo3FPS2

CpyTo4FPST
CpyTo5FPST

CpyTo6FPST
CpyTo6FPS2
CpyTo6FPS3

Copies FPS2 to OP1.
Copies FPS3 to OP1.
Copies FPS4 to OP1.
Copies FPS5 to OP1.
Copies FPS6 to OP1.
Copies FPS7 to OP1.
Copies FPS8 to OP1.
Copies FPS9 to OP1.
Copies FPS10 to OP1.
Copies FPS11 to OP1.

Copies FPST to OP2.
Copies FPS1 to OP2.
Copies FPS2 to OP2.
Copies FPS3 to OP2.
Copies FPS4 to OP2.
Copies FPS5 to OP2.
Copies FPS6 to OP2.
Copies FPS7 to OP2.
Copies FPS8 to OP2.

Copies FPST to OP3.
Copies FPS1 to OP3.
Copies FPS2 to OP3.

Copies FPST to OP4.
Copies FPST to OP5.

Copies FPST to OP6.
Copies FPS2 to OP6.
Copies FPS3 to OP6.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 63

DRIVERS LAYER

The Drivers layer of the TI-83 Plus system includes such areas as the keyboard, the
display, and the link port.

Keyboard

There are two ways to read key presses on the TI-83 Plus.
— Poll for scan codes directly.
— Use the system key read routine, GetKey.

* Poll for scan codes
This method is used in two different situations.

— When alpha or second functions located on the keyboard are not used in the
application.

— When keys need to be recognized as fast as possible, this is usually used for
game-type applications programming.

— See the Automatic Power Down™ (APD™) section.
This method will allow an application to know what physical key is pressed only.

— This method will not support silent link activity. Any link activity started by
either another unit or a computer will not be detected by the system. Applications
must poll for link activity on their own. See the Link Port section later in this
chapter.

How it works:

— The system interrupt handler will look for key presses and when one is detected,
it will write the scan code for that key to a RAM location. An application will then
periodically check that RAM location for a scan code value.

— Interrupts must be enabled for the system to scan the keyboard in the
background. This system flag must be reset:

indicOnly, (IY + indicFlags)

If this flag is set, then the interrupt handler will not scan the keyboard. This flag
should only be set when the run indicator needs to be seen and no keyboard
inputs are expected. Setting this flag will cause the interrupt service time to be
shortened and overall execution faster.

TI-83 Plus Developer Guide Third Release May 28, 2002

64 Chapter 2: TI-83 Plus Specific Information

- The key does not have a scan code assigned to it, the interrupt handler
will set a flag if it is pressed. An application must check this flag to handle the
key press.

Flag: oninterrupt, (IY + onFlags)

This flag should be reset by an application after detecting an key press. If it

is not reset, an application will assume that the key had been pressed again.
The interrupt handler does not reset this flag.

— The scan code values are equated in the include file named TI83plus.inc.
Fig. 2.8 below shows the scan codes associated with their keys.

< D)

36 37 38 04
CoOCoOHC oy e

30 28 20 D é D

2F 27 1F 17 OF

() |] |] |] (]
2E 26 1E 16 0E

(] |)) |) J
2D 25 1D 15 0D

(] |)]] J
2c 24 1c 14 oc

(])) |] J
2B 23 1B 13 0B

(] |)) | J J
2A 22 1A 12 0A

() |) |)])
21 19 11 09

Fig. 2.8: Calculator Scan Code

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

65

Example one: This example will use the Z80 halt instruction to enter into low power
mode, and upon waking up, will check:

if a key had been pressed,
check for the key being pressed,
turn off the run indicator while waiting for a key, and

disable APD™ while waiting and re-enable it after.

anykey:
RES i ndi cOnly, (1Y+indi cFl ags)
B CALL Runl ndi cOf f
RES onlnterrupt, (1 Y+onFl ags)
RES apdAbl e, (I Y+apdFl ags)
anykeyl p:
El
HALT
BIT onlnterrupt, (1 Y+tonFLags)
JR Nz, f oundkey
CALL Get CSC
oR A
JR Z, anykeyl p
f oundkey:
SET apdAbl e, (I Y+apdFl ags)
RES onl nterrupt, (1 Y+onFl ags)
RET
Get CSC.
LD HL, kbdScanCode
D
LD A (HL)
LD (HL), 0
RES kbdSCR, (1 Y+kbdFI ags)
El
RET

make sure keys are
scanned

turn off run indicator
reset On key flag
turn off APD

turn on interrupts
| ow power state

On key pressed
return if yes

| ocal routine to | ook
for scan code

if non zero then have
a scan code

junp if no scan code
pr esent

turn on APD
reset On key flag

interrupts off

get possible scan code
clear out for next
scan

needed for system

key scan to work
interrupts on

TI-83 Plus Developer Guide

Third Release May 28, 2002

66 Chapter 2: TI-83 Plus Specific Information

Example two: This example will stay in a loop and make calls to read key, which will

return:

Z =1 if no key found, Z = 0 if a key is detected,
— ACC = scan code of key, 0 = key

run indicator will be running, and

— allow APD™.
ex_2:

B CALL Runl ndi cOn

SET apdAbl e, (I Y+apdFl ags)
KeyLoop:

RES onlnterrupt, (1 Y+tonFLags)

turn on run indicator
turn on APD

reset On key fl ag

; this part of the | oop could be nodifying the screen with

; ani mati on of sonme kind,

; be input.
CALL r eadKey
JR Z, KeyLoop
; here we have a key press, ACC = scan code, 0 = on
R A
JP Z, Handl e_On_Key
CP skEnt er
JP Z, Handl e_Ent er _key

; check for rest of keys that matter

readkey:
RES i ndi cOnly, (1Y+indi cFl ags)
El
CALL Get CSC
BIT onlnterrupt, (1 Y+onFl ags)
JR Z, not Onkey
LD A0
RET
not Onkey:
oR A
RET

or doing other work while waiting for a key to

see if key pressed
jump if no key found

key

is it the on key ?
jump if yes

enter key scan code ?

make sure keys are
scanned

turn on interrupts

| ocal routine to | ook
for scan code

On key pressed

scan code for on key,
Z =0 fromtest

any scan code found
Z=1if no key, else
Z=0

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 67

e Use the system key read routine, GetKey.

This method is used when the alpha and second functions on the keyboard are valid
inputs to the applications.

Unlike polling for scan codes which returns only one value for each key on the
keyboard, this routine could possibly return up to four different values for the
same key. Depending what key modifiers, alpha and second, may have been
activated.

See the Automatic Power Down (APD™) section.

This method will support silent link activity. Any link activity started by either
another unit or a computer will be detected by the system. If the TI GRAPH
LINK™ or Tl Connect™ attempts transfer a variable to/from the TI-83 Plus, the
application will be shut down. See the following example.

The pull down menu system is not controlled by this routine — the key value of
the menu will be returned but the menu will not activate.

How it works:

Interrupts must be enabled.

The key flag should be reset before calling.
oninterrupt, (IY + onFlags)

This system flag must be reset:
indicOnly, (IY + indicFlags)

If this flag is set, the interrupt handler will not scan the keyboard. This flag should
only be set when the run indicator needs to be seen and no keyboard inputs are
expected. Setting this flag will cause the interrupt service time to be shortened
and overall execution faster.

Make a B_CALL to GetKey.

Control remains in GetKey until a returnable key entry is pressed, the unit is
turned off, or link activity has caused the application to be put away.

The key presses that are not returned are [ALPHA] and [2nd].
The key code is returned in the ACC.

TI-83 Plus Developer Guide Third Release May 28, 2002

68 Chapter 2: TI-83 Plus Specific Information

- The key has a key code of 0 and the flag indicating that it was pressed is
also set.

oninterrupt, (IY + onFlags)

— The key code returned can be either one or two bytes. The ACC is checked to
see if a one or two byte key code is returned.

There are two values returned that signal a two byte key code:
kExtendEcho and kExtendEcho?2

There is a table for each of these keys that list the second byte key values
associated with them which can be found in the include file, TI83plus.inc.

If either of the above values are returned, the second byte of the key code is
located in the RAM location (keyExtend).

For example, the key code for DrawF are the two bytes kExtendEcho and
kDrawF. GetKey would return the ACC = kExtendEcho and (keyExtend) =
kDrawF.

— Lowercase Alpha keys

When the following flag is set, consecutive presses of the key will become
the mechanism for lowercase alpha key entry.

IwrCaseActive, (IY + appLwrCaseFlag)

This flag should be reset when lowercase is not needed. It should also be reset
before exiting the application.

The lowercase alpha keys are two byte key codes with the first byte being
kExtendEcho?2.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

69

For example, use the GetKey routine to input only keys A-Z until either or

is pressed.

Ent er _Al phas:

keyLoop:

Ret urn

B_CALL
RES

B_CALL
RES

El
B_CALL
RES

JR

JR

JR

CALL
JR

B_CALL

RET

Runl ndi cOF f
i ndi cOnly, (1Y+i ndi cFl ags)

Di sabl eApd

onl nterrupt, (1Y+onFl ags)
Cet Key

onl nterrupt, (1Y+onFl ags)
A

Z, Return

KEnt er
Z, Return

kCapzZ+1
NC, keyLoop

kCapA

NC, St or eKey
keyLoop

Enabl eApd

no run indicator
make key reads are
done

no auto power down

clear on pressed
wait for a key
clear on pressed
on key ?

yes return

jump if Enter key
possible A-Z

no ignore

store it if A-Z
| ook for nore

auto power down is
enabl ed

TI-83 Plus Developer Guide

Third Release May 28, 2002

70 Chapter 2: TI-83 Plus Specific Information

Display
There are two methods to access the TI-83 Plus display.
» Using system routines for displaying characters, points, lines, etc.

» Writing directly to the display driver that controls what is displayed (advanced).

Note: See the Graphing and Drawing section also.

Displaying Using System Routines

WARNING: Most of the TI-83 Plus system display routines will disable interrupts which results in no
keyboard scans, run indicator updates, APD, or cursor updates. Applications must re-enable
interrupts (El), if needed.

Display Utility Routines

CIrLCD Clears the display. The split screen setting is checked to determine
how much of the display to clear.

ClrLCDFull Clears the entire display while ignoring the split screen setting.

ClrsScrn Clears the display and the text shadow buffer. The split screen setting
is checked to determine how much of the display and buffer to clear.

ClrScrnFull Clears the display and the text shadow buffer while ignoring the split
screen setting.

ClrTxtShd Clears the entire text shadow buffer.

SaveScreen Copies a bit image of the current display to RAM.

Displaylmage Displays a bit map image.

RunIndicOff Disables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

RunindicOn Enables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

71

Displaying Text

The display is made up of 64 rows of 96 pixels. The TI-83 Plus has two sets of routines
that display text. The difference between the two sets of routines is how the text position
in the display is specified. The following are two distinct mappings of the display, home

screen and pen display.

* Home Screen Display Mapping

This mapping corresponds to the positioning of text that the home screen context

uses. The display is mapped out to eight rows of 16 characters.

curCol

0 1 2 3 4 15 | B v i |9 10 11

12

13

14

15

curRow

~l|mlth| =W =] D

Fig. 2.9: Home Screen Display Mapping
 Two bytes of RAM are used to position text written:
e (curRow) = row coordinate (0 — 7)
e (curCol) = column coordinate (0 — 15d)
* Font
* 5 (width) x 7 (height) (pixels) large characters
* Text formatting

* Reverse video:
Display all text written in reverse video:

textinverse, (1Y + textFlags); default = 0

e« Auto scroll:
If the bottom of the screen is reached:

appAutoScroll, (IY + appFlags); default = 0

TI-83 Plus Developer Guide

Third Release May 28, 2002

72 Chapter 2: TI-83 Plus Specific Information

« Echo characters to a RAM buffer:

textShadow is a RAM buffer of 128 bytes, one byte for each character
location. As characters are sent to the display, character font codes will be
written to corresponding locations in this buffer. This can be used to restore
display contents quickly when using Home Screen Display Mapping text
routines:

appTextSave, (IY + appFlags); default = 1

» Preclear character space before writing a character:

This option is used when text is written to the same location alternating
between reverse/normal video:

preClrForMode, (1Y + newDispF); default =0

« All of these settings remain until you change them. Applications need to
manage their state, if they are changed.

e Entry Points

PutMap Displays a single character without updated cursor position.

PutC Displays a single character and advances the cursor position.

PutS Displays a zero (0) terminated string stored in RAM and
updates the cursor position.

PutPS Displays a string stored in RAM with its length being the first
byte and updates the cursor position.

DispHL Displays the value stored in HL.

ClrTxtShd Clears the text shadow buffer.

EraseEOL Writes spaces from (curCol) to end of the line.

OutputExpr Positions the cursor and display a numeric value, a string, or
an equation.

PutTokString Displays a function token'’s string.

Note: The PutS routine can be used without first copying strings to RAM by coding a local
version of the routine in the application. See the System Routine Documentation for the
source code to this routine.

See the Display Utility Routines section.
See the Formatting Numeric Values for Display section.
See the System Routine Documentation for more details.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 73

* Pen Display Mapping

This mapping is based on individual pixel locations. It is used mainly in the graph
context for displaying text on a graph, but is also used in the statistics edit context to
display list elements. The display is mapped out to 64 rows of 96 pixels.

pencCol
0 1 2 3 4 5 - |90 |91 | 92 | 93 | 94 | 95

penRow

62
63

Fig. 2.10: Pen Display Mapping
— Two bytes of RAM are used to position text written:
* (penCol) = column coordinate (0 — 95d)
* (penRow) = row coordinate (0 — 63d)

The pen location specified represents the upper left most pixel of the character
being displayed.

- Fonts
* 5 (width) x 7 (height) (pixels) large characters.
e 6/7 pixel high by variable-width small characters.
» Application defined custom characters.

— Text formatting

* Reverse video:
Display all text written in reverse video:

textinverse, (IY + textFlags); default =0

* Write to Graph backup buffer:

The output can be directed to either the display, or the graph backup buffer,
plotSScreen.

textWrite, (IY + sGrFlags) = 1 to write to buffer; default = 0

TI-83 Plus Developer Guide Third Release May 28, 2002

74

Chapter 2: TI-83 Plus Specific Information

Use 5x7 large font:

The default is to use the small variable width font. Set the below flag to use
the large 5x7 font.

fracDrawLFont, (IY + fontFlags); default = 0

Erase the line below the character being displayed:

This applies to the small variable width font only. Do not set this flag if the
row of pixels below the character being displayed is off of the display.

textEraseBelow, (IY + textFlags); default = 0.

Display an application defined custom character:
This option is only used with the UserPutMap routine.
customFont, (1Y + fontFlags)

All of these settings remain until you change them. Applications need to
manage their state, if they are changed.

Entry Points

VPutMap Displays either a small variable width or large 5x7 character

at the current pen location and updates penCol.

VPutS Displays a zero (0) terminated string, using either small or

large characters and updates penCol.

VPutSN Displays a string whose length is the first byte using either

small or large characters and updates penCol.

VPutBlank Displays a space character at the current pen location using

the small or large font and updates penCol.

DispOP1A Rounds a floating-point number to the current fix setting and

display it at the current pen location. Uses either the small or
large characters and updates penCol.

SStringLength Returns the width in pixels of a string using the small font.

SFont_Len Returns the width in pixels of a character using the small
font.
UserPutMap Displays a character defined by an application at the current

pen location and updates penCol.

Note: The VPutS and VPutSN routines can be used without first copying strings to RAM by

coding a local version of the routines in the application. See the System Routine
Documentation for the source code to these routines.

Note: The space character for the small font is only one pixel wide. Applications may want to

use two space characters to separate words, in strings to be displayed using the small
font.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 75

See the Display Utility Routines section.
See the Formatting Numeric Values for Display section.
See the System Routine Documentation for more details.

Formatting Numeric Values for Display

The following routines are used to convert RealObj (single floating-point) and CpIxObj
(pair of floating-points) values into displayable strings. These routines do not display the

string.

Entry Points

FormReal

FormBase

FormEReal

FormDCplx

Converts a RealObj in OP1 into a displayable string and specify the
maximum width allowed for the string. If the current mode setting is SCI
or ENG, the output string will reflect the setting. The value will be
Rounded based on the maximum width entered and the current FIX
setting.

Converts a RealObj in OP1 into a displayable string. Uses the current
mode settings SCI, ENG, NORMAL, and FIX settings to format the
string. The output can also be formatted as a fraction, or a degrees-
minutes-seconds (DMS) number. If a value cannot be represented in
the desired format, it defaults back to decimal.

Converts a RealObj in OP1 into a displayable string and specify the
maximum width allowed for the string. All mode settings are ignored.

Converts a CplxObj value in OP1/OP2 into a displayable string. Uses
the current mode settings SCI, ENG, NORMAL, FIX setting, and
complex output settings a + bi and re”0i to format the string. The
output can also be formatted as a fraction or a degrees-minutes-
seconds (DMS) number. If a value cannot be represented in the
desired format, it defaults back to decimal.

See the System Routine Documentation for further information.

TI-83 Plus Developer Guide

Third Release May 28, 2002

76

Chapter 2: TI-83 Plus Specific Information

Modifying Display Format Settings

Resetting the next two flags signifies NORMAL mode setting.

fmtExponent, (fmtFlags) = 1 for scientific display mode
fmtEng, (IY + fmtFlags) = 1 for engineering display mode

fmtRect, (IY + numMode) = 1 rectangular complex display mode
fmtPolar, (IY + numMode) = 1 polar complex display mode

Fix setting:

(fmtDigits) = OFFh for FLOAT, no fix setting
=0 -9 if a fix setting is specified

Writing Directly to the Display Driver

The display driver is a device that controls the display. The driver contains RAM that
represents what is currently being displayed. Commands are sent to the driver to
modify, or access what is displayed. The following is a brief description of the
commands that control the driver which is the Toshiba T6A04.

Driver RAM

The RAM on the driver is mapped to a grid of 64 rows of 12 bytes. Each row
represents a row of pixels in the display with each byte representing eight pixels.

The addressing of the RAM is done by setting a row and column value to address a
particular byte. The addressing is built into the command used to set either a row or
column value. The figure below shows the command values used to set either a row
(X) or column (Y) value.

20h 21h Y Direction 2Bh

80h
81h
X
Direction
BFh

Fig. 2.11: Command Values

The first byte — row 80h and column 20h — represents the eight pixels in the first
row of the display’s left edge. The most significant bit of the byte is the left most
pixel.

Sending Commands
The following areas must be considered when sending commands.

— Interrupts should be disabled to send commands/data to the driver.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 77

— The LCD has a delay requirement of approximately 10us between operations.
The following routine should provide adequate delay on the TI-83 Plus (not Silver

Edition).

| cd_busy:
PUSH AF
I NC HL
DEC HL
POP AF
RET

— If the application is run on the Silver Edition at fast speed, the above routine will
not provide a long enough delay. There are three options for solving this
problem.

