
Texas Instruments Holland B.V.
Rutherfordweg 102
3542 CG Utrecht-The Netherlands

Texas Instruments U.S.A.
7800 Banner Dr.
Dallas TX. 75251

w ww. t i . c o m / c a l c© 1997 Texas Instruments

TI-83 Plus Developer Guide
 Third Release

Back Front
Spine

5.31”

8.07”
Variable

spine

Hyperlinks
Hyperlinked items are indicated with a thin gray border. All Table of Contents page references are hyperlinked to the appropriate page.

© 1999, 2001, 2002 Texas Instruments Incorporated

Z80 is a trademark of ZiLOG, Inc.
IBM is a registered trademark of International Business Machines.
Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Important information
Texas Instruments makes no warranty, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding any programs or book materials and makes such materials available solely on
an “as-is” basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental,
or consequential damages in connection with or arising out of the purchase or use of
these materials, and the sole and exclusive liability of Texas Instruments, regardless of
the form of action, shall not exceed the purchase price of this product. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever against the use of
these materials by any other party.

The latest version of this Guide, along with all other up-to-date information for
developers, is available at http://education.ti.com.

TI−83 Plus Developer Guide Third Release May 28, 2002 i

Table of Contents

Chapter 1: Introduction

TI−83 Plus Developer Guide ...1

Conventions Used in this Guide.. 1

Purpose of this Guide ... 2

Structure of this Guide .. 2

Chapter 2: TI-83 Plus Specific Information

Architecture..3

Hardware Layer ..4

Z80 CPU and Memory .. 4

Z80 RAM Structure ... 5
System RAM.. 6
User RAM .. 6
Temporary RAM... 6
Floating Point Stack ... 6
Free RAM .. 7
Operator Stack... 7
Symbol Table ... 7
Hardware Stack ... 7

Flash ROM Structure .. 8
Boot (Code) Area ..10
Certification Area ..10
Operating System (OS) Area ..10
Certificate List Area...10
User APPS (Calculator Software Applications)/Data Area...................10
Swap Area/User APPS/Data Area ..11

System Development Environment... 11
System Routines...11
RST Routines..12
System RAM Areas...12

System Flags ..12
OP1 through OP6 RAM Registers...17
Safe RAM Locations for Application Use.......................................18

Table of Contents (continued)

ii Third Release May 28, 2002 TI−83 Plus Developer Guide

System Variables Area..19
System Variables that are Both Input and Output............................... 19

System Variable Characteristics .. 19
Storing and Recalling System Variable Values................................... 20
System Variables that Are Output Only .. 22

User RAM ...22
Variable Data Structures ...22

Numeric Based Data Types.. 22
Real Data Type Structure... 23
Complex Data Type Structure .. 23
Real List Data Type Structure .. 23
Complex List Data Type Structure ... 24
Matrix Data Type Structure .. 24

Token Based Data Types ... 25
TI−83 Plus Tokens... 25

Program, Protected Program, Equation, New Equation, and String
Data Type Structures.. 25
Screen Image Data Type Structure .. 25
Graph Database Data Type Structure .. 26
Unformatted AppVar Data Type Structure.. 26

Guidelines for AppVar Usage... 26
Variable Naming Conventions ...26

Variable Name Spellings... 28
Predefined Variable Names .. 28

Variables: A – Z and θ .. 28
List Variables: L1 – L6.. 28
Matrix Variables: [A] – [J] ... 28
Equation Variables: Y1 – Y0, X1t – X6t, Y1t – X1t, r1 – r6, u(n),
v(n), w(n) .. 29
String Variables: Str1 – Str0... 30
Picture Variables: Pic1 – Pic0 .. 30
Graph Database Variables: GDB1 – GDB0 31
Variable: Ans .. 31

User-Defined Variable Names .. 31
User-Named Lists... 32
User-Named Programs .. 32
User-Named AppVars .. 33

Accessing User Variables Stored In RAM — (Unarchived)............33
Accessing Variables that Are Not Programs or AppVars33
Accessing Programs and AppVar Variables34

Output from a Variable Search on the Symbol Table 34

Table of Contents (continued)

TI−83 Plus Developer Guide Third Release May 28, 2002 iii

Creating Variables...36
Storing to Variables...39
Recalling Variables..40
Deleting Variables ...41
Archiving and Unarchiving...43

Related Routines .. 44
Accessing Archived Variables without Unarchiving 45

Manipulation Routines...49
List Element Routines ... 49
Matrix Element Routines... 49

Resizing AppVar, Program, and Equation Variables50
Symbol Table Structure...52
Floating Point Stack (FPS)..57

Naming Convention...58
General Use Rules.. 58

FPS System Routines ...59
FPS Allocation Routines ... 59
FPS Deallocation Routines ... 60
Copy Data To and From Existing FPS Entries.................................... 61

Drivers Layer ..64

Keyboard... 64

Display .. 71
Displaying Using System Routines..71

Display Utility Routines..71
Displaying Text..72

Formatting Numeric Values for Display ...76
Entry Points...76

Modifying Display Format Settings..77
Writing Directly to the Display Driver ...77

Reading the Display Driver After Setting X or Y Coordinates80
Contrast Control..82
Split Screen Modes...82

Graphing and Drawing — What’s the difference?........................... 84
Drawing...84
Graphing ...84
Graphing and Drawing Utility Routines..84
Drawing Routine Specifics ..85
Graphing Routine Specifics...88

Table of Contents (continued)

iv Third Release May 28, 2002 TI−83 Plus Developer Guide

Graph WINDOW Settings..88
Graphing in a Split Screen ..88
Graphing Routines and System Flags ...88

Run (Busy) Indicator ... 91

APD (Automatic Power Down)... 92

Link Port.. 93

Tools and Utilities Layer..99

Error Handlers... 99

Nested Error Handlers .. 101

Utility Routines .. 102
Floating-Point Math...102
Miscellaneous Math Functions ..104

Floating-Point Math Functions that Output Complex Results.......104
Complex Math...105
Other Math Functions ...107
Function Evaluation...108

Parse Routine ...108
Temporary Variables...110

Using Temporary Variables ...111
Managing Temporary Variables ..111
Deleting Temps and Setting (pTempCnt)112

Working with TI Language Localization Applications 114

Entering and Exiting an Application Properly 115
Stand-alone ..115

Start-up Code..115
Exit Code ..116

Stand-alone with Put Away Notification...117
Start-up Code..118
Put Away Code ...120

Chapter 3: Application Development Process

Programming Layer ...120

TI−BASIC Programs ...120

ASM Programs..120
Applications...121
ASM versus Applications ..121

Table of Contents (continued)

TI−83 Plus Developer Guide Third Release May 28, 2002 v

Development System...121

Using the Simulator System — Requirements for Getting Started 121

Creating an Application for Debugging — One-Page and Multi-Page
Apps.. 122

A Brief Overview of Certificates and Application Signing.............. 122

Creating Applications that Fit On One Page 122
The Hello Application ..123

Accessing System Resources ...123
Application Headers ..123
Header Creation..123
Calling System Routines ...123
Accessing System Variables ...123
Defining a String..124
Erasing the Screen..124
Printing Text to the Screen..124
Copying the String...124
System RAM Registers ...124
Reading a Key Press...125
Exiting an Application ..125