» Triple or quadruple the delay time of the in-line code. This will solve the
problem, but it may reoccur if another faster version is produced.

e Do B_CALLLCD_BUSY. Thisis guaranteed to work, but may slow down a
display intensive application.

e UseaCALL LCD_BUSY_QUICK, where LCD_BUSY_QUICK is equated to
000Bh. This is a new entry point that does not require the system overhead
of aB_CALL. This call also works on earlier TI-83 Plus versions, but runs
slightly faster than the required 10us and modifies the z/nz status flag. To
use this on all versions, wrap it in another routine that saves and restores the
flag register.

| cd_busy_2:
PUSH AF
CALL LCD BUSY_QUICK ; = 000Bh
POP AF
RET

This will ensure that the routine runs on both the TI1-83 Plus and Silver Edition
with minimal additional time delays.

— Communication is done with the drive through two IO ports:

Icdinstport = 10h command port
Icddataport = 11h data port

— Addressing a byte of RAM
Row (X) addressing

Commands 80h to BFh — sets the row address to 0 — 63 or top to bottom

roOws.

Top Row
LD A 80h ; top row
CALL | cd_busy_ 2
out (lcdinstport), A

TI-83 Plus Developer Guide Third Release May 28, 2002

78 Chapter 2: TI-83 Plus Specific Information

Bottom Row
LD A, 0BFh ;. last row
CALL | cd_busy_2
(08)) (lcdinstport), A

Column (Y) addressing
Commands 20h to 2Bh — sets the column address to 0 — OCh.

First byte of row

LD A 20h ; first byte of row
CALL | cd_busy 2
out (lcdinstport), A

Last byte of row

LD A, 2Bh ; last byte of row
CALL | cd_busy_2
aut (lcdinstport), A

— Setting auto addressing modes. The driver can act in four different ways after a
read or write.

Command 05h — X Direction auto increment
Command 07h — Y Direction auto increment
Command 04h — X Direction auto decrement
Command 06h — Y Direction auto decrement

The TI-83 Plus system expects the driver to be in X-increment mode and must
be set to this mode before giving control to the system.

* Reading the Contents of the Display Driver RAM

CALL | cd_busy_2
IN A (lcddataport) ; read disp byte that X and Y
settings point to

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

79

Reading the Display Driver After Setting X or Y Coordinates

A dummy read needs to be done after setting either the x or y coordinate of the driver if
one wants to read from the driver. For example, read nine bytes of data from the display
starting in LCD row 5, column 1, to OP1.

Loop

LD
CALL
aut

LD
CALL
aut

CALL
LD

LD
LD
CALL
I'N

CALL
I'N

LD
I NC
DINZ

LD
CALL
aut

A, 85h
| cd_busy 2
(lcdinstport), A

A 07h
| cd_busy 2
(lcdinstport), A

| cd_busy_ 2
A 21h
(lcdinstport), A

B, 9

HL, OP1

| cd_busy 2

A (I cddat aport)

| cd_busy_ 2
A (I cddat aport)

(HL), A
HL
Loop

A 05h
Lcd_busy 2
(lcdinstport), A

* Writing to the display driver RAM

CALL
auT

| cd_busy_2

(I cddat aport), A

set Xto rowb5

set Y auto increnment node

set Yto colum 1

nunber of bytes to read

dumy read since we changed
X, Y position

read byte, auto increnent Y

set X auto increnment node

; wite byte to disp

TI-83 Plus Developer Guide

Third Release May 28, 2002

80

Chapter 2: TI-83 Plus Specific Information

For example, write the contents of the graph backup buffer, plotSScreen, to the

display.

, new row

| oopl:

| oop2:

;. row done

Di

LD
LD
LD
CALL
aJt
LD

PUSH
I NC
LD
CALL

LD
CALL

LD
LD
I NC
CALL

DINZ

POP
LD
DINZ

LD

CALL

El
RET

HL, pl ot SScr een
B, 64

A 07h

| cd_busy_2
(lcdinstport), A
A 7fh

BC

A

(cur XRow) , A

| cd_busy_2
(lcdinstport), A
A, 20h

| cd_busy_2
(lcdinstport), A
B, 12

A (HL)

HL

| cd_busy_2

(I cddat aport), A
| oop2

BC
A, (cur XRow)
| oopl

A, 05h
| cd_busy_2
(lcdinstport), A

set to y I NC node
first row

save number rows left to copy
nove to next row

save new row

set new X

set to first colum

12 col ums

get source

wite to disp

get nunber rows |eft

decrease nunber left, junmp if
not done

set to x | NC node

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 81

Contrast Control

Adjusting the contrast setting of the display from an application can be done in two
ways.

» Executing the system GetKey routine will allow normal adjusting of the contrast by
the user, using the (+] and (] keyboard keys.

» The display driver controls the contrast level of the display. Applications can send a
new contrast setting to the display driver.

Below is an example of how to send a contrast setting command to the display
driver.

accunul ator = valid contrast value 18h to 3Fh

| et us set the contrast to its darkest

LD A 3Fh

oR 0COh ; or in LCD contrast comand
CALL | cd_busy_ 2 ; delay for LCD driver

out (lcdinstport), A ; set contrast

RET

Note: Adjusting the contrast in this manner will not affect the systems contrast RAM value. The new
contrast setting will only be in effect temporarily. In order to make the new setting permanent
the systems contrast value must be updated. The system’s contrast value ranges from 0 to
27h, and is stored in RAM location (contrast). Display driver setting minus 18h = (contrast).

Split Screen Modes

The TI-83 Plus has three mode settings that define the size of the display, Full screen,
Horizontal split and Graph-Table (vertical split). All of the system display writing and
graph utility routines adjust for the current split mode setting.

Applications need to be aware of the current split screen setting and take steps to
ensure that the current setting will not alter the intended output to the display.

Applications that do not intend to take advantage of a split screen have two ways to
avoid problems.

» Temporarily change the screen setting to full screen and then reset it. This option is
chosen if an application wants to retain the current split screen setting after
completion.

The current split screen settings are saved in some application defined RAM
locations (six bytes in length). Then the setting is changed to full screen mode. The
application must restore the original split screen settings back to the input state upon
completion. The following routines will save the current split screen setting and
restore it.

TI-83 Plus Developer Guide Third Release May 28, 2002

82

Chapter 2: TI-83 Plus

Specific Information

set Tof ul | :

rstrYOf fset:

LD
LD

LD

LD R
LD

LD

RES
RES
B_CALL

SET
RET

RES
LD
LD
LD
LDI R

LD

LD
RET

HL, YO f set
DE, saveval s

BC, 5

A, (1 Y+sG Fl ags)

(DB, A

grfSplit, (1Y+sG Fl ags)
vertSplit, (I Y+sG Fl ags)
Set Norm Val s

grfSplitCQverride, (I Y+sG Fl ags)

grfSplitCverride, (I Y+sG Fl ags)
DE, YO f set

HL, saveval s

BC, 5

A (HL)

(1 Y+sG Fl ags) , A

; address of split

; attributes

; app defined RAM

: location to save

; save first 5 bytes
; save split

; attributes

; split flags ->
;. ACC

; save split flags
;. in 6" byte

; set flags to
: Full screen

; screen attributes
;o to full

; restore input

;. screen attributes
; get input split

; flags

;. restore

» Change the split screen mode to full screen mode without restoring it back to the

input setting.

B_CALL

For ceFul | Scr een

Note: The B_CALL routine was not used in the first option above so that the graph would not be
marked dirty. If the split screen mode is not temporarily changed, the graph needs to be
marked as dirty so it will reflect the new screen size. Example one restores the input setting,
S0 no regraph is necessary. It is entirely up to the application if causing the regraph is a
concern or not.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 83

Graphing and Drawing — What's the difference?

Drawing

Routines include lines, circles, points, etc., which are defined by pixel coordinates.
Drawing routines cannot be defined with points outside of the physical display area.
Only pixel coordinates that exist can be used. The current WINDOW settings (Xmin,
Xmax, Ymin, Ymax) have no affect on the drawing routine’s output. Inputs to routines
are normally byte values.

Applications use drawing routines for general purpose drawing and animation. They are
easier to use and are more efficient than graphing routines that can generate the same
output. Drawing routines can also be used to annotate graphs generated by the systems
grapher.

Graphing

These routines include system grapher, lines, circles, points etc., which are all drawn
with respect to the current WINDOW settings, Xmin, Xmax, Ymin, and Ymax. These
settings define the boundaries of the display. Graphing routines can be defined with
points that reside outside of the current WINDOW settings.

Graphing routines would be used by applications that want to annotate in a way that is
determined by the current WINDOW settings.

Graphing and Drawing Utility Routines

These routines could be useful to applications in combination with some of the graphing
and drawing routines. Detailed information for each of these routines can be found in
the System Routine Documentation.

BufClr Clears a RAM display buffer representing a bit image of the
display. Similar to GrBufClr except the address of the RAM
display buffer is input.

BufCpy Displays a RAM display buffer representing a bit image of the
display. Similar to GrBufCpy except the address of the RAM
display buffer is input.

GrBufClr Clears the graph backup buffer, plotSScreen. The portion of the
buffer cleared is determined by the split mode setting.

GrBufCpy Displays the graph backup buffer, plotSScreen. The portion of the
buffer displayed is determined by the split mode setting.

ClrLCD Clears the display and the split screen setting is checked to
determine how much of the display to clear.

CIrLCDFull Clears the entire display ignoring the split screen setting.

TI-83 Plus Developer Guide Third Release May 28, 2002

84

Chapter 2: TI-83 Plus Specific Information

SaveScreen Copies a bit image of the current display to RAM.

Displaylmage Display a bit map image.

RunindicOff Disables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

RunindicOn Enables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

AllEq Selects or deselects all graph equations in the current graph
mode

SetAllPlots Selects or deselects all stat plots.

SetTblGraphDraw Sets the graph to dirty, which causes a complete regraph the
next time the graph is brought to the display.

Stat Plots

Stat plots provide a way to display data stored in list variables. The SetAllPlots routine
will select or deselect all stat plots. Each stat plot has a portion of System RAM
allocated to store its settings. To select/deselect or change settings for an individual
stat plot, you must modify this RAM.

There are three bytes that determine if a plot is on or off:

P1FrgOnOff Plot 1, 0 = off; 1 = on
P2FrgOnOff Plot 2, 0 = off; 1 = on
P3FrgOnOff Plot 3, 0 = off; 1 = on

The high 4 bits of these bytes determine which axis the data will be plotted on if the plot
type is Normal Probability Plot. 0 = X axis, 1 =Y axis.

There are three bytes that determine the type of plot to be drawn:

P1Type Plot 1 type
P2Type Plot 2 type
P3Type Plot 3 type

0 = Scatter Plot

1 = XY Line

2 = Modified Box Plot

3 = Histogram

4 = Box Plot

5 = Normal Probability Plot

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 85

Like the on/off bytes, the type bytes have a second purpose. The high four bits of the
type bytes determine the mark or icon used in the stat plot.

0 = Box icon
1 =Cross icon
2 = Dot icon

Each stat plot has three five-byte locations to store the names of lists used in the plot.
The list names do not include tVarLst, and must be zero-terminated if less than five

bytes.

SavX1List Plot 1 X list
SavYlList Plot 1Y list
SavF1List Plot 1 Frequency List
SavX2List Plot 2 X list
SavY2List Plot 2 Y list
SavF2List Plot 2 Frequency List
SavX3List Plot 3 X list
SavY3List Plot 3'Y list
SavF3List Plot 3 Frequency List

Split screen settings will affect how plots are drawn. System errors will be generated if
the plots are not set up correctly.

Drawing Routine Specifics

The following sections cover drawing pixel coordinates, drawing to a split screen, and
drawing routines.

» Drawing pixel coordinates
The display is 96 pixels wide by 64 pixels high.

Fig. 2.12 shows the layout of the pixels along with the X and Y coordinate scheme
used by drawing routines.

TI-83 Plus Developer Guide Third Release May 28, 2002

86 Chapter 2: TI-83 Plus Specific Information

X Coordinate
0 1 2 92 | 93 94 95
63
62
ol 61
®
£
©
o
(@]
O
>
1
0

Fig. 2.12: Pixel Coordinates

Coordinates are input to drawing routines mainly in a register pair such as BC, where
BC = (X,Y) drawing pixel coordinate.

For example, the upper top left pixel in the display is drawing pixel coordinates
(0,63); (X,Y).

Note: The drawing routines, by default, DO NOT use the last row of pixels, Y = 0 and the last column of
pixels, X = 95. This is done to allow for an odd number of pixels for both the X and Y axes. This
restriction can be overridden thus allowing for the drawing routines to make use of the entire
display.

* Drawing in a split screen

If either Horizontal or Vertical (G-T) split screen is the current mode, the output from
the drawing routines will be affected. Listed below are the effects of each split mode.

Horizontal Valid Y pixel range = 1 — 31, where Y-pixel row 1 is moved up
32 rows from its normal position.

Vertical (G-T) Valid Y pixel range = 1 — 51, where Y-pixel row 1 is moved up
12 rows from its normal position.

Valid X pixel range = 0 — 31, with X-pixel column O in its original
position.

If split screen modes are not required by an application, it is recommended that all
drawing routines be performed with no split modes set. See the Split Screen section
for further information.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 87

» System flags associated with drawing routines

The following flags are input by most of the drawing routines. The table gives an
overview of some the options available to applications. The System Routine
Documentation contains further information.

fullScrnDraw, (1Y + apiFlag4) 1 = allows draws to use column 95 and

row 0.

plotLoc, (IY + plotFlags) 0 = draws affect both the display and the

graph backup buffer plotSScreen.
1 = draws affect only the display.

bufferOnly, (IY + plotFlag3) 1 = draws affect the graph backup buffer

plotSScreen only.

e Drawing routines

The descriptions given below refer to affecting a pixel coordinate location in the
display, however the system flags above can be used to affect plotSScreen. The
System Routine Documentation contains further information.

Ipoint

PointOn
lline
DarkLine
PixelTest

GrphCirc

Ibounds

IBoundsFull

loffset

Performs one of the following operations to a pixel coordinate point:
darken, lighten, reverse, test, or copy from plotSScreen to display.

Darkens a pixel coordinate point.

Darkens or lightens a line between two pixel coordinate points.
Darkens a line between two pixel coordinate points.

Tests a pixel coordinate in plotSScreen, to see if it is set.

Draws a circle, given the pixel coordinates, of the center and a point
on the circle.

Tests if a pixel coordinate lies within the graph window defined by
the current mode settings.

Tests if a pixel coordinate lies within the full pixel range of the
display.

Given a pixel coordinate point, computes the offset to add to the
start address of the graph buffer to the byte in the buffer containing
that pixel.

Also returns the bit number in that byte for that pixel.

Additionally, computes the row and column commands to set the
LCD driver to the display byte for that pixel.

TI-83 Plus Developer Guide

Third Release May 28, 2002

88

Chapter 2: TI-83 Plus Specific Information

Graphing Routine Specifics

The following section covers graph WINDOW settings, graphing in a split screen, and
graphing routines and system flags.

Graph WINDOW Settings

Fig. 2.13 below shows how the graph window is bounded by the current WINDOW
settings.

(Xmin, Ymax) (Xmax, Ymax)

(Xmin, Ymin) (Xmax, Ymin)
Fig. 2.13: Graph WINDOW Setting

Graphing routine parameters (points) can be defined outside of the WINDOW settings.
Those settings only define what is currently viewed in the display.

Graphing in a Split Screen

If either Horizontal or Vertical (G-T) split screen is the current mode, the graphing
routines will be limited to the section of the display designated for graphing by the mode
setting.

For more information about disabling any split screen, see the Split Screen section of
this document.

Graphing Routines and System Flags

The graphing routines are grouped by common attributes into four groups. See the
System Routine Documentation for further information.

* Routines that do not automatically display or redraw the current graph screen. These
routines will draw over the existing contents of the display.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 89

— System flags

plotLoc, (IY + plotFlags) 0 = draws affect both the display and the Graph

backup buffer, plotSScreen.

1 = draws affect the display only.

bufferOnly, (1Y + 1 = draws affect the graph backup buffer

plotFlag3)
— Entry Points

Cpoint

CpointS

Cline

ClineS

UCLineS

DarkPnt

DrawCirc2

plotSScreen only.

Darkens, lightens, or reverses a graph coordinate point defined in
OP1/0OP2.

Darkens, lightens, or reverses a graph coordinate point defined in
FPS1/FPST.

Darkens a line between two graph coordinate points defined in
OP1/OP2 and OP3/OP4.

Darkens a line between two graph coordinate points defined in
FPS3/FPS2 and FPS1/FPST.

Erases a line between two graph coordinate points defined in
FPS3/FPS2 and FPS1/FPST.

Darkens a graph coordinate point defined in OP1/OP2.

Draws a circle given the center, a graph coordinate point in
FPS2/FPS1, and the radius in FPST.

* Routines that will automatically display or redraw the current graph screen before
executing. If the graph does not need to be redrawn, the contents of the graph
backup buffer, plotSScreen, are copied to the display.

- System flags

bufferOnly, (IY + 1 = draws affect the graph backup buffer

plotFlag3)
— Entry Points

Regraph

PDspGrph

PointCmd

LineCmd

plotSScreen only.

Graphs any selected equations in the current graph mode, and
also any selected statplots.

Tests if the graph of the current mode needs to be redrawn. If
so, call the Regraph routine, otherwise copies plotSScreen to
the display.

Darkens, lightens, or reverses a graph coordinate point defined
in (FPS2, FPS1).

Darkens a line between two graph coordinate points defined in
(FPS3, FPS2) and (FPS1, FPST).

TI-83 Plus Developer Guide

Third Release May 28, 2002

90 Chapter 2: TI-83 Plus Specific Information

UnLineCmd Erases a line between two graph coordinate points defined in
(FPS3, FPS2) and (FPS1, FPST).

DrawCmd Graphs an equation variable in FPST.

InvCmd Graphs an equation variable in FPST along the Y-axis instead
of the X-axis.

CircCmd Draws a circle given the center, a graph coordinate point in
(FPS2, FPS1), and the radius in FPST.

VertCmd Draws a vertical line at the X value in FPST.

HorizCmd Draws a horizontal line at the Y value in FPST.

« WINDOW zooming routines, which automatically display or redraw the current graph
screen, will not redraw after changing the window settings.

— Entry Points
Change the WINDOW settings such that:
ZooDefault The default settings are set, (-10,10) for both the X and Y

ranges.
ZmFit All selected functions are fully visible in the display.
Zmint AX and AY = 1.0 given a new center (OP1, OP5).
ZmPrev The settings that were set before the latest zoom.

ZmSquare AX = AY, either the X ,or Y window settings are changed.

ZmStats All selected statplots are fully visible in the display.

ZmTrig Appropriate for graphing trig functions dependent upon the
current trig mode.

ZmUsr The settings that were saved by the last ZoomSto executed.

ZmDecml (0,0) is in the center and AX and AY = .1.

* Routines that change the current graph mode.

— Entry Points

SetFuncM Switches to function mode.
SetParM Switches to parametric mode.
SetPolM Switches to polar mode.
SetSeqM Switches to sequence mode.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 91

Run (Busy) Indicator

The run indicator is used by the TI-83 Plus to indicate that the calculator is busy while
computing. It is normally turned off while waiting for input from a user. When an
application is first started, the run indicator will most likely be running.

Applications have the option of using the indicator or not.

The indicator is updated by the interrupt handler, so if it is to be used, interrupts need to
be enabled.

RunindicOff Disables the run indicator located in the upper right corner of the
display.

RunindicOn Enables the run indicator located in the upper right corner of the
display.
There are two choices for the appearance of the run indicator:

» A short solid line that circles around from top to bottom — this is the default
indicator.

* Along dashed line that circles around from top to bottom — this is the Pause
indicator for the TI-83 Plus.

To use the Pause indicator, execute the following code before turning the run indicator
on:

LD A, busyPause
LD (i ndi cBusy), A

If the Pause indicator is used, an application needs to set the default indicator back:

LD A, busyNor mal
LD (i ndi cBusy), A

Example of common usage:

El

B _CALL Runl ndi cOn ; indicator on

B _CALL Get Key ; wait for a key
B _CALL Runl ndi cOf f ; indicator off

TI-83 Plus Developer Guide Third Release May 28, 2002

92 Chapter 2: TI-83 Plus Specific Information

APD™ (Automatic Power Down™)

Applications have the choice of allowing the APD feature of the TI-83 Plus to be active
or not. APD is implemented to preserve battery life by turning the calculator off after
about four minutes of inactivity. Unless an application’s functionality absolutely requires
that APD be disabled, it should be left active.

How does APD™ work?

Under normal system operation, the APD counter is reset after each key press. If no key
press is made in approximately four minutes, the calculator powers down.

Similar to the run indicator, the APD counter is updated by the interrupt handler;
therefore, interrupts must be enabled. When the APD counter is exhausted, the
calculator turns off. The interrupt handler routine is not exited.

The application is not notified that the calculator has been turned off. The contents of
the screen are saved in the 768 bytes of RAM located at saveSScreen, which is a bit
image representation of the screen.

When the calculator is turned back on, the screen is restored and the interrupt handler
is exited. Execution resumes at the location of the last interrupt before the calculator is
powered down. Applications should not be affected by this event in any way.

* Resetting the APD counter

This routine will reset the APD counter.
B _CALL ApdSet up

The GetKey routine will make a call to this routine upon entry.
e Disabling APD™

There are two ways to disable APD and each have a specific situation in which they
should be used.

— Disable APD when calling the GetKey routine.
B _CALL Di sabl eApd

This method of disabling the APD is a global, and will stay in effect after an
application exits. Applications need to re-enable the APD before exiting.

B CALL Enabl eApd

— Disable APD while executing outside of the GetKey routine.

RES apdRunni ng, (| Y+apdFl ags)

APD will be disabled until this flag is set, or the GetKey routine is called.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 93

Link Port

Communications to and from the TI-83 Plus calculator is possible through the I/O port
using the unit-to-unit cable (included with the unit) or the graphic link cable (available as
an option).

Applications can use the link port for transferring data on two different levels.

Using system routines that send/receive TI-83 Plus variables using the systems link
protocol. There are three system routines that are used:

AppGetCalc Retrieves a variable from a TI-83 Plus or TI-83 calculator.

AppGetCbl Retrieves a variable from a Calculator Based Laboratory™ (CBL™)
or Calculator Based Ranger™ (CBR™) device.

SendVarCmd Sends a variable to a CBL™ or CBR™ device.

The AppGetCalc and AppGetCbl routines will automatically replace existing
variable data if the variable received does exist already.

No error handler is needed to be placed around calls to these routines. If any error
occurs, a flag is returned to indicate that the link operation failed. Nothing more
specific about the error is known.

See the System Routine Documentation for more details.

TI-83 Plus Developer Guide Third Release May 28, 2002

94

Chapter 2: TI-83 Plus Specific Information

For example, assume that L1 contains a list to set up the CBL to continuously poll
for data using one of its probes, sends the list to the CBL, and polls it for data.

CALL
RES
B_CALL

BIT
RET

| 1nane

onl nterrupt, (1Y+onFl ags)

SendVar Cnd

confai | ed, (I Y+get SendFl g)

Nz

| oop and read data into OP1

read_Loop:

CALL
RET
CALL
JR

get fromCBL into var

Cet Newval ue:

CALL
B_CALL
BIT
RET

RCL L1(1) -> OP1
ACC = size of list, 1

Rcl _new val :

CALL
RST

I NC
I NC

RST
RET

Llname:

LD
RST
RET

Cet NewVal ue
Nz

St or eDat a
Read_Loop

L1 and recall to OP1

| 1name
AppCet Cbl

confai | ed, (I Y+get SendFl g)

Nz

= CBL, 2 = CBR

| 1name
r Fi ndSym

DE
DE
DE, HL

r Mov9ToOP1

HL, L1nane
r Mov9ToOP1

L1

cl ear break

send L1 to start up
CBL

fail ?

return if yes

try to get another
val ue

ret if link failed
store data somewhere

L1

get data
fail ?
yes

| ook up L1 in synbol
tabl e

nove past size bytes
HL = pointer to

el ement 1

oP1 = val

OP1 = L1 nane

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 95

* Send and receive bytes of data directly through the port.

This operation involves the application interpreting the data sent and received in a
custom format. This type of communication is for applications that either interacts

with another TI-83 Plus or computer without using the built-in messaging protocol,
which is not documented in this developer’s guide.

The TI-83 Plus link port uses two data lines, DO and D1, for communicating. These
data lines are accessed through the B-port of the Z80.

— Bits 0 and 1 are for writing/reading data, DO = bit 0, D1 = bit 1.

For example, the following code shows all of the values that can be written to the

B-port.

LD A, DOLD1L

aut (bport), A ; is used for setting dO low, dl |ow
LD A, DOLD1H

aut (bport),A ; is used for setting dO |ow, dl1 high
LD A, DOHD1L

aut (bport), A ; is used for setting dO high, dl1 |ow
LD A, DOHD1H

out (bport), A ; is used for setting dO high, dl1 high

Note: Data lines are high when not in use.

For example, the code below will poll the B-port until it detects some activity and
then examine which line has the activity.

I N A, (bport) ; poll the b-port

CP DOD1_bits ; any data line go low ?

JR Z,no_activity ; junp if no activity detected
cP DOHD1L ; is dO high ?

JR Z,d0_I ow ;yes,

; else dl is high

TI-83 Plus Developer Guide Third Release May 28, 2002

96 Chapter 2: TI-83 Plus Specific Information

The following systems routines are used for polling the link and sending/receiving a
byte of data.

ReclstByte Polls the link port for activity until either a byte is received, the

key is pressed, or an error occurs during communications.
The cursor will be turned on by this routine.

ReclstByteNC Polls the link port for activity until either a byte is received, the

key is pressed, or an error occurs during communications.
The cursor is not activated by this routine.

RecABytelO Attempts to read a byte of data. If no activity is detected in about
1.1 seconds, an error occurs.

SendAByte Attempts to send a byte of data. If no activity is detected in about
1.1 seconds, an error occurs.

An error handler should be set when using these routines. Each of these routines
will generate system errors.

See the System Routine Documentation for more details.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

97

Example one:

The following routine is called to do a spot check of the link port for activity for a
single byte of data being sent.

— If no activity is detected or any error occurs during communication, then Z =0 is

returned.

— If activity is detected, then the signal is debounced to make sure it is not random

noise.

— The byte is then read and returned in the ACC with Z = 1.

havel Ccnd:

dbl pi:

Endex| O

l'inkfail:

Nol O

I'N
AND
cP
JR

DI

LD
LD
LD

I'N
AND
cP
JR

DEC
LD
OR
JR

AppOnEr r
SET
B_CALL

RES
LD

AppOf fErr
LD

out

LD

cpP

El

RET

™3

RET

A, (bport)
DOD1_bits
DOD1_bits
Z,..noio

HL, i oDat a
(HL), A
BC, 15

A, (bport)
DOD1_bits
(HL)
NZ, nol O
BC

A C

B

Nz, dbl p1l

Li nkf ai |
indi cOnly, (IY+indi cFl ags)
RecAByt el O

indi cOnly, (IY+indi cFl ags)
(ioData), A

A, DOHD1H
(bport), A
A (i oData)
A

A, DOHD1H
(bport), A

1

pol | the port

junp if no activity
for speed

save code
debounce counter

pol | again
still the sanme data?
no, failed debounce

dec counter

junp i f debounce not done
set error handl er

no key scan

read the byte

save data

handl er

renove error

reset B-port
get data byte

Z = 1 for successful
reset B-port
Z =0 for fail

TI-83 Plus Developer Guide

Third Release May 28, 2002

98

Chapter 2: TI-83 Plus Specific Information

Example two:

In the following example, the routine in the above example is used to create a loop that
checks for key input and also for a one byte command to be sent over the link port.

1 O _Key_Lp:
RES
E
HALT

B CALL

CALL
JR

JP

Example three:

i ndi cOnly, (1Y+indi cFl ags)

Get CSC
SkEnt er
Z, HaveEnt er Key

havel Ccnd
NZ, keyl plst

Li nkCndSent

’

’

’

’

’

key scan turned on
| ow power sl eep node

check for Scan Code on
wake up

junp i f enter key
check for link
junp if no byte sent

link command recei ved

This sample routine will attempt to send the register pair HL over the link port. RET
Z = 1if successful, else Z = 0.

sendH :
LD
PUSH
CALL
POP
RET
LD

sendbyt e:
DI
PUSH
LD

out
POP
SET

AppOnErr
B CALL
JR

A H

HL
sendbyt e
HL

Nz

AL

AF
A, DOHD1H

(bport), A
AF
i ndi cOnly, (1Y+indicFl ags)

| i nkfail
SendAByt e
endexi o

send H first
save L
send to other side

return if failed
time to send L

set both data lines to high
free

See Exanple 1
systemroutine to send byte
See Exanple 1

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 99

TOOLS AND UTILITIES LAYER

Error Handlers

Error exception handlers can be set up to capture any system error that occurs while
executing a block of code that an error handler is placed around.

« A macro is used to install the error handler:

AppOnErr Label

If your assembler does not support macros, use the following code:
LD HL, Label
CALL APP_PUSH_ERRORH

— Label = Location that the Program Counter (PC) is set to if a system error
occurs.

— All registers are destroyed, except the Accumulator.

— Six pushes are made onto the stack. Make sure all the information that is
needed from the stack is removed before installing the error handler.

« A macro is also used to remove the error handler:

AppOffErr

If your assembler does not support macros, use the following code:
CALL APP_POP_ERRCRH

The above is used when the error handler is no longer needed and no system error
has occurred.

The Stack Pointer (SP) must be at the level it was at immediately following the
AppOnErr. Do not call a routine to set the error handler and then remove it outside of
that routine.

« If an error occurs while the handler is place:

— The system restores the SP, the Floating Point Stack, and the Operator Stack
back to their levels when the handler was initiated.

— The error handler is removed from the stack.

— The PC is set to the Label specified when the handler was initiated and
execution begins there. The Accumulator contains the error code for the error
that tripped the handler.

— At this point, the Application can:
* Ignore the error.

» Display its own error message.

TI-83 Plus Developer Guide Third Release May 28, 2002

100 Chapter 2: TI-83 Plus Specific Information

* Do some clean up and let the system report the error.

» Modify the error code to remove the GoTo option and have the system report
the error with only a Quit option.

Example one:

Do not allow the error to be reported by the TI-83 Plus. Compute 1/X and return CA =0
if no error, otherwise return CA = 1.

AppOnErr My_Err_handl e

B_CALL Rel X . OP1 = (X)
B_CALL FPReci p . 1/ 0P1,

If no error then returns fromthe call

AppOF fErr ; renove the error handl er
oR A ; CA=0 for no error
RET

control comes here if X = 0 and generates an error
My_Err _handl e:
SCF ; CA=1for error
RET
Example two:

Allow the error to be reported by the TI-83 Plus, but remove the GoTo option.
Compute 1/X.

AppOnErr My_Err_handl e

B_CALL Rel X . OP1 = (X)
B_CALL FPReci p . 1/ 0P1,

If no error then returns fromthe call

AppOfF fErr ; renove the error handl er
RET

control cones here if X = 0 and generates an error, ACC = error code

My_Err _handl e:

RES 7,A ; bit 7 of error code controls GoTo
option
B_JUWP JError ; trip the error with no GoTo option

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 101

Nested Error Handlers

Error handlers can be nested inside of each other. The last error handler initiated will be
notified of any error that occurs. When the first handler is notified of the error, none of
the previous handlers initiated are notified. If the handler ignores the error or handles it
on its own, execution continues on with the other handlers still installed.

If that first error handler B_JUMPS back to the system error handler, (JError or
JErrorNo), the error handler that was initiated before the one that was just tripped is
now tripped itself.

Fig. 2.14 below shows the flow of the error with three nested error handlers initiated.

An error occurs

y
TI-83 Plus System Error Handler

The System Error Handler sends the error to Handler # 3
Handler # 3 sends the error back to the System Error Handler
The System Error Handler sends the error to Handler # 2
Handler # 2 sends the error to the System Error Handler
The System Error Handler sends the error to Handler # 1

agrwNhE

A A

Step 2 Step 3 Step 4 Step 5
\ 4 v A 4

Step 1

Handler # 3 initiated last

Handler # 2 initiated last

Notified of error first

Sends error back to the
System Error Handler

Notified of error second

Sends error back to the
System Error Handler

Fig. 2.14: Error Flow

Handler # 1 initiated last

Notified of error third

Handles the error on
its own

See the System Routine Documentation for details on the JError and JErrorNo routines.

TI-83 Plus Developer Guide

Third Release May 28, 2002

102

Chapter 2: TI-83 Plus Specific Information

Utility Routines

The following is information on the floating-point, complex number, and other math

routines.

Floating-Point Math

« All of the floating-point math routine arguments are input in OP1 or OP1/OP2, and
output in OP1, unless noted below.

» Errors can be generated by the math routines. See the Error Handlers section.

» All of the inputs to these routines are floating-point numbers.

* See the System Routine Documentation, entry points UnOPExec and BinOPExec
to access this functionality with arguments other than floating-point numbers.

Routine Function

FPAdd OPL1 plus OP2
FPSub OP1 minus OP2
FPRecip 1 divided by OP1
FPMult OP1 times OP2
FPDiv OP1 divided by OP2
FPSquare OP1 times OP1
SgRoot Square (OP1)
Plusl OP1 plus 1
Minus1 OP1 minus 1
InvSub OP2 minus OP1
Times2 OP1 plus OP1
TimesPt5 OP1 times .5
AbsO1PAbsO2 |OP1| plus |OP2)
Factorial (OP1)!

Table 2.17: Floating-Point Basic Math Functions

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2:

TI-83 Plus Specific Information

103

Routine Function
Sin Sin(OP1)
Cos Cos(OP1)
Tan Tan(OP1)
SinCosRad OP1 = Sin(OP1) and OP2 = Cos(OP1) force radian mode on input
ASin inv Sin(OP1)
ACos inv Cos(OP1)
ATan inv Tan(OP1)
ASinRad inv Sin(OP1) force answer in radians
ATanRad inv Tan(OP1) force answer in radians
DToR OP1 degrees to radians
RToD OP1 radians to degrees
SinH SinH(OP1)
CosH CosH(OP1)
TanH TanH(OP1)
SinCosHRad |OP1 = SinH(OP1) and OP2 = CosH(OP1)
ASinH inv SinH(OP1)
ACosH inv CosH(OP1)
ATanH inv TanH(OP1)
Table 2.18: Trigonometric and Hyperbolic Functions
Routine Function
YToX OP1MOP2
XRootY OP1/(1 divided by OP2)
Cube OP1"3
EToX e"OP1
TenX 10"OP1
LnX In(OP1)
LogX log(OP1)

Table 2.19: Floating-Point Power and Logarithmic Math Functions

TI-83 Plus Developer Guide

Third Release May 28, 2002

104

Chapter 2: TI-83 Plus Specific Information

Routine Function

Max Max(OP1, OP2)

Min Min(OP1, OP2)

Ceiling Intgr(negative OP1)

Int Int(OP1)

Intgr Intgr(OP1)

Trunc integer part(OP1)

Frac fractional part(OP1)

CpOP10OP2 | non-destructive compare OP1 and OP2
Round generic Round(OP1)

RndGuard Round(OP1) to 10 digits

RnFx Round to current fix setting

Random generate random floating-point number
RandInt Generate a random integer between OP1 and OP2

Table 2.20: Floating-Point Miscellaneous Math Functions

Miscellaneous Math Functions

Floating-Point Math Functions that Output Complex Results

The TI-83 Plus has two complex math modes, a + bi (rectangular coordinates) and re”8l
(polar coordinates), that allow complex numbers to be generated by functions that take
RealObj data type (floating-point) as input. If neither of these modes is set, then these
functions will generate an error when the arguments input would produce a complex
result. These functions include LnX, LogX, SqRoot, YToX and XRootY.

To have these routines return complex results for real data type inputs:

» set one of the complex modes:

— fmtRect, (IY + numMode) rectangular complex

— fmtPolar, (IY + numMode) polar complex

* reset

— fmtReal, (IY + numMode) real output only

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 105

The floating-point math routines described in the previous sections will always return
an error when the result is a complex nhumber. To have floating-point math routines
return the complex result, the routines described in Other Math Functions need to be
used.

Note: You do not need to change the mode to complex in order to use the complex functions with

complex inputs. This is only done to get complex results when inputs are of the RealObj type.

Complex Math

Complex numbers are composed of pairs of floating-point numbers.

Complex number math routine arguments are input in OP1/OP2 or OP1/OP2 and
FPS1/FPST, and the results are returned in OP1/OP2 or OP1. See Floating Point
Stack section.

Errors can be generated by the math routines. See the Error Handlers section.

See the System Routine Documentation, entry points UnOPExec and BinOPExec,
to access this functionality with arguments other than complex numbers only.