Creating a Multiple Page Application .. 125
Branch Table Entries...125
Branch Table Placement...126
Branch Table Equate File..126
Making Off-Page Calls and Jumps..126

Creating a Zilog Developer Studio Project.....................127

Creating the Project .. 127
Adding Files to the Project ..127
Project Settings...127

Building the Application... 128

Loading the Application into the Simulator.................................... 129

Debugging the Application .. 131

Signing the Application ... 134

Downloading the Application... 134

Chapter 4: Development Tools

Development Architecture...136

Table of Contents (continued)

vi Third Release May 28, 2002 TI−83 Plus Developer Guide

Z80 Development System..136

Installation ..136

TI Software Simulator and Debugger136

Introduction ... 136

Installation... 137

Getting Started.. 137

Breakpoints ... 141

Address Watch Points... 141

Trace Options ... 142

CPU View Window.. 143

Disassembly View Window ... 144

Flash View Window... 145

Flash Monitor Window... 145

RAM View Window.. 146

RAM Monitor Window ... 147

Memory Map Window ... 148

Calculator Simulator Window .. 148

Symbol Table .. 150

Trace Log Window .. 150

IO Log Window ... 152

Loading Applications and RAM Files .. 152

Link Settings ... 154

Key Press Recording and Playback.. 155

Save/Display/Compare Calculator Screens 156

Terminating a Session .. 156

Support in Writing Applications ... 156

Glossary... 151

TI83 Plus “Large” Character Fonts....................................... 156

TI-83 Plus “Small” Character Fonts....................................... 163

Figures

xviii Third Release May 28, 2002 TI−83 Plus Developer Guide

Fig. 2.1: TI−83 Plus Architecture .. 3

Fig. 2.3: Z80 Memory Space.. 4
Fig. 2.2: TI−83 Plus RAM ... 5

Fig. 2.4: TI−83 Plus RAM Structure.. 5

Fig. 2.5: TI−83 Plus Flash ROM Structure.. 8

Fig. 2.5b: TI−83 Plus Silver Edition Flash ROM Structure .. 8

Fig. 2.6: Symbol Table Structure...52
Fig. 2.7: Floating Point Stack Structure ...57
Fig. 2.8: Calculator Scan Code ...65
Fig. 2.9: Home Screen Display Mapping ...72
Fig. 2.10: Pen Display Mapping ..74
Fig. 2.11: Command Values..77
Fig. 2.12: Pixel Coordinates ..85
Fig. 2.13: Graph WINDOW Setting ...88
Fig. 2.14: Error Flow..102
Fig. 2.15: TI−83 Plus System RAM ...112

Fig. 2.16: Control Flow ..116
Fig. 2.17: Event Sequence..117
Fig. 2.18: Application Loader Process...119
Fig. 3.1: Application Development Flow ..119

Tables

TI−83 Plus Developer Guide Third Release May 28, 2002 xix

Table 2.1: System Flags ...13
Table 2.2: OP Registers..17
Table 2.3: Transfer one OP register to another (11 byte operation) ..17
Table 2.4: Exchange one OP register with another (11 byte operation)18
Table 2.5: Load a floating-point value into an OP register (9 byte operation)18
Table 2.6: Miscellaneous floating-point utility routines in OP registers18
Table 2.7: Set an OP register to all zeros (11 byte operation)...18
Table 2.8: Variable Name, RAM Equate, and SysTok Value...21
Table 2.9: Floating-Point Number Format ...22
Table 2.10: Variable Name Format ...27
Table 2.11: Format of Archive Stored Variables..44
Table 2.12: Format of Archive Stored Variables..46
Table 2.13: Program, AppVar, Group..52
Table 2.14: Lists..52
Table 2.15: Real, Cplx, Mat, EQU, GDB, Pict..52
Table 2.16: Formula Example ...54
Table 2.17: Floating-Point Basic Math Functions ... 102

 Tab le 2.18: Trigonometric and Hyperbolic Functions ..103
Table 2.19: Floating-Point Power and Logarithmic Math Functions...103
Table 2.20: Floating-Point Miscellaneous Math Functions...104
Table 2.21: Complex Math Basic Math Functions ...105
Table 2.22: Complex Math Power and Logarithmic Math Functions..106
Table 2.23: Complex Math M iscellaneous Math Functions..106
Table 2.24: Temporary Variables E xample ...110
Tabl e 2.25: Language Table ...114

TI-83 Plus Developer Guide Third Release May 28, 2002

Introduction

TI-83 PLUS DEVELOPER GUIDE
This guide contains information necessary to develop applications for the TI-83 Plus
calculator. It addresses basic environmental specifics and development guidelines. This
guide covers TI-83 Plus calculator specific information, processes, and development
tools.

The TI-83 Plus Developer Guide is one of a set of documents supporting the TI-83 Plus
calculator. The set includes:

• TI-83 Plus Graphing Calculator Guidebook — Describes how to use the calculator
(provided with the TI-83 Plus calculator).

• TI-83 Plus Tutorial — Provides examples that introduce the developer to application
creation.

• TI-83 Plus User Interface Guide — Provides information on the design and
construction of the user interface.

To access these guides visit our web site.

Conventions Used in this Guide
The following conventions were adopted for this guide to help make the material easier
to read.

Program text: All of the program examples are in a non-proportional font that can be
distinguished from the guide text.

LD HL,L1name
B_CALL Mov9ToOP1 ; OP1 = list L1 name

;
B_CALL FindSym ; look up list variable in OP1

Syntax: Program instructions (commands and directives) are in all upper case letters.

Example:
B_CALL routine

Optional parameters: These parameters are enclosed in square brackets. Part of a
program instruction may be in italics to describe the type of information.

Example:
[label][:] operation [operands] [; comment]

2 Chapter 1: Introduction

TI-83 Plus Developer Guide Third Release May 28, 2002

Program layout: The program statements appear in columns.

Example:
ThisIsALabel:

LD A,5
B_CALL SystemRoutine ; call to a system routine
DEC A
JR NZ,ThisIsALabel
RET

Purpose of this Guide
The types of programs that can be created on the TI-83 Plus calculator include
RAM-based TI-BASIC programs, RAM-based assembly programs, and
Flash ROM-based applications. This guide addresses Flash ROM-based application
development and RAM-based assembly programs.

Structure of this Guide
• Chapter 2 provides an in-depth view of the TI-83 Plus physical and logical memory

structures, and the various drivers, tools, and utilities available to the developer.

• Chapter 3 presents several processes including the application development
process, the signature process, the testing process, and the release/distribution
process.

• Chapter 4 provides a view of the various development tools.

TI-83 Plus Developer Guide Third Release May 28, 2002

TI-83 Plus Specific
Information

ARCHITECTURE
Fig. 2.1 represents the TI-83 Plus architecture, which is composed of several layers
and elements.