Routine Function

Cadd FPS1/FPST plus OP1/0P2

Csub FPS1/FPST minus OP1/OP2
CRecip (OP1/OP2)" negative 1

Cmult FPS1/FPST times OP1/OP2
Cdiv FPS1/FPST divided by OP1/OP2
CSquare OP1/0OP2 times OP1/0OP2
CSgRoot SquareRoot (OP1/0OP2)
CMiItByReal OP1/0OP2 times OP3
CDivByReal OP1/OP2 divided by OP3

Table 2.21: Complex Math Basic Math Functions

TI-83 Plus Developer Guide Third Release May 28, 2002

106

Chapter 2: TI-83 Plus Specific Information

Routine Function

CYtoX FPS1/FPSTMOP1/0OP2

CXrootY FPS1/FPSTA((OP1/OP2)" negative 1)
CEtoX eNOP1/0OP2)

CTenX 10"(OP1/0OP2)

CLN LN(OP1/OP2)

ClLog log(OP1/0OP2)

Table 2.22: Complex Math Power and Logarithmic Math Functions

Routine Function

CAbs OP1 = abs(OP1/0P2)

Conj Conj(OP1/0OP2)

Angle OP1 = Angle(OP1/0OP2)

Cintgr Intgr(OP1/0OP2)

CTrunc integer part(OP1/0OP2)

CFrac fractional part(OP1/OP2)

RToP (OP1/0OP2) rectangular to polar

PToR (OP1/0OP2) polar to rectangular

ATan2 OP1 — ATan2(OP1/OP2) where OP1 = imaginary part,
OP2 = real part of complex

ATan2Rad | Same as ATan2 except force results to radian mode

Table 2.23: Complex Math Miscellaneous Math Functions

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 107

Other Math Functions

This section covers math functions with data types other than RealObj and CplxObj. It
also covers accessing math functions not listed in the above sections.

Many of the functions in the previous two sections can also be used with arguments
other than RealObj and CplIxObj. For example

Sin(L1) Sine of list L1
4*[A] 4 times matrix [A]
(1+2i) + L3 complex number (1,2) + list L3

The problem is the entry points that execute the above functions only use RealObj and
CplIxObj arguments as inputs/outputs. There are two solutions to this problem:

* An application could use these entry points to produce results for arguments that are
lists or matrices by doing the element-by-element operations on the input. This
approach is not recommended.

» Execute these functions with mixed arguments using the system’s executor context.

The systems executor is used during parsing (see the next section for details) to
generate results. The executor is partitioned by the number of arguments that a
function takes as inputs. The routines used include:

UnOPExec Executes functions with one argument.

BinOPExec Executes functions with two arguments.

ThreeExec Executes functions with three arguments.
FourExec Executes functions with four arguments.
FiveExec Executes functions with five arguments.

Input to each of the above routines is a function to be executed along with the
argument(s) to be input to the function.

See the System Routine Documentation for a complete list of what functions can be
executed through the executor, and also for more details on the inputs/outputs
requirements.

Results from these routines may be stored in Temporary Variables. See to the
Temporary Variables Returned from the Parser section for additional details.

TI-83 Plus Developer Guide Third Release May 28, 2002

108 Chapter 2: TI-83 Plus Specific Information

Function Evaluation

Applications may need to evaluate (parse in TI-83 Plus terminology) functions
(equations). Using the TI-83 Plus, equations can only contain functions that return
values. Programming commands and other commands that do not return a result to Ans
are not valid in expressions, and therefore can only be executed from a program
variable. See the TI-83 Plus Graphing Calculator Guidebook for more information.

Parsing an equation is done to return the value of the equation with the current value of
the variables that are contained in it.

Equations can only be parsed if they are stored in an equation variable, an EquObj data
type — for example Y1, Xt1, or a temporary equation variable.

Errors can be generated during parsing. If this occurs, the system error context will take
over and in most cases, cause the application to be shut down. Applications should
install error handlers before parsing equations in order to stop the system error context
from activating.

See the Error Handling section in this chapter for further information.

Parse Routine
Parselnp — executes an equation or program stored in a variable.
e Inputs: OP1 equals the name of equation to parse

* Outputs: OP1 equals the result if no error was reported. The output can be any
numeric data type including strings. If the result returned from the parser is:

— RealObj then OP1 equals the result — a floating-point number.
— CplIxObj then OP1/OP2 equals the result — two floating-points numbers.

— ListObj, CListObj, MatObj, or StrngObj then the name of a variable that contains
the result data is returned in OP1, a temporary system variable. Use of
temporary variables returned by the parser will be explained later in this section.

» The parser can create temporary variables even if a temporary variable is not
returned as the result.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 109

For example, parse the graph equation Y1 and store the answer in Y. Install an error
handler around the parsing and the storing routine to catch any errors. RET CA =0 if
OK, elseret CA =1.

LD HL, y1Nane

RST r Mov9ToOP1 : OP1 = Y1 nane

AppOnErr Er r or Han ; error handler installed
B CALL Par sel np ; parse the equation

; returns if no error

B CALL CkOP1Real ; check if Real Qbj
JR Z,storit ; if a Real Obj, try to store to Y
AppOF f Err ; renove the error handl er

; cone here if any error was detected
; error handler is renbved when the error occurred

Er r or Han:

B CALL Cl eanAl | ; renove tenps if any
SCF ; set CAflag to signal failure
RET
storit:
B CALL St oY ;. storeto Y, ret if no error, else
;. ErrorHan
AppOF f Err ; renove error handl er
B CALL Cl eanAl | ; renove tenps if any
CcpP A : CA =20 for no error
RET
y1Nane:
DB Equbj, tVarEqu, tY1l, O

TI-83 Plus Developer Guide Third Release May 28, 2002

110

Chapter 2: TI-83 Plus Specific Information

Temporary Variables

The parser can return results that cannot be fully contained in the OP registers due to
their size. In these cases, the parser needs to return the result stored in a temporary
variable. Temporary variables can also be created by parsing and not be returned as
results (see the CleanAll routine in the following section).

A temporary variable is like any other user variable that can be created. They reduce
free memory available and have Symbol Table entries. Temporary variables exist for the
following data types:

ListObj CListObj MatObj StrngObj EquObj

Temporary variables are assigned unique names at the time that they are created. The
first character of a temporary variable name is the $, followed by a two-byte counter,
Least Significant Byte (LSB), Most Significant Byte (MSB). The counter is used to create
the unique names. For example, if the fifth temporary variable is a list, it would be:

OP1 +1 [+2 |[+3 |+4 |[+5 |+6 |+7 |+8

Listobj | $ 2 12 |2 |2 |2
0lh | 24h | 04h | 0Oh

Table 2.24: Temporary Variables Example

(pTempCnt) is a two-byte counter in RAM that the system uses to generate the next
temporary variable. This allows for up to 64K unique temporary variables.

The (pTempCnt) counter is initialized to 0000h and is incremented after each new
temporary variable is created. This counter needs to be managed properly when using
temporary variable. It needs to be completely or partially reset periodically in order to
keep temporary variable usage available. The Managing Temporary Variables section
provides additional details.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information

111

Fig. 2.15 illustrates the location in RAM the temporary information is stored.

System RAM
(Fixed Size)

User RAM
(Grows Up)

Temporary RAM
(Grows Up)

Floating Point Stack
(Grows Up)

Free RAM

Operator Stack
(Grows Down)

Symbol Table
(Grows Down)

Hardware Stack
(Fixed Size)

Addr
8000h

The data area for temporary variables is
/ located between User Memory (user data

storage) and the Floating Point Stack. It is

deliberately separated from user data so

that all of the temporary data area can be
deleted with no effect on user data storage.

The first byte of temporary storage is at
address (TempMem) and the last byte is at

(FPbase) - 1.

/

/ Temporary Variable

Symbol Table

User Symbol Table

FFFFh

Fig. 2.15: TI-83 Plus System RAM

The symbol table entries
for temporary variables
are separated from all of
the other entries. The first
byte of the temporary
symbol table is at (Ptemp)
and the last byte is at
(Opbase) + 1.

Using Temporary Variables

Temporary variables can be used the in the same manner as any user variable. They
can be modified, resized, used to store in to a user variable, and input to system
routines.

These variables are called temporary as they are not intended for long term use. Their
main purpose is to provide a way to hold onto intermediate results dynamically as the
results are needed. Temporary variables should be freed up as soon as they are no
longer needed. Some system routines will automatically free up temporary variables if
they are used as inputs (this information is noted in the System Routine
Documentation).

Managing Temporary Variables

The life span of a temporary variable is determined by the application. Once a
temporary variable is no longer needed, it can be marked dirty by the application.
Marking a temporary variable dirty identifies it for deletion. Deleting the temporary
variable frees the RAM space it occupied.

This marking scheme is used to save time while parsing an equation. The
parser/executor does not use time deleting temporary variable — it only marks the
temporary variable for deletion after the variable is no longer needed.

TI-83 Plus Developer Guide

Third Release May 28, 2002

112 Chapter 2: TI-83 Plus Specific Information

Every time a temporary variable is needed, a check if made for available RAM. If there
is not enough free RAM, the temporary variables that are marked dirty are deleted one
at a time until enough RAM has been freed. If enough RAM were free at the start of
parsing, then in most cases, none of these deletions would take place.

A temporary variable is marked dirty by setting bit seven of the temporary variable’s sign
byte located in its Symbol Table entry. For example, if OP1 equals the name of a
temporary variable to mark dirty:

Mar k Tenp:
B _CALL ChkFi ndSym ; look up tenp

HL = pointer to Synbol Table entry

SET 7, (HL) ; mark dirty
RET

Deleting Temps and Setting (pTempCnt)
There are five different ways that temporary variables are deleted.

e Quitting the application and returning to the home screen — This will delete all
temporary variables and reset (pTempCnt) equal to 0000h

» System error context is started — This will delete all temporary variables and reset
(pTempCnt) equal to 0000h

» System routine EnoughMem — This routine is used to check if a certain amount of
RAM is free. If the requested amount is not free, this routine will delete dirty
temporary variables until either no more dirty temps exist, or the requested amount
of RAM is available due to temporary variable deletions. (pTempCnt) is not affected.

* System Routine FixTempCnt — This routine is used to delete all temporary
variables with a name that contains a counter value equal to DE.

The parser uses this routine in its handling of temporary variables when parsing a
program or the home screen entry.

Before each line of the program is parsed, the current value of (pTempCnt) is saved.
This value is used to create the next temporary variable needed.

After parsing each line of the program, the resulting value, if one, is stored into the
Ans variable. Once the result is stored into Ans, there can be no other temporary
variable that may have been created during the parsing of the line that are still
needed.

Calling FixTempCnt with DE equal to save pTempCnt, will delete all temporary
variables created by the last line parsed. The value (pTempCnt) is reset back to the
value saved before the line was parser, DE.

» System Routine CleanAll — This routine is used when the error context is started,
or control is returned to the home screen. This will delete all temporary variables and
reset (pTempCnt) equal to 0000h.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 113

What should applications do?

Most applications should be able to use the CleanAll routine to manage temporary
variables. Applications should make a call to the CleanAll routine as soon as all
temporary variables in use are no longer needed. This is especially important if
temporary variables are going to be created in a looping environment. If the temporary
variables are not cleaned before the loop is restarted, RAM will become full.

If some temporary variables are needed to be kept alive for extended periods of time,
make sure that any other temporary variables that may be created by the application, or
returned from the parser, are at least marked dirty when they are no longer needed.
That way, the RAM they take up can be reused if needed.

It is also good a good practice to try and use the Ans variable instead of temporary
variable. The StoAns routine can be used to store to the Ans variable.

TI-83 Plus Developer Guide Third Release May 28, 2002

114

Chapter 2: TI-83 Plus Specific Information

Working with Tl Language Localization Applications

Tl has made available applications that change the language used for functions
commands and strings, from English to an alternate language. Applications can take
advantage of the language setting by being able to modify their output to match the

current language setting, if desired. The language setting is stored in two bytes of RAM.

The table below matches each language with their corresponding values.

The values are store in RAM locations localLanguage and localLanguage+1.

Language Main language Sub Language
English LANG_ENGLISH SUBLANG_ENGLISH
Danish LANG_DANISH SUBLANG_NEUTRAL
Dutch LANG_DUTCH SUBLANG_DUTCH
Finnish LANG_FINNISH SUBLANG_NEUTRAL
French LANG_FRENCH SUBLANG_FRENCH
German LANG_GERMAN SUBLANG_GERMAN
Hungarian LANG_HUNGARIAN SUBLANG_NEUTRAL
Italian LANG_ITALIAN SUBLANG_ITALIAN
Norwegian LANG_NORWEGIAN SUBLANG_NEUTRAL
Polish LANG_POLISH SUBLANG_NEUTRAL
Portuguese LANG_PORTUGUESE SUBLANG_PORTUGUESE
Spanish LANG_SPANISH SUBLANG_SPANISH
Swedish LANG_SWEDISH SUBLANG_NEUTRAL

Table 2.25: Language Table

For example, check if the current language is Spanish:

LD HL, (1 ocal Language) ; H = subl ang,
;L = min

LD DE, LANG_SPANI SH + 256* SUBLANG_SPANI SH

B CALL CpHLDE ; conpare, Z =1

; i f Spanish

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 115

Entering and Exiting an Application Properly

The state monitor passes control to the TI-83 Plus application loader which sets the
monitor’s control vectors for key presses, partial put aways, full put aways, window
resizing, redisplay, and error.

TI-83
State Monitor

TI-83
Application
Loader

Application

Fig. 2.16: Control Flow

The application now has three choices in which type of environment it will run in —
Stand-alone, Stand-alone with Put Away notification, and Monitor driven (not covered in
this release)

Stand-alone

The application handles all key inputs itself and does not need access to the TI-83 Plus
menu system.

The application will also not be notified if the user turns the unit off. This means that no
data, not already saved in a variable, will be lost when the unit turns off. The application
is terminated with no notice.

Note: Turning off can occur only if the GetKey routine is used directly by an application, or if a system
routine called by the application uses GetKey.

The application terminates without notice if link activity is detected while waiting for a
key.

Start-up Code

No special code is necessary at the start of execution.

TI-83 Plus Developer Guide Third Release May 28, 2002

116

Chapter 2: TI-83 Plus Specific Information

Exit Code

The application wants to terminate and return to normal TI-83 Plus operations. Some of
the calls in this sequence are not always needed — see the comments.

The following sequence exits the application cleanly even if the hardware stack is not at
the same level upon entry to the application. The stack is reset by the system.

Exi t Code:
LD (I Y+text Fl ags), 0 ; reset text flags
This next call is done only if application used the G aph Backup Buffer
’ B CALL Set Tbl Gr aphDr aw
’ B CALL Rel oadAppEntryVecs ; make sure Application Loader set
’ B_JuwP JFor ceCndNoChar ; force to hone screen

Fig. 2.27 shows the sequence of events once the application executes the B_JUMP to
JForceCmdNoChar instruction.

Application
B_JUMP to ForceCmdNoChar

Monitor
Reset stack and informs monitor
to switch to home screen

Monitor
Informs Application Loader
to close

Application Loader
Cleans up

Monitor
Control to Home screen

Home screen
Starts up

Fig. 2.17: Event Sequence

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 117

Stand-alone with Put Away Notification

An application can be notified when the monitor wants the application to terminate.

Terminating events include: turning off, a system error was generated and the user
chose the quit option, and silent link was activated and closed the application. All of
these events are detected while waiting for a key press in the GetKey routine.

An application would want to be notified for a variety of reasons.

* An application needs to save its state before being closed down so that the next time
it is run it can restore the state it was last in.

» An application may want to delete some variables it has created for temporary use
while executing.

* An application may have an edit open that it needs to take care of.

» An application may want to inform the user of some options that are available when
being shut down.

* An application may have modified some system flags that need to be set back to
their normal state such as disabling APD or enabling lower case alpha entry.

Note: The Put Away cannot be stopped by the application. Once notified by the monitor, the application
must terminate.

How is the application notified?

If an application needs to be notified when it is being closed down by the system, it must
change the system monitor vectors.

Only applications that are extensively integrated with the TI-83 Plus system need to use
the monitor. These types of applications are currently not fully supported by this
document. However, the level of support provided allows the application to receive
notification of the application being shut down.

The monitor vectors control the flow of information to the context that is in control at a
given time. A context loads the monitor vectors with pointers to its handling routines.
Information that is sent out by the system monitor include key presses, partial put
aways, full put aways, window size changes, and error recovery. Normally there is a
separate handler for each of these events.

TI-83 Plus Developer Guide Third Release May 28, 2002

118 Chapter 2: TI-83 Plus Specific Information

When an application is executing, the current context in control is the Application Loader
as noted in the figure below.

The application to be executed is
chosen by the user from the
calculator APPS menu.

!

The State Monitor initiates the
Application Loader context.

l

The Application Loader loads the
State Monitor vectors to receive all
information from the state monitor.

i At this point the application is
The Application Loader jumps to the executing under the stand-alone
application for execution. The situation described in the previous
application is ready for stand-alone section. No notification of
execution. termination will be received.

Fig. 2.18: Application Loader Process

An application must change the monitor vectors so that any information sent by the
monitor, is sent directly to the application.

Start-up Code

These lines of code must be at the beginning of the application.

LD HL, AppVect or s
B _CALL Appl ni t ; Apps nonitor control vectors witten

all of the vectors are set to a ‘RET instruction in the App except
for the ‘Put Away’ vector which is set to the routine to handle the
Put Away in the App.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 2: TI-83 Plus Specific Information 119

This is the rest of the application code.

Dunmy:
RET

: Table of vectors |oaded into nonitor control vectors

AppVect or s:
Dw Durmy ; set this vector to a ‘RET instruction
Dw Durmy ; set this vector to a ‘RET instruction

Dw AppPut away ; set this vector to Apps Put Away

; routine
DW Durmy : set this vector to a ‘RET instruction
DW Durmy : set this vector to a ‘RET instruction
DW Durmy : set this vector to a ‘RET instruction
DB appText SaveF ; systemflag, this is a normal setting

Now the application is connected to the system monitor through the system monitor
vectors. If the monitor were allowed to be in control then all of the information it sends to
the system would come to the application.

Since the monitor is not in control, information will be sent to the application under three
circumstances.

* While GetKey is executing the TI-83 Plus is turned off.
* While GetKey link activity is detected.

» If a system error is generated and allowed to be displayed, the Quit option is chosen
by the user.

In all three circumstances, the system monitor will jump to the application at the label
AppPutAway, or whatever label is used in the AppVectors table.

Sample code to handle the apps termination is given. The turning off situation is handled
differently than the other two.

TI-83 Plus Developer Guide Third Release May 28, 2002

120 Chapter 2: TI-83 Plus Specific Information

Put Away Code

This code should not be used when the application terminates on its own. An application
should follow the Stand-alone example to exit without the monitor initiating the
termination.

AppPut Away:

Application gets itself ready for ternminating by cleaning any system fl ags
or saving any information it needs to.

RES pl ot Loc, (I Y+pl ot Fl ags) ; draw to display & buffer
RES textWite, (1Y+sG Flags) ; small font witten to
di spl ay
This next call resets the nonitor control vectors back to the App Loader
B _CALL Rel oadAppEnt ryVecs ; App Loader in control of
noni t or
LD (I'Y+textFl ags), 0 ; reset text flags
This next call is done only if application used the G aph Backup Buffer
B _CALL Set Tbl Gr aphDr aw

Need to check if turning off or not, the following flag is set when
turning off:

BIT MonAbandon, (| Y+nmonFl ags) ; turning off 2
JR NZ, Turni ngO>f f ; junp if yes

if not turning off then force control back to the hone screen

note: this will termnate the link activity that caused the application
to be termninated.

LD A iall ; all interrupts on
out (intrptEnPort), A
B CALL LCD_DRI VERON ; turn on LCD
SET onRunni ng, (I Y+onFl ags) ; on interrupt running
El ; enable interrupts
B_JUwWP JFor ceCmdNoChar ; force to hone screen
Tur ni ngOf f:
B_JUwWP Put anay ; force App |loader to do its
; put away

TI-83 Plus Developer Guide Third Release May 28, 2002

Application Development
Process

The following chart provides an overview of the steps necessary to create a TI-83 Plus
application. A simple application is used to walk you through the detailed steps. Use the
chart as a general guide. This process assumes that you are running Windows 95
operating system and that you have access to a text editor such as Notepad.

@_, Text Editor Scripting
(Notepad, etc.) Utilities

Source .
File (.asm)

Header
Utility

v

Assembler

Source Object
file (.obj)

Linker

Library
Header Files II

Link Library
Description Object Files II

Develop Key
(-key)

Y

Site Testing Site Testing?
icati .hex lte Testing: Distribution
AppIIF:atlon Distribution? Texas
Sign Debug? Instruments

Signed Applet
(-app)

Signed Applet
(-app)

Simulator/
Debug

TI TI

Calc Calc
Dev Prod
Calc Calc

Fig. 3.1: Application Development Flow

TI-83 Plus Developer Guide Third Release May 28, 2002

120 Chapter 3: Application Development Process

PROGRAMMING LAYER

Chapter 2 covered the Hardware layer, the Driver layer, and the Tools and Utilities layer.
The final layer in the TI-83 Plus architecture is the Programming layer.

There are three kinds of programs that can be created for the TI-83 Plus: Tl BASIC
programs, ASM programs, and Applications. This chapter is primarily concerned with
applications. In the following discussion, Z80 refers to the type of microprocessor used
by the TI-83 and TI-83 Plus.

TI-BASIC Programs

These programs were available on the TI-83 and may be known as scripts or keystroke
programs. These programs are created using the PC program TI GRAPH LINK™ for TI-
83 Plus or directly on the calculator using the [PRGM] New [1:Create New] options. The
details for creating this kind of program are provided in the TI-83 Plus Guidebook.
These programs consist of commands that mimic the calculator keystroke commands,
plus some additional keywords for control-flow logic. These programs are loaded into,
and run from, the calculator RAM. There must be sufficient free RAM available in order
to be able to load a Tl BASIC program. This language is interpreted, so these programs
do not have to be assembled or compiled before you run them on the calculator.
Interpreting the programs, however, causes them to be relatively slow. When these
programs execute, if they contain an illegal statement or perform an illegal operation,
the interpreter stops the program and displays an error message. The calculator
functions normally after such an error.

ASM Programs

ASM programs were available on the TI-83 and may be known as assembly programs
or ASAPs. These programs are written in Z80 assembly language and then adapted to
use the calculator’s pre-existing ability to run TI BASIC programs. After the ASM
program is assembled, it is converted to a readable text format that can then be
downloaded to the calculator in the same way as a Tl BASIC program. A special
keyword at the start of the program tells the calculator interpreter that it is an ASM
program instead of a normal TI BASIC program. The interpreter then converts the
program into Z80 machine language and gives it control of the processor. Since these
programs have total control over the calculator, they are fast, but any programming
errors can be serious, causing the calculator to become unusable until reset. These
programs are able to call built-in calculator routines. They run in RAM and are limited in
size to 8K.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 3: Application Development Process 121

Applications

Applications, or apps, are assembly language programs. These programs are different
from ASM programs primarily in that they are stored in and run from the Flash ROM,
where they are not likely to be erased, and they take no RAM space. Applications only
need RAM for any variables they might create. Apps have access to all the same
system routines as ASM programs and they can be much larger than ASM programs.
Apps must be created on a PC. They have special requirements on content and linking.
They must be digitally signed if they are to be distributed. Additionally, a user calculator
must have an internal digital certificate in order for the app to run. This is not true if the
app is freeware or shareware.

ASM versus Applications

Assembly programs written to be ASM programs must be modified in order to function
correctly as Applications. The major difference is that ASM programs run from RAM, but
Applications run from Flash ROM. Therefore, applications cannot be self-modifying,
whereas ASMs can. Applications also need additional identification code at the start of
the program. They need additional code to handle errors and exceptional events. And,
they must be digitally signed if they are to be distributed.

DEVELOPMENT SYSTEM

The simulator is for general development use and the steps for setting it up, getting
started, and creating a sample application are presented in the following sections.

Using the Simulator System — Requirements for
Getting Started

The following are the requirements to be able to develop TI-83 Plus applications using
TI's simulator development system. The Zilog Developer Studio and TI-83 Plus
Simulator/Debugger installation and operations are covered in Chapter 4.

e IBM™ PC compatible computer.
e Windows™ 95 operating system
e The Zilog Developer Studio
* The Tl Simulator/Debugger

With the above environment up and running, let us look at creating a sample
application.

TI-83 Plus Developer Guide Third Release May 28, 2002

122 Chapter 3: Application Development Process

Creating an Application for Debugging — One-Page
and Multi-Page Apps

In the section that discusses memory maps, you saw that there are up to ten 16K
Flash ROM pages available for storing applications. This storage area is also used for
archived calculator variables, so as the archive grows, fewer pages are actually
available for apps. In theory it is possible to create an app that takes up all 10 pages
and is 160K in size. However, most apps will surely be smaller and this is desirable to
conserve memory and download time.

Apps are always allocated in whole pages. It is not possible for an app to share a page
with another app or archived variables. If an app only uses 40 bytes it is still allocated
the whole 16K Flash ROM page. And if an app requires 16K+1 bytes, it is allocated
exactly two 16K Flash ROM pages. For this reason we say that apps are a 1-Page App
or a Multi-Page App. Creating multi-page is a little more complicated than 1-page apps,
so we will begin with 1-page apps.

A Brief Overview of Certificates and Application
Signing

In normal calculator usage, an application is installed in a calculator by downloading it
from a PC or another calculator via the link cable. When the app is received, it is
examined by the operating system loader for a valid digital signature. All Flash apps to
be distributed must be digitally signed before they will be accepted by the operating
system. Applications can be signed as freeware or authenticated applications.
Freeware applications can run on any TI-83 Plus or Silver Edition calculator. The
0104.key file and Wappsign utility are provided with the SDK and can be used to sign
applications as freeware. Authenticated applications require a certificate on the
calculator and must be signed by TI.

Creating Applications that Fit On One Page

Applications are written in Z80 Assembly language. While there are C to Z80 cross
compilers, Tl recommends the use of assembly language for efficiency and memory
space reasons. The format of the source code depends on the assembler/linker
package that you use. With the package Tl recommends (ZDS), App source code is
plain ASCII text. There is no special editor required. You can use any editor (such as
Notepad) that can save the file as plain ASCII. The required source code syntax also
varies by assembler. The examples and discussions provided by Tl conform to the
requirements of the Zilog Developer Studio (ZDS) assembler and linker.

ZDS uses a file naming convention of *.asm for all source files containing executable
statements and *.inc for all include files.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 3: Application Development Process 123

The Hello Application

Tl has provided a sample application called Hello. The source for this application is in
the file hello.asm. Open this file in a text editor and look at it to get a general idea of the
main structural elements. The following sections address these elements.

Accessing System Resources

The program begins by including the TI83plus.inc file. This file is provided by TI. This file
includes constant definitions, macros, and system routine entry point definition needed
to use system resources.

Application Headers

The most unique thing about the TI-83 Plus application source code is the long set of
data that begins the file. This data is known as the application header. The application
header contains information used by the calculator operating system when the user tries
to run the application. The operating system uses this information to determine the app
name and whether a user is permitted to use it. A valid header must be present as the
first data in the source file, prior to any executable statement, in order for the app to run

properly.

Header Creation

The header in the hello.asm file can be used for any single page application.

Calling System Routines

On the TI-83 Plus there are a number of built-in system routines available for an
application to use. These routines can not be called directly using the standard Z80 call
instruction. In order to call a system routine, you must use a statement of the form:

B CALL routine

In this example, routine is the name of any system routine. B_CALL is a macro defined
in the system include file.

Accessing System Variables

Certain fixed locations in RAM are defined for system code usage. The contents of
these locations typically affect some standard system behavior. System routines
sometimes use the variables, so they are in effect parameters to the system calls. To
access one of these variables, you use its symbolic name (e.g., curRow). The variable
names are defined in the system include file, TI83plus.inc.

TI-83 Plus Developer Guide Third Release May 28, 2002

124

Chapter 3: Application Development Process

Defining a String

Many system routines operate on null-terminated strings, which are a series of
characters followed by the byte 00h. The assembler supports null-terminated string
creation through use of the directive .asciz. This permits you to type the string in
readable text instead of defining each byte separately. Each character of the string is
translated to its ASCII code and stored at the current location and a null character is
then appended. In our example, we define a label that points to the first character of the
string so that we can point to the string in our system calls.

Erasing the Screen

To erase the screen, the example does the system call.
B CALL d r LCDFul | ;. Clear the screen

Printing Text to the Screen

To print text to the screen, the example uses the system call.
B _CALL Put S ; Print the hello string from RAM

This routine prints a null-terminated string in large text to the screen. It expects you to
have already set up the screen row and column where it should start printing the string.
The screen rows range from 0 (Top) to 7 (Bottom), and the columns range from 0 (Left)
to 15 (Right). You set these values in the system variable curRow and curCol prior to the
call. The PutS routine expects Z80 register HL to contain the address of the first
character of the string. It requires that this string be in RAM.

Copying the String

To copy a string from Flash ROM, where it is defined in your program, into RAM, where
the system routine PutS can use it, you can use the system routine StrCopy. This
routine expects the address of the source string to be in HL and the address of the first
RAM destination character to be in DE. It expects a null-terminated string. The example
copies the string Hello into the OP1 area in RAM (see next paragraph).

System RAM Registers

The calculator system code performs many operations on floating-point values. It uses a
floating-point format that requires up to 11 bytes in certain situations. Since floating-
point operations are so common, it defines six 11-byte areas that it uses frequently for
storing such numbers. It gives these RAM areas the name OP1, OP2, OP3, OP4, OP5,
and OP&6. In our example, the system routines StrCopy and PutS do not use or modify
these areas, so we use six of the eleven OP1 RAM bytes to temporarily store our string
in RAM. In this case, we are just using OP1, since changing those locations is harmless;
the fact that OP1 may be used at some later time to pass floating-point data does not
matter.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 3: Application Development Process 125

Reading a Key Press

The system routine GetKey waits for a user to press a key on the calculator keypad.
The example (found in the hello.asm file) uses this fact to implement a pause so that
you can read the string it printed.

Exiting an Application

When an application is ready to quit and return control back to the calculator operating
system so that normal calculator features will again be available, it must perform the
following system call:

B_JuwP JForceCmdNoChar ; Exit the application

Creating a Multiple Page Application

The fundamental change in moving from a one-page application to a multi-page
application is the addition of the branch table. The branch table is used by system code
to perform the correct paging of physical Flash ROM pages into the logical address
space when a call or jump is made to a routine that exists on a page that is not currently
mapped.

Branch Table Entries

The branch table exists only on the first application page, immediately after the header.
It is a table of three-byte entries. Each entry is a pointer to a routine that is either called
or jumped to from a page of the application other than the page where it exists. A
routine that is called or jumped to only from locations on the same page does not need
an entry in the table. Each entry has the form:

DW Address
DB Relative App Page

The Address is the address of the routine on its page. To obtain the address where the
routine is defined, make the label public. You will need to refer to your assembler for
instructions on how to make and reference a public routine.

The Relative Application Page is the page of the application where the routine resides.
In this case, page numbers are relative to the first application page: the first application
page is 0, the second is 1, and so on.

TI-83 Plus Developer Guide Third Release May 28, 2002

126 Chapter 3: Application Development Process

Branch Table Placement

Application execution begins at the address immediately following the header. The
branch table is not part of the header, but must be placed immediately after the header.
To resolve this conflict, a jump instruction to the start of the application needs to be
placed between the end of the header and the start of the table.

Also, the first entry in the branch table must be located at an address which is a multiple
of three bytes from the beginning of the page. You may need to add padding bytes
before the branch table to ensure this.

Branch Table Equate File

Whenever a branch table exists, an include file must also be generated that contains
equates for the branch table entries. Each equate in the file is the name of the routine in
the branch table with an underscore character prefixed to it. The associated value is the
byte offset where the routine’s table entry begins.

For example, the routine showGoodByeP2 exists on the second application page but
must be called from the first application page, so it needs an entry in the branch table.
The branch table entry for this routine happened to be located at a position 41 times
three-bytes from the start of the first application page.

Byte of fset 41 * 3
DW showGoodByeP2 ; Address
DB 1 ; Second app page

So in the include file the following equate is created.
_showGoodByeP2 equ 41*3

This include file must be included in any source code that calls or jumps to a routine on
another page.

Making Off-Page Calls and Jumps

When code calls or jumps to a routine on an application page different from the point of
the call, this is known as an off-page call or jump. The B_CALL and B_JUMP macros
must be used when making off-page calls and jumps. For example, when the routine
showHelloP2, which is on the second page, is called from the first page, the call must be
made as follow:

B CALL showHel | oP2

A call of the form
CALL showHel | oP2

will not work at all.

When an on-page call, a call to a routine that exists on the same application page as the
point of the call, is made, the normal call opcode should be used. B_CALL and B_JUMP
should not be used in this case.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 3: Application Development Process 127

Texas Instruments has provide the AppHeader utility to aid in the creation of multiple
page applications. You can download the AppHeader utility and User’s Guide from
http://education.ti.com/developers.

CREATING A ZILOG DEVELOPER STUDIO PROJECT

Let us go through the use of the Zilog Developer Studio software to build the Hello
application presented earlier in this chapter.

Creating the Project

A W N PRF

Copy the files from <install directory\Demo to C:\mydemo directory

Start Zilog Developer Studio

Select File, and then New Project

In the New Project dialog box, set the following fields to the specified values:
Selection by = Family
Master = Z180
Project Target = Z80180

Project Name = C:\mydemo\mydemo.zws

Adding Files to the Project

1.
2.

Select Project, then Add to project, and then Files...

In the Insert files into project dialog box double click on hello.asm.

Project Settings

1
2.
3.
4

Select Project, then Settings, and then Linker.

In the Linker Options dialog box select the Ranges tab.

Click on the New... button.

In the New Section Range dialog box set the following fields to the specified values:
Bounds = Length

Radix = Hexadecimal

Section Name = .text

Start Address = 4000

Length = 4000

Click OK then click Apply then click OK.

TI-83 Plus Developer Guide Third Release May 28, 2002

128 Chapter 3: Application Development Process

Building the Application

1. Select Build, and then Rebuild All.
2. The following text should appear in the output window:
Building...
hello.asm
hello.o — 0 error(s), 0 warning(s)
Linking...

mydemo.ld — 0 error(s), 0 warning(s)

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 3: Application Development Process 129

Loading the Application into the Simulator

Start the Tl Flash Debugger.

Select File, and then New, then TI-83 Plus.

Select Debug, and then Go. The TI-83 Plus calculator will be displayed.
Click on the key of the calculator.

A W N PRF

T1-83 Plus x|

A Texas INSTRUMENTS TI-'Bﬁ'Hm-:

iﬁﬁ 1Rnance...

£ mMETR
MATH | i VARS CLEAR
MaTRL O Samt oa TANEt G T
x-! '

TI-83 Plus Developer Guide Third Release May 28, 2002

130 Chapter 3: Application Development Process

Next:

Click the button on the calculator.

On the Debugger menu select Debug, and then Stop.

Select Load, and then Application.

In the Load Application dialog box, double click on the file C:\mydemo\mydemo.hex.
Select Debug, and then Go.

Click on the key on the calculator. Application three will be titled Hello.

L T o

T1-83 Plus x|

&9 Texas INSTRUMENTS TI-.BG.HH&:

Eﬁli 1hance...
iHellno

Next:

1. Click the 2 key on the calculator to run the Hello application. Hello will appear on the
screen.

2. Click on any key of the calculator to quit the Hello application.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 3: Application Development Process

131

Debugging the Application

In the following steps we will demonstrate some of the debug capabilities. We will set a
breakpoint at the start of our application and after the Hello string is copied to RAM. We
will then modify the RAM copy of the string to HOWDY.

1. Select Debug, and then Stop.

2. Select View, and then Memory Map.

This view shows us that the Hello application is on page 0x15 of Flash.

1. Select Debug, and then Breakpoints.

2. Update the Edit Breakpoints dialog box so that it looks like the following:

% Memory Map M=l E3

OsFFFF
04C000

FPage 0=00 - Réfd

Fage AppMHame
1415 Hello

0=8000

Fage 0x01 - Bk

Ox4000

Page 0=06 - FLASH

0=0000

Fage 0x00 - FLASH

014 <Mones
0413 <Mone:
012 <Mone>
011 <Mones
010 <Moner
0=0F <Mones
0«0E <Mone:r
000 <Maones
0=0C <Mones

Edit Breakpoints

(' FLASH
 RAM

— Breakpoints

FPage [Hex]

e

Address [Hex]

|4EIBEI

F:0=1 5 0=4080

&dd

B Emeve

]|

Note: If we look at the hello.Ist file we will see that StartApp: is located 0x80 bytes from the start of
the page (at x4080).

TI-83 Plus Developer Guide

Third Release May 28, 2002

132 Chapter 3: Application Development Process

Next:

1. Click OK to exit the Edit Breakpoints dialog.

2. Select Debug, and then Go.

3. Click on the key of the calculator. Note that the Status of the Debugger is

Running.

4. Click on the 2 key of the calculator. The status of the Debugger will change to Halted

when the breakpoint is reached.

BEEWIWLMMMII‘MHW

0| ¥ =

407F 0D

= 4000 EF4045 E_Call Clrlilfull

4083 &F KOR &

4084 F24CA4 LD {carCol]. &
4087 3E03 LD &, 0003

4083 324884 LD {caszBow] . A
408C Z1AZ40 L0 HL, 40A/3

40BF 117&84 L DE.OF1

ali9e EFE244 E_CALL =trlopy

4095 Z17ead IO HL.OP1
4098 EF0ad% B_CALL PuakS

4098 EF724% E_CALL GetFay
409E CDS0002740 E_JUMF JFercs sdHoChas
40AT 4B o c,.8
d0A4 45 L B,L
A0AS 40 Lo C.°H
A0as 4C IO C.H
4047 4F Lh C.&
A0k 00 HIIF
Aeady

Now:

M=E

A Tiwas lsirmseses T1-83 P

!H!;ﬂl‘ﬂ:l
iHello

Right Click on address line 4098 to bring up the breakpoints pop-up menu.