Hardware

Drivers

Tools and Utilities

Programming

Fig. 2.1: TI-83 Plus Architecture

The Hardware layer contains the functional components of the unit — the Z80
processor, Random Access Memory (RAM), Flash ROM (also called Flash), Read Only
Memory (ROM), and TI BASIC (not included in this guide).

The Drivers layer contains assembly language-controlled functions such as the keypad,
battery, display, and input/output.

The Tools and Utilities layer contains the elements that provide text, drawing tools,
and utility routines.

The Programming layer contains the user interface — screen, keyboard, and the basic
unit functionality. In addition, it provides the capability to load TI BASIC programs
(keystroke), assembly programs that execute in RAM, and application programs that
execute in Flash ROM.

This chapter explains the Hardware layer, Drivers layer, and Tools and Utilities layer.
Chapter 3 explains the Programming layer.

4 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

HARDWARE LAYER
Loading and debugging an application requires a general understanding of the memory
layout of the calculator.

Other manuals and guides cover TI-83 Plus operation including keys, screens, menus,
etc. This discussion covers the TI-83 Plus internal hardware components —
Zilog Z80™ CPU, RAM, and Flash ROM.

Z80 CPU and Memory
The TI-83 Plus uses a Z80 processor with a 64K byte logical address space. To provide
more than 64K bytes of physical RAM, this logical memory space is divided into four
16K byte pages (see Fig. 2.3). Physical memory is also divided into two 16K byte pages
(see Fig. 2.3), and a physical page is mapped into each logical page as it is needed.

There are two types of physical memory in the calculator — Z80 RAM and Flash ROM.
The following sections address the composition, structure, and uses of these memory
types.

• Z80 Logical Memory Space

The Z80 logical memory size is 64K bytes, which is divided into four 16K byte
pages — 0000h to 3FFFh, 4000h to 7FFFh, 8000h to BFFFh, and C000h to FFFFh.
A physical memory page is mapped into each logical page.

FFFFh

0000h

4000h

8000h

C000h

3FFFh

7FFFh

BFFFh
16K Always RAM Page 0

16K RAM Page 0,1 or Flash ROM Pages 0-31

16K RAM Page 0,1 or Flash ROM Pages 0-31

16K Always Flash ROM Page 0

Fig. 2.3: Z80 Memory Space

The 16K byte address space from 0000h to 3FFFh is ROM page 0 from the Flash
ROM. It is always present.

The 16K byte address space from 4000h to 7FFFh is used for swapping a 16K byte
ROM page from the Flash ROM. This allows the TI-83 Plus system to extend
beyond its 64K byte physical addressing capabilities.

Chapter 2: TI-83 Plus Specific Information 5

TI-83 Plus Developer Guide Third Release May 28, 2002

• Z80 Physical RAM Structure

TI-83 Plus physical RAM consists of 32K bytes starting at address 8000h.

FFFFh

8000h

C000h BFFFh
16K Page 3

16K Page 2

Fig. 2.2: TI-83 Plus RAM

Z80 RAM Structure
The TI-83 Plus has 32K bytes of RAM. The system code partitions the RAM into a
number of areas, which it uses to maintain different types of information. Applications
that need RAM must reuse some of the RAM not currently in use by the system code.
They must request an allocation from the system code User RAM area. Fig. 2.4 shows
how RAM is partitioned.

Legend

System RAM
(Fixed Size)

User RAM
(Grows Up)

Temporary RAM
(Grows Up)

Floating Point Stack
(Grows Up)

Free RAM

Operator Stack
(Grows Down)

Symbol Table
(Grows Down)

Hardware Stack
(Fixed Size)

Addr
8000h

FFFFh

Dynamic Area

Fixed Area

Fig. 2.4: TI-83 Plus RAM Structure

Fig. 2.4 shows the addresses of Z80 logical address space. RAM is always mapped into
the 32K space beginning at logical address from 8000h to FFFFh. The areas (System

6 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

RAM and Hardware Stack) at each end of RAM are fixed size. All other areas are
dynamic. The positions of the areas in RAM with respect to each other never changes
and never overlaps; however, their sizes grow and shrink and boundaries move as the
calculator operates. The area labeled Free RAM is a leftover area. As the other areas
grow, they push into the Free RAM area making it smaller. As the other areas shrink,
the Free RAM area gets larger.

Following is a brief overview of each of these areas in RAM.

System RAM
This area contains system preallocated RAM structures.

• System Flags (Modes, Indicators)

• System Variables (for example, Xmin, Ymin…)

• OP1 through OP6 RAM Registers

• Memory Pointers

• Safe RAM Locations for Applications Use

• State Monitor Control RAM

• Graph Backup Screen — bit image

• Utility Backup Screens (two) — bit image

• Text Backup Screen

User RAM
Variables created by the calculator user are stored in User RAM. Each variable stored in
User RAM has a Symbol Table entry associated with it.

Temporary RAM
This area is used during equation parsing and execution. It contains the data for the
temporary variables that are created during parser execution. Some applications may
need to perform housekeeping of this area if they invoke the equation parser and if
temporary variables are returned as a result.

Floating Point Stack
This area is used during equation parsing and execution. It provides temporary storage
outside the User RAM area.

Free RAM
This is the RAM that is currently not in use. The arrows in Fig. 2.4 show that the
structures below and above Free RAM grow toward it.

Chapter 2: TI-83 Plus Specific Information 7

TI-83 Plus Developer Guide Third Release May 28, 2002

Note: Applications should never use this area. Information about which RAM areas are available for
applications will be provided, as well as how to create variables for long-term storage of data.

Operator Stack
This area of RAM is used by the system code for math expression evaluation and
equation parsing (execution). No detailed description of this RAM area is provided since
applications do not use the Operator Stack.

Symbol Table
This area of RAM is used to keep track of all of the variables, resident in both RAM and
Flash ROM. The names, data types, pointers to the data, and where the variables reside
in RAM or in Flash ROM (archived) are stored in the Symbol Table.

Hardware Stack
This is the area to which the Z80 Stack Pointers (SP) register points. This stack area is
400 bytes. The Hardware Stack starts at address FFFFh and it grows from high to low
memory.

There are no safeguards against overflowing the stack and corrupting other RAM areas.
The amount of space allocated for the stack should be sufficient for applications needs.
Applications should avoid the use of recursive routines that can easily and quickly
overflow the Hardware Stack. The Hardware Stack should not be used for saving large
amounts of data. Using the Hardware Stack to save register values upon entry to
routines should not cause problems.

None of the TI-83 Plus system routines use recursion that will overflow the Hardware
Stack.

8 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Flash ROM Structure
The TI-83 Plus Flash ROM is composed of 512K bytes divided into 32 pages, each of
which is 16K bytes in size. Fig. 2.5 represents the Flash ROM structure.