Select Set Breakpoint.

Select Debug, and then Go. The calculator display will be cleared and the
disassembly view will be updated to indicate that it is stopped at address 4098.

4. Select View, and then RAM to bring up the RAM view. In the Start Address field

enter OP1.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 3: Application Development Process 133

Fin [ebug Mewr Loasd Lk Took ‘Window Helo

0| |]| (0] = | o] 3] 3 O e | | | I 50 o [1= [| 0 | = 5D

407F o0 HOF Start Address: 100011 B4 7

@ 080 EF4045 B_CALL CIrLCDFull IR
4033 AF EOR A O001B450 20
TR =T IO (curcol), A gggg:gg EE Rl LR il:Ill
SETE oaea et ot 0018498 OO 14 48 65 6C 6C 6F 20 §iH=
1083 324004 LD [carfow).a OD01B4al 20 20 OO 00 00 B1 10 OO 1
408 218740 LD HL. 4043 O00LAded DI 00 nn
404F 117084 LD DE, 4Pl ;gglgi-lbag EE ;g i
- F . 5 . - - _ l IIII
032 EFEI44 B _CALL Strlopy O00LB4el 65 5C lla
1095 Ii7ie4 L0 HL.0F1 000184ch DO 00 T

S 4038 EFDA4S B_CALL FutS OD018440 0D 00 i
d09E EF724% B _CALL GatKey D00iRddl FC 3JE [N |

C % 1 F O001B4ed OO0 OO i

409E CDS0002740 B U!I- JForoeCrdHoChar A00104el 00 00 H
i d L. ODD1E410 00 OO i
1044 45 b B.L 000184£0 00 00 i
d0AE d4C A O0D1ES00 OO0 OO i
DAk AC o C.H Q0DiREmE 20 20
W07 4F ID C.4 ODD1BS10 20 20
4OKE OO HOF

sy Shane : Haled LM &

Finally:

1. Change byte 18479 from 45 E to 4F O, 18480 from 4C L to 57 W, 18481 from 4C L
to 44 D and 18482 from 4F Oto 59 V.

Select Debug, and then Go. The calculator will display HOWDY.
Click any key on the calculator to quit the application.
Select Debug, and then Stop.

a > w DN

Select Debug, and then Breakpoints to bring up the Edit Breakpoints dialog box.
Disable the breakpoints by clicking on each of the check boxes in the breakpoint list.

Select Debug, and then Go.
Click the key on the calculator.

Click the 2 key on the calculator. The Hello application will run and display Hello
again.

9. Click any key on the calculator to quit the application.

TI-83 Plus Developer Guide Third Release May 28, 2002

134

Chapter 3: Application Development Process

Now we will modify Flash to change the original Hello string so that the change will
persist between each execution of the application.

1.
2.
3.

© N o u

10.
11.

12.

Select Debug, and then Stop.
Select View, and then Flash.

In the Start Address field enter 1540A3. The application is on page 0x15. If we look
at the hello.lIst file, we will see that the Hello string begins at offset 40A3.

Change the byte at address 1540A3 to 0x53, 1540A4 to 0x54, 1540A5 to 0x41,
1540A6 to 0x52 and 1540A7 to 0x53.

Select Debug, and then Go.
Click the key on the calculator.
Click the 2 key on the calculator.

The calculator will display STARS (as in the Dallas Stars, the 1999 Stanley Cup
Champions) each time the application runs.

Select File, and then Close to close the debug session. A dialog box will appear
asking if you want to save changes.

Click the Yes button.

The Save As dialog box will appear. Save debug session to
C:\Mydemo\mydemo.83d.

Select File, and then Exit to exit the Debugger.

Signing the Application

Texas Instruments has provided the Wappsign (Windows appsign) utility to allow you to
easily sign your applications. Please refer to the Wappsign User’s Guide for more
information.

Downloading the Application

You can use the TI GRAPH LINK™ program or TI Connect™ to download the app to
the calculators.

TI-83 Plus Developer Guide Third Release May 28, 2002

Development Tools

DEVELOPMENT ARCHITECTURE

The Tl development architecture is based on the Tl simulator/debugger using the Zilog
Developer Studio software. In the following sections, we will address the T
simulator/debugger and the related tools used to develop applications for the TI-83 Plus
calculator.

Z80 DEVELOPMENT SYSTEM

Zilog Developer Studio is a programming suite made by Zilog to compile assembly code
for its microprocessors, including the Z80 used in many Texas Instruments graphing
calculators. ZDS may have several advantages in that it is graphical, has a built-in
editor, and most importantly, it is free. You may wish to consult Zilog’s web site at
http://www.zilog.com for more information. This documentation is currently written for
version 3.62 of ZDS.

INSTALLATION

ZDS is easily obtained for free from Zilog's web site. A link to download the current
version is present on their software downloads page at
http://www.zilog.com/support/sd.html. Download the installer and run it. Follow the
instructions to install the ZDS suite. This will install the software on your computer and
place a link to it in your Start menu. Now lets look at the simulator/debugger.

TI SOFTWARE SIMULATOR AND DEBUGGER

Introduction

The TI-83 Plus simulator provides the capability to simulate the TI-83 Plus calculator to
allow debugging of applications. The following is a detailed description of the various
menu options, screens, and operations.

TI-83 Plus Developer Guide Third Release May 28, 2002

137

Chapter 4: Development Tools

Installation

To install the TI Flash Debugger, run the installation file that has been furnished with the
SDK package.

Getting Started

Click on Start, then Programs, then TI-83 Plus Flash Debugger. The simulator/debugger
application presents the following screen.

Eie Mam Help |

SRS

‘Shabsi | Haled WU |

e

Ry

This window is the home screen for the application. Various other windows with selected
views are presented which are explained below. The menu selections available from the

home screen include:

Eile
New Ctrl + N
Open Ctrl+ O
Open Selection Dialog box
Recent File (grayed out)
Exit

TI-83 Plus Developer Guide Third Release May 28, 2002

138

Chapter 4: Development Tools

View
Tool Bar (selected)
Status Bar (selected)
Help
About Tl Flash Debugger

The tool bar icons, which are defined by hovering the cursor over the applicable icon,
has selections for New (File), Open (File), Save (File).

The status bar at the bottom of the window indicates the status of the debugger and
simulator. The left side of the status bar indicates the status of the debugger

(i.e., Ready). The first box on the right side of the status bar indicates the status of the
simulator. In this case, the status of the simulator is halted.

The simulator/debugger uses two files:
<xyz>.83d which contains debug information (breakpoints).
<xyz>.clc which contains the calculator memory contents, where <xyz> is the file name.

The next step is either to create a new debug file or open an existing one. For example
purposes, we will create a new debug file. Upon selecting File/New, you must select the
calculator model (TI-73, TI-83 Plus, or TI-83 Plus Silver Edition) you wish to simulate.
Once you have selected a calculator model, the following CPU view is presented with
additional selections on the menu bar and tool bar as noted below.

TI8IFhes

Fis Debug Wew Load Lek Took Window Help

[&
s B
5P ol o[&g o B 0e Iy nane
Pe N N I I e
FFEF- 000 |
™ Sign ¥ Fen ¥ HeiCay ¥ PaiyiDveifion Fn:gm
[AddfSub [Cany TStaims [435405569 P 3
Fieresl Z50 segilens ared gatnanay’s cutond ports | el
|

Fleady [Semtus - Habed UM | &

File
New Ctrl + N

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 4: Development Tools

139

Debug

View

Open Ctrl+ O
Open Selection Dialog Box
Close
Save Ctrl+ S
Save As...

Save As Selection Dialog Box

Recent File (grayed out)

Exit

Go F5 Starts the debugger

Stop (grayed out) Stops the debugger

Step F11 Allows single instruction stepping

Step Over F10 Steps over CALL and B_CALL instructions.
Breakpoints... Alt+F9

Edit Breakpoints Dialog Box
Address Watch Points... Alt+F8

Address Watch Points Dialog Box
Trace Options... Alt+F7

Trace Option Dialog Box
Enable IO Trace

IO Trace Option Dialog Box

CPU Alt+0
Disassembly Alt+1
Flash Alt+2
RAM Alt+3
Flash Monitor Alt+4
RAM Monitor Alt+5
Memory Map Alt+6
Calculator Alt+7
Symbol Table Alt+8
GateArray 10 Ports Alt+C

TI-83 Plus Developer Guide

Third Release May 28, 2002

140

Chapter 4: Development Tools

Display Alt+9
Trace Log Alt+A
IO Buffer Alt+B
OP Table Alt+C

Toolbar (selected)
Status bar (selected)
Calc On Top

Clear Flash Monitor
Clear RAM Monitor

Window

Load

Link

Tools

Help

Cascade
Tile
1CPU

Application... Ctrl+F

Load Application (Hex) File Dialog Box
RAM File... Ctrl+R

Load RAM File Dialog Box

Setting Ctrl+L
Link Settings Dialog Box

Key Press Recording Setup...

Start Key Press Recording

End Key Press Recording (grayed out)
Key Press Playing Setup...

Start Key Press Playing

End Key Press Playing (grayed out)
Mouse Cursor Tracking Enable

Save Current Calculator Screen
Display a Calculator Screen

Compare Two Calculator Screen

About Tl Flash Debugger

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 4: Development Tools 141

Breakpoints

Setting breakpoints is available via the manual setup dialog box from the

(Debug/Breakpoint drop down menu). To remove breakpoints, select the breakpoint and
press the Remove button.

Edit Breakpoints |
&+ FLASH FPage [Hex] Address [Hex]
 RAM |15 4080

— Breakpoints
0150 04030 Add
B Emeve

Address Watch Points

Address watch points will notify you if an address in RAM or Flash has been read from,
written to, or accessed.

TI-83 Plus Developer Guide Third Release May 28, 2002

142 Chapter 4: Development Tools

Address Watch

Trace Options

This dialog box presents options to be considered in performing a trace such as page,
and address ranges.

Trace Options Ed

W

o
o5 | cael |

Let us now look at the CPU View first, then we will present each of other views with
details of each.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 4: Development Tools

143

CPU View Window

% CPU

1]

=10] x|

o[o
—

0o

I I aooo

g| o0 | 00
5F.| 0000 |] D-|] | o g
F.,:| 0000 |] H-|] | K

[T Sign [T Zero [T Half-Camy [Parity/Overflow

[T Add/Sub [T Cany TStates ID

Reszet 780 regizters and gatearay's output ports | [~ Intemupts

I 0 m I
CIDCI|
=] K=] =]
— m [

The CPU View displays several items of processor information.

IX index register

Y index register

SP stack pointer

PC program counter
AF accumulator/Flag register
BC register

DE register

HL register

A'F alternative register
B'C alternative register
DE alternative register
H'L’ alternative register
Sign Sign — flags

Zero Zero — flags

Parity/Overflow Parity/Overflow flag

TI-83 Plus Developer Guide

Third Release May 28, 2002

144 Chapter 4: Development Tools

Half Carry Half Carry
Carry Carry
Add/Sub Flag set if a subtraction operation occurred, otherwise is reset for

any other operation.
Tstate Time State — counts the number of time periods.
Reset Z80 registers and gate array output ports.
Stack List the values currently pushed onto the stack.

Interrupts Indicates if interrupts are enabled.

Disassembly View Window

Contains the address, byte code, and instructions of the disassembled code.
Breakpoints can be set and cleared from this screen by use of the right mouse click.
This window is automatically invoked when the Debugger STOP key is pressed.

% Dizassembly O] x|

407F 00 HOP -
@ 4080 EF4045 B CALL ClrLCDFull

4083 AF HOR A

4054 324C54 LD (curCol).A _J

4087 3E03 LDr A 0003

4089 324B34 I {curRow).A

408C 214340 LD HL. 4043
408F 1178384 ILI» DE.COF1

4092 EFE344 B_CALL StrCopy

4095 217554 LD HL,OF1

4098 EF0A45 BE_CALL PutS

4098 EF7249 B _CALL GetMey

409E CD5S0002740 B_JUKP JForceCndNoChar

4043 48 LD C.B

4044 45 LD EB.L

4045 4C LD C.H =

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 4: Development Tools

145

Flash View Window

Displays the entire contents of Flash memory. This is the Edit/View screen. The ASCII
representation of data is in a column on the right. The Start Address edit box is used to
view addresses by entering the desired page/address and pressing enter. Right clicking
in the window allows you to toggle between physical addressing and logical addressing

modes.

% Flazh

Start Address:

T B

ol
(8]
[

goooooao
oooooode
goooools
goooooz24
oooooo3o
oo0o003s
gooooo4s
oooooos4
goooooen
oooono6s
goooooz?e
oooooogd
oooooo3o
oo0o009:z
oooonoas
oooooob4
oooo0ocz0
000000cs
oooooode

DE
67
C3
94
C3
CH
57
25
FF
13
FD
FE
CE
CE
0
CH
FD
3z
12

0z
04
09
aF
E?
57
1F
04
FF
CC
CH
ED
FD
03
13
16
CE
86
L&

E&
oo
22
0o
0B
C2
ag
S
23
F5
16
4D
CE
CE
C3
46
oF
ac
20

a0
C9
CD
C9
7E
a1
=13
A5
oF
3E
46
FD
03
C9
FD
28
FE
FD
aF

C3
C3
gE
C3
23
01
18
FF
a1
0s
28
CE
iE
CDh
CE
)=
3A
CE
CDh

CC
12
3F
EC
66
CHE
28
C3
2E
D3
0z
03
20
BE
33
FD
26
12
Al

01
14
oo
25
6F
67
FF
C7
a1
03
Ch
1E
04
o7
BE
CE
ac
46
0z

FF
FD
9
97
C9
C2
FF
25
a3
F1
04
20
FD
FD
FD
oF
aD
C4
FD

C3
CE
C3
3z
13
20
C3
C3
20
D3
D3
0E
CE
CE
CE
7E
FE
EE
CE

44
0z
16
53
a0
01
D2
ED
oo
03
03
FD
13
16
13
C4
FF
01
oc

11
BE
12
96
DE
1F
28
25
0g
3E
0g
CE
F&
=)
96
X
28
FD
L&

C3
ca
CD
ca
04
ag
C3
FF
Da
1)=;
DA
17
FD
IE
FD
aF
03
CE
C4

= ——
- ——

[S ——
- R) -

- ——— L ——]] e -

—— T ——] OO -
—— e ————
- —— -

- ——— - ——] -
e - o T |

o —————————) - — -
——————————————)] -]

o e ——— T -
- N . D R

-—— .
-——] .-
——— e ———

KN

LI |

Flash Monitor Window

The Flash monitor notifies you if a location in Flash ROM has been read from, written to, or
both. The Start Address edit box is used to view addresses by entering the desired
page/address and pressing enter. Right clicking in the window allows you to toggle between
physical addressing and logical addressing modes, and to clear the monitor. If a location has
not been accessed, it will contain 00. When the location has been read from, it will contain 11.
If the location has been written to, it will contain 99. If the location has been both read from,
and written to since the monitor was cleared, then it will contain FF. Selecting View, then Clear

Flash Monitor resets all locations to 00.

TI-83 Plus Developer Guide

Third Release May 28, 2002

146

Chapter 4: Development Tools

Start Address: |

goooooao
ooooooln
gooooozo
oooooo3o
oooooo4do
ooooooso
oooonoeo
gooooozo
ooooooso
ooooooso
ooooooan
oooooobo
ooooooczo
gooooodo
ooonooe0
gooooofo
ooooaoliao
oooonolio
ooooolzo

FF
FF
oo
0o
FF
FF
0o
FF
FF
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
FF
oo
0o
FF
FF
0o
FF
FF
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
FF
oo
0o
FF
FF
0o
FF
FF
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
oo
0o
FF
FF
oo
0o
FF
FF
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
oo
0o
FF
FF
oo
0o
FF
FF
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
oo
0o
FF
FF
oo
0o
FF
FF
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
oo
0o
FF
FF
oo
0o
FF
FF
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
oo
0o
FF
FF
oo
0o
FF
0o
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
0n
FF
FF
FF
oo
0o
FF
0o
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
0n
FF
FF
FF
oo
0o
FF
0o
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
0n
FF
FF
FF
0o
FF
FF
0o
oo
0o
FF
FF
FF
FF
oo
0o
oo
0o

0o
0n
FF
FF
FF
0o
FF
FF
0o
0o
FF
FF
FF
FF
FF
oo
0o
FF
0o

0o
0n
FF
FF
oo
0o
FF
FF
0o
0o
FF
FF
0o
FF
FF
oo
0o
FF
0o

0o
0n
FF
FF
oo
0o
FF
FF
0o
0o
FF
FF
0o
FF
FF
oo
0o
FF
0o

0o
0n
FF
FF
oo
0o
FF
FF
0o
0o
FF
FF
0o
FF
FF
oo
0o
FF
0o

0o

FY

0n
FF
FF
oo
0o
FF
FF
0o
0o
FF
FF
FF
FF
oo
oo
0o
FF

oo :j

RAM View Window

Displays the entire contents of RAM. This is the Edit/View screen. The ASCII
representation of data is in a column on the right. The Start Address edit box is used to
view addresses by entering the desired page/address and pressing enter. Right clicking
in the window allows you to toggle between physical addressing and logical addressing

modes.

i Ram O] x|
Start Address: |
gools4a?s 00 00 00 14 78 30 48 65 6C 6C 6F ||||H|HEllD:J
gools84%= 20 20 20 00 00 00 48 65 6C 6C 6F 111H=l1la
gool1s4as9e 20 20 20 00 00 1e 00O OO OO OO Qo0 11nintl
gools494 00 00 00O 0O 00 14 48 65 6C 6C 6F 1IH1111H=]l1o
gools4a9f 20 20 20 00 00 00O 81 10 OO0 OO0 Qo 11nintl
godlgd4ss 00 00 0O 0O 0O 0O 00 OO0 OO0 O0 ao NERRREREREN!
Qools4bSs 00 Q0 00 Q0 00 OO0 00 00 Q0 00 48 (ARRR RN RN
oool84=0 &5 eC &C &F 20 20 20 00 00 OO0 Q0 ello 1111
godlgd4ckh 00 00O 0O 0O 00 00 00 00 BS 9D BY? NERRREREREN!
goolsade 9D B4 FC O3E 00 00 00 C5 8F 00 Q0 TR0 nnnn—
godlgde=1l 00 00O F9 FC OO0 0O 00O OO0 OO0 00 ao NERRREREREN!
000184ec OO0 OO0 OO0 QO OO0 OO0 00 00 Q0 00 o0 THrnrnnnnni
gooisafy 00 00 00O 0O 00 00 00 00 00 o0 ao NERRREREREN!
goo1s850z 00 00 00 00 00 00 20 20 20 20 20 11111
goo1s8sod 20 20 20 20 20 20 20 20 20 20 20
goo1s851s 20 20 20 20 20 20 20 20 20 20 20
ooo1sszs 20 20 20 20 20 20 20 20 20 20 20
0o001852= 20 20 20 20 20 20 20 20 20 20 20 ;I

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 4: Development Tools

147

RAM Monitor Window

The RAM monitor notifies you if a location in RAM has been read from, written to, or both. The
Start Address edit box is used to view addresses by entering the desired page/address and
pressing enter. Right clicking in the window allows you to toggle between physical addressing
and logical addressing modes, and to clear the monitor. If a location has not been accessed, it
will contain 00. When the location has been read from, it will contain 11. If the location has
been written to, it will contain 99. If the location has been both read from, and written to since
the monitor was cleared, then it will contain FF. Selecting View, then Clear RAM Monitor resets

all locations to 00.

& RBam Monitor =[=]
Start Address: |

noo18470
noo1a430
noo1g490
no0l184a0
0o01g4b0
000134c0
nool1g440
no0l1g4=0
nool184£0
noo1asa0
noo01as510
00018520
00018530
00013540
00018550
00018560
00018570
noo013530
no018590

0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
oo
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
oo
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
oo
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
oo
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
oo
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

FF
oo
0o
oo
0o
oo
oo
0o
oo
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

FF
oo
0o
oo
0o
oo
oo
0o
oo
0o
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

oo
oo
0o
oo
0o
oo
oo
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
0o

oo
oo
0o
oo
0o
oo
oo
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
oo
0o

oo
oo
0o
oo
0o
oo
oo
0o
0o
FF
FF
FF
FF
FF
FF
FF
FF
oo
0o

00 a
oo B
on
oo
on
oo
oo
on
on
FF
FF
FF
FF
FF
FF
FF
FF
oo

oo :j

TI-83 Plus Developer Guide

Third Release May 28, 2002

148 Chapter 4: Development Tools

Memory Map Window

Shows which pages of Flash and RAM are currently mapped in the Z80 address space.

% Memory Map _ O]
0FFFF Fage AppMame
Page 0x00 - Fékd TP —
CL000 014 <Moner
013 <Mones
Fage 0:01 - Bah 0x12 <Mones
08000 011 <Mones

010 <Mones

0=0F <Mones:
04000 Fage 0x06 - FLASH DW0E. <Mores
000 <Mone:
0x0C <Monesx

Page 0=00 - FLASH

0=0000

Calculator Simulator Window

The following screen shot contains an active simulated TI-83 Plus calculator. The latest
operating system is included during the installation of the simulator. Selecting Go from
the Debug menu activates the calculator simulator with the operating system
operational. When a new release of the operating system is produced, it will be available
from the T1 web site for download and installation.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 4: Development Tools 149

TI-83 Plus E I

® Texas INSTRUMENTS T1-83 Plus

TI-B=F1us
1.1y

EAM cleared

MATH |
MATHE (L~

x

The input to the TI-83 Plus calculator window can be done in two ways:

» Pressing the simulated keys with the mouse cursor and seeing the results on the
screen.

* Using the computer keyboard keys and seeing the results on the screen. This
method is provided via three configuration files that are included in the SDK —
83pkeymap.cfg, 83pkeys.cfg, and pckeys.cfqg.

The 83pkeymap.cfq file contains the mappings from the PC keys to the TI-83 Plus
keys.

The 83pkeys.cfg file. contains the TI-83 Plus keyboard keys with their values.
The pckeys.cfg file contains the PC keyboard keys with their hex values.

While all three files are viewable and editable in various editors including Notepad,
the only file that should be edited by the developer is the 83pkeymap.cfg file.

TI-83 Plus Developer Guide Third Release May 28, 2002

150

Chapter 4: Development Tools

Note: Shift key mapping is not supported.

Symbol Table

Displays information about all variables in the symbol table. The symbol table window shows
the variable type, version, data area start address, page the variable is located on (0x00 if the
variable resides in RAM), and the name of the variable. Double-clicking on an entry will bring

you to that entry’s data storage area.

Tvpe

Feal

Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation
Equation

Ver Addr

1]
1]
1]
1]
1]
1]
1]
o
1]
1]
1]
1]
o
1]
1]
1]
1]
o
1]

0=x9DA1
0=FCFO
0=FCEE
0=FCEC
0=FCEA
0=FCER
0=FCEER
OxFCE4
0=FCEZ
0=FCED
0=FCDE
0=xFCDC
OxFCDA
0=FCDE
0=FCDE
0=FCD4
0=xFCD2
Ox=FCDO
O=FCCE

Fage

0=00
0x00
0=00
0=00
0=00
0=00
0x00
O=00
0=00
0=00
0=00
0x00
O=00
0=00
0=00
0=00
0x00
O=00
0=00

£ Symbol Table - |O] x|

Hame=

Sy=Var
Y0
Y9
¥a
V7
Y6

H6T
Y&eT
hial)
Y5
HET
Y&T
rE
V4
4T
¥4T
rd
V3
H3T

Fs

Trace Log Window

Displays the output of a trace — the execution of instructions within a developer

definable address space.

TI-83 Plus Developer Guide

Third Release May 28, 2002

Chapter 4: Development Tools

151

Trace Log

4030 EF4045 B_CALL ChLCDFul

083 AF WOR A

4034 324004 LD jcuColld

087 3E03 LD 40003

4083 374R04 LD [cuRow]A ﬂl
A0BC 214740 LD HL.4043

ANSF 117884 LD DE.OP Clear |
4097 EFE344 B_CALL Stlopy

4095 217884 LD HLOPI

4098 EF0A45 B_CALL Puts

4098 EF7249 B_CALL Getkey

ADSE CDSO0002740 E_JUMP JForceCmdMaChar

The Trace Options dialog box is used to define this address space as indicated earlier:

Enable Tracing

Page

Address Range Start
End

Trace Options

ing
IDH15
Addrezz Range [Hex]

Start [04080
End IDx?fff

Fage [Hex]

Cancel |

If checked, tracing is enabled.
The page of Flash or RAM that should be traced
The start of the address space to trace.

The end of the address space to trace.

]|

Here is how it works:

If tracing is enabled, the value of the PC is between the Start and End address and the
current page equals the Page specified, the current instruction is added to the trace log

buffer.

TI-83 Plus Developer Guide

Third Release May 28, 2002

152 Chapter 4: Development Tools

The developer can view the contents of the trace buffer by bringing up the Trace Log
dialog box. The trace log buffer is a circular buffer and can hold up to 4K of instructions.
From the Trace Log dialog box, the developer can save [Save As..] the contents of the
trace buffer. Using the [Clear] button, the buffer is cleared.

IO Buffer Window

Displays all data sent or received through the input/output port.

I0 Buffer]|

Send Receive

Save ba...

[==

Clear

From the 10 Buffer dialog box, the developer can save [Save As..] the contents of the
trace buffer. Using the [Clear] button, the buffer is cleared.

OP Table Window

Displays the contents of the OP1 — OP6 RAM registers. If a register contains a floating point
number or variable name, the data type is shown and the register’'s contents are decoded and
displayed.

£ 0P Table (Ol
0=8478 0Pl 05 21 00 00 00 00 00 0O 00 00 00 Program | “
0=8483 (0] 0o o1 23 00 00 00 00 00 00 00 00 Real 2.30000000000000000E-12

0xH48E OP3 16 00 00 00 0O 0O 00 0O OO 0O 00

0xg499 OP4 14 00 00 00 00 00 00 OO 00 00 00 Application

Oxddhd OPS 00 81 10 00 00 00 00 00 00 00 00 Real 1.00000000000000000E
Oxd44F OP6 00 00 00 00 OO 0O 0O 00 00 00 00 Real

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 4: Development Tools 153

Loading Applications and RAM Files

Selecting the Load/Application... menu item allows you to load an Application.

Load Application K E3
ok [3 = &l @ ol [EE)
demno. hex

File narne: || Open I
Files of type: IFIash Application [app;.hew: Sxk; 73k] j Cancel |
o

Selecting the Load/RAM File... menu item allows you to load a RAM file.

Look jn: |E Demo ﬂ El

File name: | Open I
Files of type: IHam Frogram [*.8x7.%.837) | Cancel |

&

TI-83 Plus Developer Guide Third Release May 28, 2002

154 Chapter 4: Development Tools

Link Settings

The Link Settings dialog box allows you to configure communications settings. Selecting
Enable simulator to calculator link will allow you to send and receive data to an external device
(calculator, CBL, CBL2, CBR, etc.) through the TI-GRAPH LINK cable.

Link Settings |

— Communication Part—— Cable Type
i COM1 &+ Black Cable
 COM?2 " Gray Cable
" COM3
" COM4
" USE

[T Enable simulater to calculatar link

Cancel |

Troubleshooting link errors:

1. Make sure that the cable is firmly connected to both the serial port and the external
device.

2. Make sure that the serial port is enabled, and that the COM port is not in use by
another device.

3. Close any conflicting software programs (TI-GRAPH LINK™, Tl Connect™ software,
some personal organizer software, etc.).

For more information, refer to the TI-GRAPH LINK™ or Tl Connect™ documentation.

TI-83 Plus Developer Guide Third Release May 28, 2002

Chapter 4: Development Tools 155

Key Press Recording and Playback

This option allows you to record a series of key presses and play them back at a specified rate.
Select Tools, then Start Key Press Recording to start recording. All key presses will be saved
into a file named Keypress.txt. Select Tools, then End Key Press Recording to stop recording.
Selecting Tools, then Key Press Recording Setup... allows you to save the key presses into a
different file.

Select Keppress Hecording File K E3

Savejn:la Drema j El
Keypress bt

File name: | Save I
Save as type: | Text Files [*] =l Cancel |

2

Selecting Tools, then Key Press Playing Setup... will bring up the Key Press Playing Setup
dialog box. You can select between Automatic and Manual playback, choose a different
keypress file, and select the time between key presses (Automatic mode).

Keyppress Playing Setup |

Flaying Mode

& Automatic - zet the timer to the speed you pref OF.

™ Manual - press enter key

fko Play I1 I seconds

F.eypresz File: IKE}'II'TESS- bt Browse

Cancel

ugul;

Select Tools, then Start Key Press Playing to start playing the key presses. When the end of
the key press file is reached, a message will prompt you to either play the key presses again or
stop.

Selecting the Mouse Cursor Tracking Enable option will put the mouse cursor on the keys as
they are being played back.

TI-83 Plus Developer Guide Third Release May 28, 2002

156 Chapter 4: Development Tools

Save/Display/Compare Calculator Screens

Select Tools, then Save Current Calculator Screen to save the current calculator screen into a
file (*.dat). Select Tools, then Display a Calculator Screen to display a saved calculator screen.
Select Tools, then Compare Two Calculator Screen to compare two saved calculator screens.

Note: The Tools menu is also available by right-clicking on the calculator window.

Terminating a Session

Selecting Close from the File menu allows you to save the current debugging session.

|Note: The default extension is .83d. This action also saves the <xyz>.clc file.

Save_in:la Demo j El

E::_: L E:.E'E' EEVE I
Save as bype: | T1-83 Plus Debugger File [*.83d) j Cancel |

File name:

&

Support in Writing Applications

There are various sources for help in writing TI-83 Plus applications. A few of these
resources include:

TI-83 Plus Developer’s Guide (this book).
TI-83 Plus Graphing Calculator Guidebook
TI-83 Plus Tutorials @ http://education.ti.com/developer/deselect.html

TI-83 Plus Developer Guide Third Release May 28, 2002

Glossary

ACC
Address

APDO
API

Applet
Archive
memory

ASAP
ASCII

Assembler

Assembly
language

Binary

ACC stands for accumulator.

A number given to a location in memory. You can access the location by
using that number, like accessing a variable by using its name.

Automatic Power Down(]

Application Programmer’s Interfacel] the set of software services available
to an application and the interface for using them.

A stand-alone application, usually in Flash ROM, with the associated
security mechanisms in place. See ASAP.

Part of Flash ROM. You can store data, programs, or other variables to the
user data archive, which cannot be edited or deleted inadvertently.

Assembly Application Programd a RAM-resident application.

American Standard Code for Information Interchanged a convention for
encoding characters, numerals in a seven or eight-bit binary number. ASCII
stands for.

A program that converts source code into machine language that the
processor can understand, similar to compilers used with high-level
languages.

A low-level language used to program microprocessors directly. Z80
assembly language can be used on the T1-83 Plus to write programs that
execute faster than programs written in TI-BASIC. See Chapter 3 for
advantages and disadvantages.

A system of counting using 0’s and 1's. The first seven digits and the
decimal equivalents are:
0 0
1
10
11
100
101
110
111 7

See also Hexadecimal.

o OB~ WN P

TI-83 Plus Developer Guide

Third Release May 28, 2002

152

Glossary

Bit

Boot (code)

Byte

Calculator

serial number

Character
Compiled
language

Compiler

D-Bus

Decimal

E-Bus
Entry points

Execute
Flash-D

Freeware

Short for binary digit — either 1 or 0. In computer processing and storage, a
bit is the smallest unit of information handled by a computer and is
represented physically by an element such as a single pulse sent through a
circuit or a small spot on a magnetic disk capable of storing either a 1 or a 0.
Considered singly, bits convey little information a human would consider
meaningful. In groups of eight, however, bits become the familiar bytes used
to represent all types of information, including the letters of the alphabet and
the digits 0 through 9. (Microsoft Encarta ‘97)

A small amount of software that resides in ROM; therefore, it cannot be
overwritten or erased. Boot code is required for the calculator to manage the
installation of new base code.

A unit of information consisting of 8 bits, the equivalent of a single character,
such as a letter. 8 bits equal {0-255} and there are 256 letters in the
extended ASCII character set. Standard ASCII uses a 7-bit value (0-127),
thus there are 128 characters.

An electronic serial number that resides in a calculator’'s Flash memory. It is
used to uniquely identify that calculator.

A single letter, digit, or symbol. Q is a character. 4 is a character. % is a
character. 123 and yo are not characters.

A language that must be compiled before you can run the program.
Examples include C/C++ and Pascal.

A compiler translates high-level language source code into machine code.

A proprietary communication bus used between calculators, the
Calculator-Based LaboratoryJ(CBLL System, the Calculator-Based
RangerJ(CBR[and personal computers.

The standard (base 10) system of counting, as opposed to binary (base 2)
or hexadecimal (base 16).

Enhanced D-Bus.

Callable locations in the base code corresponding to pieces of code that
exhibit some coherent functionality.

To run a program or carry out a command.

A PC program that is the integration of a PC downloader application with a
calculator application. When the Flash-D program is executed on the PC,
the calculator application is transferred to the calculator via a

TI-GRAPH LINK[cable.

Programs or databases that an individual may use without payment of
money to the author. Commonly, the author will copyright the work as a way
of legally insisting that no one change it prior to getting approval. Commonly,
the author will issue a license defining the terms under which the
copyrighted program may be used. With freeware, there is no charge for the
license.

T1-83 Plus Developer Guide

Third Release May 14, 2002

Glossary

153

Garbage
collection

TI.GRAPH

LINKO

Group
certificate

Hexadecimal

High-level
language

IDE

Immediate

Interpreted
language

Instruction

I/O port

LCD port

Low-level
language

Machine
language

Mac Link

A procedure that automatically determines what memory a program is no
longer using and recycles it for other use. This is also known as automatic
storage (or memory) reclamation.

An optional accessory that links a calculator to a personal computer to
enable communication.

Used to identify several calculators as a single unit. This allows the group of
calculators, or unit, to be assigned a new program license using only one
certificate (instead of requiring a new unique unit certificate for each
calculator in the group). The group certificate must be used in conjunction
with the unit certificate.

Base 16 system, which is often used in computing. Counting is as follows:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.

Any programming language that resembles English. This makes it easier for
humans to understand. Unfortunately, a computer cannot understand it
unless it is compiled into machine language. See also low-level language.
Examples of high-level languages are C/C++, Pascal, FORTRAN, COBOL,
Ada, etc.

Integrated Development Environment.

An addressing mode where the data value is contained within the instruction
instead of being loaded from somewhere else. For example, in LD A, 17, 17
is an immediate value. In LD A, B, the value in B is not immediate, because
it is not written into the code.

A language that is changed from source code to machine language in real-
time. Examples are BASIC (for the PC and the Tl version, TI-BASIC) and
JavaScript. Interpreted languages are often much simpler, which helps
beginners get started and allows experienced programmers to write code
quickly. Interpreted languages, however, are restricted in their capability,
and they run slower.

A command that tells the processor to do something, for example, add two
numbers or get some data from the memory.

An input/output interface from the calculator to the external world. It allows
communication with other units, CBLOand CBR[and personal computers.

An output port that drives LCD display device for use on overhead
projectors. Available on the teacher’s ViewScreenlcalculator only.

Any programming language that does not look like English but is still to be
understandable by people. It uses words like add to replace machine
language instructions like 110100. See also high-level language.

Any programming language that consists of 1's and Q’s (called binary),
which represents instructions. A typical machine instruction could be
110100, which means add two numbers together.

Maclntosh resident link software that can communicate with the calculator.

T1-83 Plus Developer Guide

Third Release May 28, 2002

154

Glossary

Marked Dirty

Memory

Microprocessor

Operating
System (OS)

Processor

Program

Program ID
number

Program
license

Register

Register pair

Run (Busy)
Indicator

SDK

Shareware

The graph is marked as needing to be updated. The next system routine
that will affect the graph contents will cause the system to regraph all of the
equations selected thereby making the graph clean.

Memory is where data is stored. On the TI-83 Plus, the main memory is the
built-in 32K of RAM. This memory is composed of one-byte sections, each
with a unique address.

See processor.

The software included with every new calculator. OS contains the features
that are of interest to customers, as well as behind-the-scenes functionality
that allows the calculator to operate and communicate. In our newer
calculators, the OS is in Flash ROM, so the user can electronically upgrade
it with OS.

A large computer chip that does most of the work in a computer or
calculator. The processor in the TI-83 Plus is the Zilog Z80 chip.

A program is a list of instructions written in sequential order for the
processor to execute.

An ID number assigned to a particular software program. It is used during
the program authentication process to match the program licenses in a
unit/group certificate to the program being downloaded into the calculator.

A digital license purchased by a customer allowing the customer to authorize
the download/execution of a particular software program to a specific
calculator. The program licenses are assigned to and listed in the calculator
unit/group certificates.

A register is high-speed memory typically located directly on the processor.
It is used to store data while the processor manipulates it. On the TI-83 Plus
there are 14 registers.