00000 Addr Page(s) Size

 OS 03 – 00 03 – 00 64 K

 OS 07 – 04 07 – 04 64K

 SWAP/USER DATA 0B – 08 11 – 08 64K

 SWAP/USER APPS/DATA 0F – 0C 15 – 12 64K

 USER APPS/DATA 13 – 10 19 – 16 64 K

 USER APPS/DATA 15 – 14 21 – 20 32K

 CERTIFICATE LIST 17 – 16 23 – 22 32 K

 OS 1B – 18 27 – 24 64K

 SYSTEM PRIVILEGED 1D – 1C 29 – 28 32K

 CERTIFICATION 1E 30 16K

7FFFF BOOT 1F 31 16K

Fig. 2.5: TI-83 Plus Flash ROM Structure

Legend

SWAP and/or User APPS Area

Update System (OS) Area

Fixed Area — changeable only by TI

Chapter 2: TI-83 Plus Specific Information 9

TI-83 Plus Developer Guide Third Release May 28, 2002

The TI-83 Plus Silver Edition Flash ROM is composed of 2048K (2M) bytes divided into 128
pages, each of which is 16K bytes in size. The structure is generally the same as the TI-83
Plus except for the inclusion of 96 additional 16K pages (24 additional 64K sectors).

The TI-83 Plus Flash structure chart (Fig. 2.5) is correct up to page 14h; at that point, the TI-83
Plus Silver Edition includes more data pages. The TI-83 Plus Silver Edition also has OS
residing at the high 8 pages of Flash, 78h…7Fh. The TI-83 Plus high memory is 18h… 1Fh.

Fig. 2.5b: TI-83 Plus Silver
Edition Flash ROM structure

00000 Addr Page(s) Size

 OS 07h – 00h 07 - 00 128K

 SWAP/USER DATA 0Bh – 08h 11 – 08 64K

 SWAP/USER APPS/DATA 0Fh - 0Ch 15 – 12 64K

 USER APPS/DATA 13h – 10h 19 – 16 1334 K

 USER APPS/DATA 67h – 14h 103 – 20 32K

 USER APPS/DATA 69h – 68h 105 – 104 32K

 CERTIFICATE LIST 6Bh - 6Ah 107 – 106 32 K

 FUTURE OS USE 77h – 6Ch 119 – 108 192K

 OS 7Bh – 78h 123 - 120 32K

 SYSTEM PRIVILEGED 7Dh - 7Ch 125 – 124 32K

 CERTIFICATION 7Eh 126 16K

7FFFF BOOT 7Fh 127 16K

Legend

SWAP and/or User APPS Area

Update System (OS) Area

Fixed Area — changeable only by TI

10 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

The explanations of some Flash ROM areas below are for informational purposes only.

Boot (Code) Area
This area contains the following unalterable items.

• Boot-strap code

• System initialization code

• Software validation routine

• Program download routine

• Software product ID

• Product code update loader

Certification Area
This area contains program authentication information.

• Calculator serial number

• Unit certificate public key

• Date-stamp public key

• Date-stamp certificate

• Unit certificate and license status

• Group certificates

Operating System (OS) Area
This area contains the operating system of the calculator — math, display, keyboard,
I/O, etc. routines.

Certificate List Area
This area contains a list of unit certificates for the specific calculator.

User APPS (Calculator Software Applications)/Data Area
This area is shared by applications and variables archived by the user for long-term
storage.

Chapter 2: TI-83 Plus Specific Information 11

TI-83 Plus Developer Guide Third Release May 28, 2002

Swap Area/User APPS/Data Area
This area is dynamically allocated for use by the system as needed in the space
indicated in Fig. 2.5 and 2.5b.

System Development Environment
All TI-83 Plus applications are developed in Z80 assembly language. Chapter 3 contains
more specific information and examples. This section provides in-depth information
about the use of System RAM, User RAM, Floating Point Stack, etc. (see Fig. 2.4).

System Routines
Entry points for a set of TI-83 Plus system routines are provided in the TI-83 Plus
System Routine Documentation (separate document). A list of entry point equated
labels is provided in the file, TI83plus.inc. Later in this chapter, source code examples
are included with detailed explanations of how to access system routines.

To access these system routines use the Z80 RST instruction. Two macro-instructions
(macro) are provided for simplification. Each of these macros uses three bytes of code
space.

If your assembler does not support macro calls, substitute:
B_CALL label
with
RST rBR_CALL

DW label

B_JUMP label
with
CALL BRT_JUMP0
DW label

The following section is a detailed explanation of the various RAM areas shown in
Fig. 2.4.

12 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

RST Routines
The Z80 restart instruction, RST, can be used in place of B_CALL for some entry points.
Using the RST instruction only takes one byte of ROM space as opposed to three bytes
for a B_CALL. There are five routines set to use this method of access. These were
chosen because of high-frequency use in the operating system.

• RST rMov9ToOP1 used instead of B_CALL Mov9ToOP1

• RST rFindSym used instead of B_CALL FindSym

• RST rPushRealO1 used instead of B_CALL PushRealO1

• RST rOP1ToOP2 used instead of B_CALL OP1ToOP2

• RST rFPAdd used instead of B_CALL FPAdd

Details on these routines can be found in this chapter or in the System Routine
Documentation.

System RAM Areas
The details about system RAM follow.

System Flags
This area of RAM is used for bit flags. The TI-83 Plus accesses these flags through the
Z80’s IY register. The IY register is set to the start of this flag area and does not
change, resulting in easy bit manipulation.

Example:
SET trigDeg,(IY+trigFlags) ; set to degree angle mode

trigFlags is the byte offset from the start of the flag area.

Some system flags that an application might use are listed in Table 2.1, along with
information needed to support basic ASM programming on the TI-83 Plus.

The values for these symbols are located in the include file, TI83plus.inc.

Chapter 2: TI-83 Plus Specific Information 13

TI-83 Plus Developer Guide Third Release May 28, 2002

Flag Name IY Offset Equate Description Comments

trigDeg trigFlags 0 = radian angle mode
1 = degree angle mode

plotLoc plotFlags 0 = write to display and buffer
1 = write to display only

Determines whether the graph line
and point routines draw to the
display or to the graph backup
buffer, plotSScreen.

plotDisp plotFlags 0 = graph screen not in display
1 = graph in display

grfFuncM grfModeFlags 1 = function graph mode

grfPolarM grfModeFlags 1 = polar graph mode

grfParamM grfModeFlags 1 = parametric graph mode

grfRecurM grfModeFlags 1 = sequence graph mode

graphDraw graphFlags 0 = graph is up to date
1 = graph needs to be updated

grfDot grfDBFlags 0 = graph connected draw mode
1 = graph dot draw mode

grfSimul grfDBFlags 0 = sequential graph draw mode
1 = simultaneous graph draw mode

grfGrid grfDBFlags 0 = graph mode grid off
1 = graph mode grid on

grfPolar grfDBFlags 0 = graph — rectangular coordinates
1 = graph — polar coordinates

grfNoCoord grfDBFlags 0 = graph coordinates off
1 = graph coordinates on

grfNoAxis grfDBFlags 0 = graph draw axis
1 = graph no axis

grfLabel grfDBFlags 0 = graph labels off
1 = graph labels on

textEraseBelow textFlags 1 = erase line below small font when
writing small font

Deals with displaying small variable
font characters, when set the pixels
below the character displayed are
cleared. See routines VPutMap
and VPutS.

textInverse textFlags 1 = write in reverse video Affects both the normal 5�7 font
and the small variable width font.