Two registers being used as if they were one, creating a 16-bit register.
Larger numbers can be used in registered pairs than in single registers. The
register pairs are AF, BC, DE, and HL. Register pairs are often used to hold
addresses.

When the TI-83 Plus is calculating or graphing, a vertical moving line is
displayed as a busy indicator in the top-right corner of the screen. When you
pause a graph or a program, the busy indicator becomes a vertical moving
dotted line.

Software Development Kit a set of tools that allow developers to write
software for specific platforms.

Sometimes called User Supported or Try Before You Buy software.
Shareware is not a particular kind of software, it is a way of marketing
software. Users are permitted to try the software on their own computer
systems (generally for a limited period of time) without any cost of obligation.
Payment is required if the user has found the software to be useful or if the
user wishes to continue using the software beyond the evaluation (trial)
period.

T1-83 Plus Developer Guide Third Release May 28, 2002

Glossary

155

Signed
application

Silent link

Software
owner’s
account

Source code

TASM

TI-BASIC

Tl signature

User Data
Archive

Unique
owner ID

Unit
certificate

Z80

ZDS

Payment of the registration fee to the author will bring the user a license to
continue using the software. Most authors will include other materials in
return for the registration feel like printed manuals, technical support,
bonus or additional software, or upgrades.

Shareware is commercial software, fully protected by copyright laws. Like
other business owners, shareware authors expect to earn money from
making their software available. In addition, by paying, the user may then be
entitled to additional functions, removal of time limiting or limits on use,
removal of so-called nag screens, and other things as defined in the
documentation provided by the program’s author.

An application that has been digitally signed by TI.

Computer-initiated request protocol version of communications between
the computer and the calculator.

An account set-up in the Tl database listing all of the program licenses
owned by a particular customer or group. The account also allows the
software owner to assign a particular program to a specific calculator.

A text file containing the code, usually in a high-level or low-level
programming language.

Table Assembler—a PC program that assembles source code for the Z80
and other processors. This has been one of the more popular tools for
developing calculator ASM programs.

The programming language commonly used on the TI-83 Plus. It is the
language that is used for PROGRAM variables. Its main drawback is that
these programs run slower, since it is an interpreted language, rather than a
compiled language.

A digital signature placed on secured documents/files such as unit and
group certificates, as well as software program images.

Storage for user data in the Flash ROM. In some cases, the user can
choose between the amount of Flash for applets versus user data.

An alphanumeric ID assigned to the owner of a software owner’s account as
a way of authorizing access to this account. Examples of the ID are mother’'s
maiden name, social security number, birth date, etc.

A digital certificate signed by TI that lists all of the program and group
licenses issued to a specific calculator. The unit certificate also includes
owner ID information and the calculator serial number.

This processor is used in the TI-83 Plus. Z80 assembler is the language
used to program the Z80 chip.

Zilog Development Studiol] a tool used by developers to write software for
Zilog products. This tool can be used to develop TI-83 Plus calculator
applications and ASM programs.

T1-83 Plus Developer Guide Third Release May 28, 2002

Appendix T1-83 Plus “Large”
A Character Fonts

The font map below shows each character code, the symbolic name, and the character map.

00h 01h 02h 03h 04h 05h 06h 07h

NOT USED LrecurN LrecurU LrecurV LrecurwW Lconvert LsqUp LsgDown

08h 09h 0Ah 0Bh 0Ch 0Dh OEh OFh

Li nt egr al Lcross LboxI con Lcrosslcon |Ldotlcon LsubT LcubeR LhexF
Aom T = F

10h 11h 12h 13h 14h 15h 16h 17h

Lr oot Li nverse Lsquar e Langl e Ldegree Lradi an Ltranspose |LLE
-1 & - L i B

I
18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh
LNE LGE Lneg Lexponent Lstore Lten LupArr ow LdownAr r ow

= T E %10

TI-83 Plus Developer Guide Third Release May 28, 2002

157 Appendix A: TI-83 Plus “Large” Character Fonts
20h 21h 22h 23h 24h 25h 26h 27h
Lspace Lexcl am Lquot e Lpound Lfourth Lper cent Lanpersand [Lapostrophe
28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh
LI Paren Lr Paren Lasteri sk Lpl usSi gn Lconmma Ldash Lperi od Lsl ash

- R . | o
30h 31h 32h 33H 34H 35H 36H 37H
LO L1 L2 L3 L4 L5 L6 L7
38H 39H 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh
L8 L9 Lcol on Lsem col on |LLT LEQ LGT Lquesti on

- - e
|

40h 41h 42h 43h 44h 45h 46h 47h
Lat Si gn LcapA LcapB LcapC LcapD LcapE LcapF LcapG

IT!

-

-

T1-83 Plus Developer Guide

Third Release May 28, 2002

Appendix A: TI-83 Plus “Large” Character Fonts 158

48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh
LcapH Lcapl LcapJ LcapK LcapL LcapM LcapN LcapO

i
L
o

50h 51h 52h 53h 54h 55h 56h 57h
LcapP LcapQ LcapR LcapS LcapT LcapU LcapV LcapW

o E
S
Al
L)

58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh

LcapX LcapY Lcapz Lt heta Lbacksl ash |LrBrack Lcar et Lunder scor e
60h 61h 62h 63h 64h 65h 66h 67h
Lbackquote |La Lb Lc Ld Le Lf Lg

L

L1}
=
B
I

68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh
Lh Li Lj Lk LI Lm Ln Lo

1 . ullall=

T1-83 Plus Developer Guide Third Release May 28, 2002

159 Appendix A: TI-83 Plus “Large” Character Fonts

70h 71h 72h 73h 74h 75h 76h 77h

Lp Lg Lr Ls Lt Lu Lv Lw

78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh

Lx Ly Lz LI Brace Lbar LrBrace Ltil de Li nvEQ

80h 81h 82h 83h 84h 85h 86h 87h

LsubO Lsubl Lsub2 Lsub3 Lsub4 Lsub5 Lsub6 Lsub7

88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh

Lsub8 Lsub9 LcapAAcute |LcapAG ave |LcapACaret |LcapADi er LaAcut e LaGrave

| (nE

90h 91h 92h 93h 94h 95h 96h 97h

LaCar et LaDi er LcapEAcute |LcapEG ave |LcapECaret |LcapED er LeAcut e LeG ave
HE HE

E

T1-83 Plus Developer Guide

Third Release May 28, 2002

Appendix A: TI-83 Plus “Large” Character Fonts

160

98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh
LeCar et LeDi er Lcapl Acut e Lcapl Grave | Lcapl Caret |LcaplDier Li Acut e Li Grave
HE HE .l l.
AOh Alh A2h A3h Adh Ab5h A6h A7h
Li Caret Li Di er LcapQAcut e LcapOG ave | LcapOCaret |LcapQDier LoAcut e LoG ave
| nin |
A8h A9h AAh ABh ACh ADh AEh AFh
LoCar et LoDi er LcapUAcut e LcapUG ave | LcapUCaret |LcapUDi er LuAcut e LuG ave
a'm . n . a'm . n .
BOh Blh B2h B3h B4h B5h B6h B7h
LuCar et Lubi er LcapCCed LcCed LcapNTi I de |LnTil de Laccent Lgrave
a'm . I::j S | M.
B8h B9h BAh BBh BCh BDh BEh BFh
Ldieresis LquesDown Lexcl anDown | Lal pha Lbet a Lgamma LcapDel ta Ldelta
HE . I

i

)

E

g}

st

T1-83 Plus Developer Guide

Second Release November 14, 2001

161 Appendix A: TI-83 Plus “Large” Character Fonts

COh Clh C2h C3h Cah C5h C6h Crh
Lepsil on LI Brack LI ambda Lmu Lpi Lrho LcapSi gnma Lsi gma
C8h C9h CAh CBh CCh Cbh CEh CFh
Lt au Lphi LcapOrega | LxMean LyMean LsupX Lell'ipsis Ll eft
T- x| = i

DOh Dlh D2h D3h D4h D5h D6h D7h
Lbl ock Lper Lhyphen Larea Ltenp Lcube Lenter Li magl

I O -

- 'I..
D8h D9h DAh DBh DCh DDh DEh DFh
Lphat Lchi Lstat F LI ne LlistL Lfi nanN L2_r_paren |Lbl ockArrow
EOh Elh E2h E3h E4h E5h E6h E7h
LcurO Lcur &2 Lcur CcapA | Lcur Ca Lcurl Lcurl 2 Lcur | capA Lcurla
I I] I

T1-83 Plus Developer Guide Third Release May 28, 2002

Appendix A: TI-83 Plus “Large” Character Fonts

162

E8h E9h EAh EBh ECh EDh EEh EFh
Ldine LG hi ck LGabove LGbel ow LGpat h LGani nat e LCGdot LUpBI k
FOh Flh

LDnBI k Lcur Ful |

¥

T1-83 Plus Developer Guide

Third Release May 28, 2002

Appendix

B

T1- 83 Plus “Small”

Character Fonts

The font map below shows each character code, the symbolic name, and the character map.
Most characters are five pixels high, but a few are longer. The character widths are variable,
e.g. a space has a width of one pixel whereas an asterisk has width of five pixels. Character
maps usually include one blank pixel column on the right side to ensure spacing when printing

strings.

00h 01h 02h 03h 04h 05h 06h 07h

NOT USED SrecurN SrecurU SrecurV Srecur W Sconvert | SFour Spaces SsqDown

08h 09h 0Ah 0Bh 0Ch 0Dh OEh OFh

Si nt egral Scross Sbox| con Scrossl con Sdot | con SsubT ScubeR ShexF
Y %= g+ - 71| =|F

10h 11h 12h 13h 14h 15h 16h 17h

Sr oot Si nver se Ssquar e Sangl e Sdegr ee Sradi an Stranspose SLE
g =1 £ | & 2 F | T =

|
18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh
SNE SCE Sneg Sexponent Sstore Sten SupAr r ow SdownAr r ow
|

-

-

E

+

T

}

TI-83 Plus Developer Guide

Third Release May 28, 2002

Appendix B: TI-83 Plus “Small” Character Fonts

164

20h 21h 22h 23h 24h 25h 26h 27h
Sspace Sexcl am Squot e Spound Sdol I ar Sper cent Sanper sand Sapost r ophe
1 | H : |
- H X 2 =
28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh
S| Par en Sr Par en Sasteri sk Spl usSi gn Scoma Sdash Speri od Ssl ash
L 1| | 3= :
|
30h 31h 32h 33h 34h 35h 36h 37h
S0 S1 S2 S3 sS4 S5 S6 S7
38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh
S8 S9 Scol on Ssemi col on SLT SEQ SGT Squestion
| | | -.I
| .l |

T1-83 Plus Developer Guide

Third Release May 28, 2002

165 Appendix B: TI-83 Plus “Small” Character Fonts

40h 41h 42h 43h 44h 45h 46h 47h

Sat Si gn ScapA ScapB ScapC ScapD ScapE ScapF ScapG

48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh

ScapH Scapl ScapJ ScapK ScapL ScapM ScapN ScapO

50h 51h 52h 53h 54h 55h 56h 57h

ScapP ScapQ ScapR ScapS ScapT ScapU ScapV ScapwW

58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh

ScapX ScapY ScapZz St heta Sbacksl ash | SrBrack Scar et Sunder score

T1-83 Plus Developer Guide Third Release May 28, 2002

Appendix B: TI-83 Plus “Small” Character Fonts

166

60h 61h 62h 63h 64h 65h 66h 67h
Shackquote | Small A Smal | B Smal | C Smal | D Smal | E Smal | F Smal | G
68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh
Smal | H Smal | 1 Smal 1 J Smal | K Smal | L Smal | M Smal | N Smal | O
(1 = k|1 P h
70h 71h 72h 73h 74h 75h 76h 77h
Smal | P Smal | Q Smal | R Smal | S Smal | T Smal | U Smal | V Smal | W
78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh
Smal | X Smal |'Y Smal | Z Sl Brace Sbar Sr Brace Stil de Si nvEQ
|
0B e &
|

T1-83 Plus Developer Guide

Third Release May 28, 2002

167 Appendix B: TI-83 Plus “Small” Character Fonts
80h 81h 82h 83h 84h 85h 86h 87h
Ssub0 Ssubl Ssub?2 Ssub3 Ssub4 Ssub5 Ssub6 Ssub7
88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh
Ssub8 Ssub9 ScapAAcut e | ScapAG ave ScapACar et | ScapADi er SaAcut e SaG ave
HY A A& A A 2 ¢
90h 91h 92h 93h 94h 95h 96h 97h
SaCar et SabDi er ScapEG ave | ScapEAcute ScapECar et | ScapEDi er SeAcut e SeG ave
a5 EE £ E & %
98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh
SeCar et SeDi er Scapl Acut e | Scapl Grave Scapl Caret | Scapl Di er Si Acut e Si Gave
HE HE

¢

i

1

¥

I

-
8

"
8

T1-83 Plus Developer Guide

Third Release May 28, 2002

Appendix B: TI-83 Plus “Small” Character Fonts

168

-

d}

AOh Alh A2h A3h Adh A5h A6h A7h

Si Car et Si Di er ScapQAcut e ScapOGrave | ScapOCaret | ScapODier SoAcut e SoGrave
S nm uEn u "

A8h A9h AAh ABh ACh ADh AEh AFh

SoCar et SoDi er ScapUAcut e ScapUGrave | ScapUCaret | ScapUDi er SuAcut e SuG ave
. nm e uEn u "

BOh Blh B2h B3h B4h B5h B6h B7h

SuCar et Subi er ScapCCed ScCed ScapNTi | de | SnTi |l de Saccent Sgrave
l.l Hn ; l.l. .l l.

B8h B9h BAh BBh BCh BDh BEh BFh

Sdi eresi s | SquesDown Sexcl anDown | Sal pha Shet a Sgama ScapDel ta Sdel ta
Hn | |

ot

-

T1-83 Plus Developer Guide

Third Release May 28, 2002

169 Appendix B: TI-83 Plus “Small” Character Fonts
COh Clh C2h C3h Cah C5h Céh C7h
Sepsil on | Sl Brack Sl anbda Srmu Spi Sr ho ScapSi grma Ssi gnma
C8h Coh CAh CBh CCh CDh CEh CFh
St au Sphi ScapOrega SxMean SyMean SsupX Sellipsis Sl eft

L ':l:' f.! | A R
DOh Di1h D2h D3h D4h D5h D6h D7h
Shl ock Sper Shyphen Sar ea Stenp Scube Sent er Si magl

|

IR R - - . '
D8h D9h DAh DBh DCh DDh DEh DFh
Sphat Schi SstatF Sl ne SlistL Sfi nanN S2_r_paren Snar r owCapE

F

L

|

1

T1-83 Plus Developer Guide

Third Release May 28, 2002

Appendix B: TI-83 Plus “Small” Character Fonts

170

EOh Elh E2h E3h E4h E5h E6h E7h
SLi stLock |Sscatterl Sscatter?2 Sxylinel Sxyline2 Shoxpl ot 1 Shoxpl ot 2 Shistl
| .I.I.
|- H] H
] I I]
E8h E9h EAh EBh ECh
Shi st 2 SnmodBox 1 SnmodBox2 Snor mal 1 Snor mal 2
s HF I | = 7
I] I

T1-83 Plus Developer Guide

Third Release May 28, 2002

Texas Instruments U.S.A.
7800 Banner Dr.
Dallas, TX 75251

Texas Instruments Holland B.V. O
Rutherfordweg 102
3542CG Utrecht-The Netherlands

Printed by:

ti-cares@ti.com ENG
© 2001, 2002 Texas Instruments http://education.ti.com 83PL/OM/1L30/A

	Table of Contents
	Table of Contents
	Figures
	Tables

	Introduction
	TI-83 Plus Developer Guide
	Conventions Used in this Guide
	Purpose of this Guide
	Structure of this Guide

	TI-83 Plus Specific Information
	Architecture
	Hardware Layer
	Z80 CPU and Memory
	Z80 RAM Structure
	System RAM
	User RAM
	Temporary RAM
	Floating Point Stack
	Free RAM
	Operator Stack
	Symbol Table
	Hardware Stack

	Flash ROM Structure
	Boot (Code) Area
	Certification Area
	Operating System (OS) Area
	Certificate List Area
	User Apps/Data Area
	Swap Area/User Apps/Data Area

	System Development Environment
	System Routines
	RST Routines
	System RAM Areas
	User RAM
	Symbol Table Structure
	Floating Point Stack (FPS)

	Drivers Layer
	Keyboard
	Display
	Displaying Using System Routines
	Formatting Numeric Values for Display
	Modifying Display Format Settings
	Writing Directly to the Display Driver
	Contrast Control
	Split Screen Modes

	Graphing and Drawing
	Drawing
	Graphing
	Graphing and Drawing Utility Routines
	Drawing Routine Specifics
	Graphing Routine Specifics

	Run (busy) Indicator
	APD™ (Automatic Power Down)
	Link Port

	Tools and Utilities Layer
	Error Handlers
	Nested Error Handlers
	Utility Routines
	Floating Point Math
	Miscellaneous Math Functions
	Complex Math
	Other Math Functions
	Function Evaluation
	Temporary Variables

	Working with TI Language Localization Applications
	Entering and Exiting an Application Properly
	Stand-Alone
	Stand-Alone with PutAway Notification

	Application Development Process
	Programming Layer
	TI BASIC Programs
	ASM Programs
	Applications
	ASM versus Applications

	Development System
	Using the Simulator System - Requirements for Getting Started
	Creating an application for debugging - One page and Multi-page Apps
	A Brief Overview of Certificate and Application Signing
	Creating applications that fit on one page
	The Hello Application

	Creating a Multi-page Application
	Branch Table Entries
	Branch Table Placement
	Branch Table Equate File
	Making Off Page calls and jumps

	Creating a Zilog Developer Studio Project
	Creating the Project
	Adding Files to the Project
	Project Settings

	Building the Application
	Loading the Application into the Simulator
	Debugging the Application
	Signing the Application
	Downloading the Application

	Development Tools
	Development Architecture
	Z80 Development System
	Installation
	TI Software Simulator/Debugger
	Introduction
	Installation
	Getting Started
	Breakpoints
	Address Watch Points
	Trace Options
	CPU View Window
	Disassembly View Window
	Flash View Window
	Flash Monitor Window
	RAM View Window
	RAM Monitor Window
	Memory Map Window
	Calculator Simulator Window
	Symbol Table
	Trace Log Window
	IO Log Window
	OP Table Window
	Loading Applications and RAM files
	Link Settings
	Key Press Recording and Playback
	Save/Display/Compare Calculator Screens
	Terminating a Session
	Support in Writing Applications

	Glossary
	Appendix A - TI-83 Plus Large Character Fonts
	Appendix B - TI-83 Plus Small Character Fonts