Table 2.1: System Flags

14 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Flag Name IY Offset Equate Description Comments

onInterrupt onFlags 1 = É key interrupt occurred The É key is interrupt driven, but
it does not automatically stop
execution. Flag is set by the
interrupt handler when the É key
is pressed. An application must poll
(test) this flag to implement the É
key press as a break.

statsValid statFlags 1 = stat results are valid

fmtExponent fmtFlags 1 = scientific display mode Resetting signifies NORMAL mode
setting.

fmtEng fmtFlags 1 = engineering display mode Resetting signifies NORMAL mode
setting.

fmtReal fmtFlags 1 = real math mode See Comment 1 below.

fmtRect fmtFlags 1 = rect complex math mode See Comment 1 below.

fmtPolar fmtFlags 1 = polar complex math mode See Comment 1 below.

curAble curFlags 1 = cursor flash enabled

curOn curFlags 1 = cursor is showing

curLock curFlags 1 = cursor is locked off

appTextSave appFlags 1 = save characters written in
textShadow

Places a copy of the character,
normal font only, written to the
display into the textShadow buffer.

appAutoScroll appFlags 1 = auto-scroll text on last line Causes the screen to automatically
scroll when the normal font is
written to the display and goes
beyond the last row of the screen.

indicRun indicFlags 1 = run indicator is enabled
0 = run indicator is disabled

Controls the run indicator that is
displayed in the upper right corner
of the display. See Run Indicator
section.

comFailed getSendFlg 1 = com failed
0 = com did not fail

apdRunning apdFlags 1 = APD is running
0 = APD is not running

Table 2.1: System Flags (continued)

Comment 1: Controls the mode setting: REAL a + bi re^θi located on the mode screen.

Chapter 2: TI-83 Plus Specific Information 15

TI-83 Plus Developer Guide Third Release May 28, 2002

Flag Name IY Offset Equate Description Comments

indicOnly indicFlags 1 = only update run indicator Sets the interrupt handler to update
the run indicator, but not to process
APD, blink the cursor, or scan for
keys. It is useful when executing
I/O link port operations for speed.

shift2nd shiftFlags 1 = second key pressed

shiftAlpha shiftFlags 1 = alpha mode

shifLwrAlpha shiftFlags 1 = lower case, shift alpha set also

shiftALock shiftFlags 1 = alpha lock, shift alpha set also

grfSplit sGrFlags 1 = horizontal graph split mode

vertSplit sGrFlags 1 = vertical graph split mode

textWrite sGrFlags 1 = small font writes to buffer
0 = small font writes to display

Use when writing small font
characters. Determines if the
character will be written to the
display or to the corresponding
location in the graph backup buffer,
plotSScreen. Useful for building a
screen in RAM and then displaying
it in its entirety at once.

fullScrnDraw apiFlag4 1 = allows draws to use column 95 and
row 0

bufferOnly plotFlag3 1 = draw to graph buffer only Causes all of the graph line and
point routines (pixel coordinates as
inputs) to be drawn to the graph
backup buffer instead of to the
display.

fracDrawLFont fontFlags 1 = draw large font in UserPutMap Enables the normal font to be
drawn using the small font
coordinate system. See section on
Display in the System Routine
Documentation.

customFont fontFlags 1 = draw custom characters Allows an application to have the
small font routines display a font
defined by an application. See
section on Display in the System
Routine Documentation.

lwrCaseActive appLwrCaseFlag 1 = enable lower case in GetKey loop Causes the GetKey routine to
recognize lower case alpha key
presses. When set, the key
sequence ƒƒcauses
lower case alpha mode to be set.

Table 2.1: System Flags (continued)

16 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Flag Name IY Offset Equate Description Comments

asm_Flag1_0 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag1_1 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag1_2 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag1_3 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag1_4 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag1_5 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag1_6 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag1_7 asm_Flag1 available for ASM programming See Comment 2 below.

asm_Flag2_0 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag2_1 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag2_2 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag2_3 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag2_4 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag2_5 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag2_6 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag2_7 asm_Flag2 available for ASM programming See Comment 2 below.

asm_Flag3_0 asm_Flag3 available for ASM programming See Comment 2 below.

asm_Flag3_1 asm_Flag3 available for ASM programming See Comment 2 below.

asm_Flag3_2 asm_Flag3 available for ASM programming See Comment 2 below.

asm_Flag3_3 asm_Flag3 available for ASM programming See Comment 2 below.

asm_Flag3_4 asm_Flag3 available for ASM programming See Comment 2 below.

asm_Flag3_5 asm_Flag3 available for ASM programming See Comment 2 below.

asm_Flag3_6 asm_Flag3 available for ASM programming See Comment 2 below.

asm_Flag3_7 asm_Flag3 available for ASM programming See Comment 2 below.

Table 2.1: System Flags (continued)

Comment 2: Used by applications to provide easy bit flag implementation. Once an application completes, flag will
most likely be changed by another application. It will not hold its state.

Chapter 2: TI-83 Plus Specific Information 17

TI-83 Plus Developer Guide Third Release May 28, 2002

OP1 through OP6 RAM Registers
This area of RAM is used extensively by the TI-83 Plus system routines for such things
as:

• Executing floating-point math

• Passing arguments to and from system routines

• Extracting elements out of lists or matrices

• Executing the parser

• Formatting numbers for display

There are six OP registers allocated — OP1, OP2, OP3, OP4, OP5, and OP6. Each of
these labels are equated in the include file, TI83plus.inc.

Each of these OP registers is 11 bytes in length; they are allocated in contiguous RAM.

OP1 11 bytes

OP2 11 bytes

OP3 11 bytes

OP4 11 bytes

OP5 11 bytes

OP6 11 bytes

Table 2.2: OP Registers

The size of these registers was determined by the size of the TI-83 Plus floating-point
number format and by the maximum size (nine bytes) of a variable name. The 10th and
11th bytes in each register are used by the floating-point math routines for extra
precision.

Below are the Utility routines that manipulate the OP registers. See the System Routine
Documentation for details.

OP1ToOP2 OP2ToOP1 OP3ToOP1 OP4ToOP1 OP5ToOP1 OP6ToOP1

OP1ToOP3 OP2ToOP3 OP3ToOP2 OP4ToOP2 OP5ToOP2 OP6ToOP2

OP1ToOP4 OP2ToOP4 OP3ToOP4 OP4ToOP3 OP5ToOP3 OP6ToOP5

OP1ToOP5 OP2ToOP5 OP3ToOP5 OP4ToOP5 OP5ToOP4

OP1ToOP6 OP2ToOP6 OP4ToOP6 OP5ToOP6

Table 2.3: Transfer one OP register to another (11 byte operation)

18 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

OP1ExOP2 OP1ExOP3 OP1ExOP4 OP1ExOP5 OP1ExOP6

OP2ExOP4 OP2ExOP5 OP2ExOP6 OP5ExOP6

Table 2.4: Exchange one OP register with another (11 byte operation)

OP1Set0 OP1Set4 OP2Set3 OP2Set8 OP3Set2

OP1Set1 OP2Set0 OP2Set4 OP2SetA OP4Set0

OP1Set2 OP2Set1 OP2Set5 OP3Set0 OP4Set1

OP1Set3 OP2Set2 OP2Set60 OP3Set1 OP5Set0

SetXXOP1 SetXXOP2 SetXXXXOP2

Table 2.5: Load a floating-point value into an OP register (9 byte operation)

CkInt CkOdd CkOP1FPO CkOP1Pos CkOP1Real

CkOP2FPO CkOP2Pos CkOP2Real ClrOP1S ClrOP2S

InvOP1S InvOP2S CpOP1OP2 ConvOP1

Table 2.6: Miscellaneous floating-point utility routines in OP registers

ZeroOP1 ZeroOP2 ZeroOP3 ZeroOP

Table 2.7: Set an OP register to all zeros (11 byte operation)

The OP registers are also used as inputs and outputs for floating-point and complex
number math. See Floating Point and Complex Math sections.

Safe RAM Locations for Application Use
If the amount of RAM an application needs is not too great, use safe pieces of RAM that
exist in the System RAM area. These are chunks of RAM that are not used by system
routines except under rare circumstances. They are, therefore, available as scratch
RAM for the application.

saveSScreen
(86ECh)

This is 768 bytes used by the system code only if the calculator
automatically powers down (APD). This RAM is safe to use as
long as an APD cannot occur. See the Keyboard and Automatic
Power Down (APD) sections.

Chapter 2: TI-83 Plus Specific Information 19

TI-83 Plus Developer Guide Third Release May 28, 2002

statVars
(8A3Ah)

This is the start of 531 bytes of RAM used to store statistical
results. If you use this area, do not compute statistics in your
ASM program. Make this B_CALL to invalidate statistics, as well.

B_CALL DelRes

appBackUpScreen
(9872h)

This is the start of 768 bytes of RAM not used by the system. It is
intended for ASM and applications. Its size is large enough to
hold a bit image of the display, but it can be used for whatever
you want.

tempSwapArea
(82A5h)

This is the start of 323 bytes used only during Flash ROM
loading. If this area is used, avoid archiving variables.

WARNING: The RAM is safe to use only until the application exits. Data in any of these areas of RAM may
be destroyed between successive executions of an application. Therefore, any data that must
remain between executions cannot be kept in these areas. This RAM is only for the variables
that can be discarded when the application exits.

System Variables Area
This area of system RAM consists of preallocated variables needed by much of the TI-
83 Plus built-in functionality. Because they are floating-point numbers these variables
are all nine bytes. Because these variables are always needed, the system always
keeps them around and never changes their addresses.

There are two classes of system variables — those that you can store to and recall
from, and those that are referred to as output only variables because the system
routines can store to them.

System Variables that are Both Input and Output

In general, these values should only be changed by system routines that applications
can call. Modifying these variables directly, rather than modifying them through the
appropriate system routine, could corrupt the state of the system. Most of these system
variables have restrictions on what values are valid to store to them. Using the system
routine to store to them guarantees that the proper checks are made on the values
being stored to them.

System Variable Characteristics

• There are no Symbol Table entries for system variables.

• These variables can be changed by the user, but cannot be deleted or renamed. For
example, you can change Xmax, but you cannot delete it.

• These variables are initialized to a predetermined value upon reset.

• These variables always reside in RAM. For example, it is not possible to archive
Xmin.

20 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Storing and Recalling System Variable Values

Since system variables are located at a fixed location in RAM, an application can access
the contents of a system variable directly. This method is safe only when recalling a
single system variable.

There is also a system routine that copies the contents of a system variable to OP1; the
value in the accumulator determines what system variable is recalled. See SysTok
values in Table 2.8.

RclSysTok Copies the contents of a system variable to OP1.

StoSysTok Stores the contents of OP1, if valid, to a system variable.

Note: An application should not modify the contents of a system variable directly; it should always use
this system routine.

The system variable stored to is determined by the value in the accumulator.

Example: If you want to store -3 in Xmin:
B_CALL OP1Set3 ; Reg OP1 = Floating point 3
B_CALL InvOP1S ; Negate FP number in OP1, OP1 = -3
LD A,XMINt ; ACC = Xmin variable token value
B_CALL StoSysTok ; store OP1 to Xmin,

Example: If you want to recall the contents of Xmin to OP1:
LD A,XMINt
B_CALL RclSysTok ; OP1 = contents of Xmin, -3

Chapter 2: TI-83 Plus Specific Information 21

TI-83 Plus Developer Guide Third Release May 28, 2002

Table 2.8 lists each system variable, its RAM address equate, and the token values
used to access them with the routines above.

Variable Name RAM Equate SysTok Value

Xscl Xscl XSCLt

Yscl Yscl YSCLt

Xmin Xmin XMINt

Xmax Xmax XMAXt

Ymin Ymin YMINt

Ymax Ymax YMAXt

tMin TMin TMINt

tMax TMax TMAXt

θmin ThetaMin THETMINt

θmax ThetaMax THETMAXt

PlotStart PlotStart PLOTSTARTt

nMin NMin NMINt

nMax NMax NMAXt

deltaTbl TblStep TBLSTEPt

Tstep Tstep TSTEPt

θstep ThetaStep THETSTEPt

deltaX DeltaX DELTAXt

deltaY DeltaY DELTAYt

XFact Xfact XFACTt

YFact Yfact YFACTt

Xres XresO XRESt

PlotStep PlotStep PLOTSTEPt

N (TVM) fin_N FINNt

I% fin_I FINIt

PV fin_PV FINPVt

PMT fin_PMT FINPMTt

FV fin_FV FINFVt

C/Y fin_CY FINCYt

P/Y fin_PY FINPYt

Table 2.8: Variable Name, RAM Equate, and SysTok Value

22 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

System Variables that Are Output Only

These are the statistical output variables. They are stored to after executing either the
1-varstat, 2-varstat, or a regression command. The TI-83 Plus system considers these
variables invalid if no statistical command was executed; therefore, values are not
stored to them.

Recall these values using the following system routine.

Rcl_StatVar Recalls a statistical result into OP1, if statistics are valid. The
accumulator contains a token value of the statistical variable to recall.

The token values are contained in the include file, TI83plus.inc.

User RAM
User RAM (see Fig. 2.4) is used to store the data structures of variables that are
dynamically created. These variables are created by both users and the TI-83 Plus
system.

The following sections contain an overall description of TI-83 Plus variable naming
conventions, data structures, creation, and accessing.

Variable Data Structures

Numeric Based Data Types

This class of data types is built of floating-point numbers, and in some cases, a size
field. These data types include Real, Complex, Real List, Complex List, and Matrix.

9 Bytes
0 +1 +2 +3 +4 +5 +6 +7 +8

T EXP DD DD DD DD DD DD DD

Table 2.9: Floating-Point Number Format

T = object type where:

Bit Description
0 – 4 0 if a real variable’s data,

0Ch if part of a complex variable’s data
5 – 6 Future use

7 Mantissa sign — 0 = positive/1 = negative
EXP = 00h to FFh 80h to FFh = Exponent of (0) to (128)
 7Fh to 00h = Exponent of (�1) to (�127)
DD = two digits of the mantissa, two per byte

First byte of
mantissa

Chapter 2: TI-83 Plus Specific Information 23

TI-83 Plus Developer Guide Third Release May 28, 2002

A floating-point number has a left-justified mantissa (the most significant digit is always
the first digit). If the MSD is 0, the TI-83 Plus system assumes it is floating-point 0. A
floating-point number has a 14-digit mantissa and an exponent range of -128 to 127.
For example:

T EXP Mantissa

80 82 23 45 00 00 00 00 00 = -234.5

Real Data Type Structure

This data type structure is simply a floating-point number with bits 0 – 4 of its sign
byte = 0. For example:

80 82 23 45 00 00 00 00 00 = -234.5

Complex Data Type Structure

Complex numbers stored in a variable are two consecutive floating-point numbers, with
the first value being the real part and the second value being the imaginary part. Each
part of the complex number has bits 0 – 4 of its sign byte = 0Ch, the complex object
value. For example:

8C 82 23 45 00 00 00 00 00

0C 7F 25 00 00 00 00 00 00 = -234.5 + 0.25i

Note: When complex numbers are handled in the OP1 to OP6 areas, the real and imaginary parts are
not in consecutive RAM locations. They are, however, in consecutive OP registers.

Real List Data Type Structure

This data type consists of a two-byte size field with the number of elements in the list,
followed by a real number for each element in the list. The maximum number of
elements is 999. For example, a Real List with two elements, -234.5 and 230 would look
like:

size | element number 1 | element number 2
02 00 80 82 23 45 00 00 00 00 00 00 82 23 00 00 00 00 00 00

The size bytes are stored with the least significant byte first.

24 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Complex List Data Type Structure

This data type consists of a two byte-size field with the number of elements in the list,
followed by a complex number for each element in the list. The maximum number of
elements is 999. For example, a complex list with two elements (1,2) and (4,5):

size | element number 1 — real part | element number 1 — imaginary part
02 00 0C 80 10 00 00 00 00 00 00 0C 80 20 00 00 00 00 00 00

 | element number 2 — real part | element number 2 — imaginary part
 0C 80 40 00 00 00 00 00 00 0C 80 50 00 00 00 00 00 00

Matrix Data Type Structure

This data type consists of a two byte-size field with the number of columns and rows in
the matrix, followed by a real number for each matrix element.

Matrices are stored in row major order, that is, each element of a given row is stored in
contiguous RAM. For example, given the following structure:

size bytes row 1
 .
 .
 .
 row 2
 .
 .
 .
 row 3
 .
 .
 .

matrix
size | element
03 02 00 80 10 00 00 00 00 00 00 element (1,1)
 00 80 20 00 00 00 00 00 00 element (1,2)
 00 80 30 00 00 00 00 00 00 element (1,3)
 00 80 40 00 00 00 00 00 00 element (2,1)
 00 80 50 00 00 00 00 00 00 element (2,2)
 00 80 60 00 00 00 00 00 00 element (2,3)

A row or column dimension cannot be 0, and it cannot be greater than 99. If an
application creates a matrix with either of these illegal dimensions, the TI-83 Plus
system may lock up.

Chapter 2: TI-83 Plus Specific Information 25

TI-83 Plus Developer Guide Third Release May 28, 2002

Token Based Data Types

This class of data types is made up of a size field and tokens that represent TI-83 Plus
functions, commands, programming instructions, variable names — essentially anything
that can be entered into an TI-83 Plus BASIC program.

TI-83 Plus Tokens

A token can be comprised of one or two bytes which represents system functions,
commands, and variables. Instead of having to store the entire spelling of a function
inside a program, the function can be stored as a token that uses only one or two bytes.
For most applications, the tokens are only necessary when using variables. This will be
explained in the section on Variable Naming.

A list of tokens and their values can be found in the include file, TI83plus.inc.

Program, Protected Program, Equation, New Equation, and
String Data Type Structures

All of these data types have the same storage structure — a two-byte size field, the
number of bytes for token storage (not the number of tokens), followed by the tokens
themselves. For example, if graph equation Y1 = LCM(X,5), it would be stored as:

 Two-byte
 token

Size byte LCM (X , 5)
07 00 BB 08 10 58 2B 35 11

Note: New Equation type should be treated like any other equation.

Screen Image Data Type Structure

There is only one data type for this class of data structures — the Pict data type.

This variable’s data is a bit image of a graphic screen minus the bottom row of pixels. It
is made up of a two-byte size field, which is always equal to 756d (2F4h) and followed
by the 756 bytes. The first byte represents the first eight pixels of the display’s top pixel
row. Each successive byte represents the next eight pixels. When the end of a row is
reached, the next byte is the first eight pixels of the following row.

Example:

size | First 12 bytes is the top row of pixels
F4 02 12 34 56 78 09 23 45 98 A3 CB DE 12
 70 65 34 98 56 77 09 06 80 C5 4D 00 Second row of pixels

.

.

.

26 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Graph Database Data Type Structure

There is only one data type for this class of data structures — the GDB data type.

The variable data is a collection of graph equations, window variables, and mode flags
that have been saved.

Unformatted AppVar Data Type Structure

This data type was created solely for use by applications. It allows you to save and
restore a state after an application is exited and then re-entered by users.

Since you can put almost anything into an AppVar, the system does not know the format
of these variables. The system only shows the amount of memory taken by AppVars. It
also allows them to be deleted and to be sent/received through the link port.

The system code does not modify or destroy this memory between one execution of an
app and the next.

Users cannot access the contents of an AppVar, but they can delete, archive, and send
the contents over the link port to another TI-83 Plus, TI Connect™ or the TI-83 Plus
GRAPH LINK.

Guidelines for AppVar Usage

• To avoid conflicts with other application’s AppVars, use unique names that tie an
AppVar to the application.

• To verify that an application is using an AppVar that is intended for that application,
an expected value for the first four bytes of the AppVar should be written when it is
created and checked before it is used.

For example, my application uses AppVars to save some information about different
users who have run the application at sometime. When the application is started it
will search for all of the AppVars that represent users of the application, and ask the
user to choose their AppVar from a list. The application will know which AppVars to
display by looking at the first four bytes of the AppVar for a certain set of values. The
AppVars that contain the correct first four bytes are assumed to contain user
information.

• Applications must make sure that an AppVar that it uses is Unarchived before
attempting to modify it. See Archiving/Unarchiving.

Variable Naming Conventions
The OP registers are used to input variable names for many system routines. They are
used here to illustrate variable naming conventions.

Every variable name is a nine-byte entry that is moved in and out of system routines. All
of the utility routines that move floating-point numbers in RAM can be used to move
variable names.

Chapter 2: TI-83 Plus Specific Information 27

TI-83 Plus Developer Guide Third Release May 28, 2002

The general format of variable names is illustrated here using OP1.

OP1 +1 +2 +3 +4 +5 +6 +7 +8

T Variable Name

Table 2.10: Variable Name Format

T = object type where:

Bit Flag

0 – 4 Object Type

5 Future use

6 Future use

7 Future use

* See also: Symbol Table Structure

Every variable name has associated with it an object (data) type, which is
always stored in the first byte of the variable name format.

Object Type Value Object Type Object Type Equate
00h Real RealObj
01h List ListObj
02h Matrix MatObj
03h Equation EquObj
04h String StrngObj
05h Program ProgObj
06h Protected Program ProtProgObj
07h Picture PictObj
08h Graph Database GDBObj
0Bh New EQU Obj NewEquObj
0Ch Complex Obj CplxObj
0Dh Complex List Obj CListObj
14h Application Obj AppObj
15h AppVar Obj AppVarObj

17h Group Obj GroupObj

Note: To check the type of a variable name in OP1, use the system routine CkOP1Real, which
places the type value from OP1 into the accumulator.

B_CALL CkOP1Real ; type of OP1 to ACC
CP CListObj ; see if complex list

28 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Variable Name Spellings

There are two classes of variable names for the TI-83 Plus — predefined and user
defined. All variables are comprised of TI-83 Plus tokens, which are part of the include
file, TI83plus.inc.

Predefined Variable Names

These variable’s names are fixed by the TI-83 Plus and can only have a predetermined
data type.

Variables: A – Z and θθθθ

These variables can only be of type RealObj or CplxObj.

They are all spelled with one token, tA to tTheta, followed by two zeros.

Example: Real Variable A

OP1 +1 +2 +3 +4 +5 +6 +7 +8

RealObj
 00h

tA
41h

00 00 ? ? ? ? ?

Example: Complex Variable θθθθ

OP1 +1 +2 +3 +4 +5 +6 +7 +8

CplxObj
 0Ch

tTheta
 5Bh

00 00 ? ? ? ? ?

List Variables: L1 – L6

These variables can be either ListObj or CListObj.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarLst, which labels it as a list variable name. The
second token signifies which predefined list name it is, tL1 – tL6.

Example: Complex List Variable L3

OP1 +1 +2 +3 +4 +5 +6 +7 +8

CListObj
 0Dh

tVarLst
 5Dh

tL3
02h

00 ? ? ? ? ?

Note: Lists can also be user-defined, see section entitled User-Defined Variable Names in this chapter.

Matrix Variables: [A] – [J]

These variables can only be type MatObj.

Chapter 2: TI-83 Plus Specific Information 29

TI-83 Plus Developer Guide Third Release May 28, 2002

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarMat, which labels it as a matrix variable name. The
second token signifies which predefined matrix name it is, [A] – [J].

Example: Matrix Variable [J]

OP1 +1 +2 +3 +4 +5 +6 +7 +8

MatObj
 02h

tVarMat
 5Ch

tMatJ
 09h

00 ? ? ? ? ?

Equation Variables: Y1 – Y0, X1t – X6t, Y1t – X1t, r1 – r6, u(n), v(n), w(n)

These variables can be type EquObj or NewEquObj.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarEqu, which labels it as an equation variable name.
The second token signifies which predefined equation name it is:

tY1 – tY0 for Y1 – Y0
tX1T – tX6T for X1t – X6t
tY1T – tY6T for Y1t – Y6t
tR1 – tR6 for r1 – r6
tun for u(n)
tvn for v(n)
twn for W(n)

Example: Function Equation Variable Y6

OP1 +1 +2 +3 +4 +5 +6 +7 +8

EquObj
 03h

tVarEqu
 5Eh

tY6
 05h

00 ? ? ? ? ?

Example: Parametric Equation Variable Y6t

OP1 +1 +2 +3 +4 +5 +6 +7 +8

EquObj
 03h

tVarEqu
 5Eh

tY6T
 2Bh

00 ? ? ? ? ?

Example: Polar Equation Variable r1

OP1 +1 +2 +3 +4 +5 +6 +7 +8

EquObj
 03h

tVarEqu
 5Eh

tR1
40h

00 ? ? ? ? ?

30 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Example: Sequence Equation Variable w(n)

OP1 +1 +2 +3 +4 +5 +6 +7 +8

EquObj
 03h

tVarEqu
 5Eh

twn
82h

00 ? ? ? ? ?

String Variables: Str1 – Str0

These variables can only be type StrngObj.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarStrng, which labels it as a string variable name. The
second token signifies which predefined string name it is, tStr1 – tStr0.

Example: String Variable Str5

OP1 +1 +2 +3 +4 +5 +6 +7 +8

StrngObj
 04h

tVarStrng
 AAh

tStr5
 04h

00 ? ? ? ? ?

Picture Variables: Pic1 – Pic0

These variables can only be type PictObj.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarPict, which labels it as a picture variable name. The
second token signifies which predefined picture name it is, tPic1 – tPic0.

Example: Picture Variable Pic0

OP1 +1 +2 +3 +4 +5 +6 +7 +8

PictObj
 07h

tVarPict
 60h

tPic0
 09h

00 ? ? ? ? ?

Chapter 2: TI-83 Plus Specific Information 31

TI-83 Plus Developer Guide Third Release May 28, 2002

Graph Database Variables: GDB1 – GDB0

These variables can only be type GDBObj.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarGDB, which labels it as a graph database variable
name. The second token signifies which predefined graph database name it is,
tGDB1 – tGDB0.

Example: Graph Database Variable GDB0

OP1 +1 +2 +3 +4 +5 +6 +7 +8

GDBObj
 08h

tVarGDB
 60h

tGDB0
 09h

00 ? ? ? ? ?

Variable: Ans

This is a special variable that can be a string or any numeric data type. This variable
should not be used for long-term storage since the system updates it automatically.

It is spelled with one token, tAns followed by two zeros.

Example: Matrix Variable Ans

OP1 +1 +2 +3 +4 +5 +6 +7 +8

MatObj
 02h

tAns
 72h

00 00 ? ? ? ? ?

User-Defined Variable Names

The TI-83 Plus allows open naming for some data types. Listed below are the naming
rules that these variables have in common. The restriction on the length of the name
varies by data type and is detailed for each data type.

• All variable names must start with a token in the range
tA – tTheta (A – Z or θ).

• All subsequent tokens can be a token in the range of
tA – tTheta (A – Z or θ) or t0 – t9 (0 – 9).

• Do not use lowercase or international character tokens.

32 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

User-Named Lists

These variables can be either ListObj or CListObj.

They are all spelled with the token tVarLst followed by up to a five-token name for the
list. List names are zero (0) terminated.

Example: Real List Variable LST1

OP1 +1 +2 +3 +4 +5 +6 +7 +8

ListObj
 01h

tVarLst
 5Dh

 tL
4Ch

 tS
53h

 tT
54h

t1
31h

00 ? ?

Example: Complex List Variable LIST1

OP1 +1 +2 +3 +4 +5 +6 +7 +8

CListObj
 0Dh

tVarLst
 5Dh

 tL
4Ch

 tI
49h

 tS
53h

 tT
54h

t1
31h

00 ?

Note: There are lists with predefined names also. See the section entitled Predefined Variable Names.

User-Named Programs

These variables can be either ProgObj or ProtProgObj.

Unlike other variable names detailed so far, these do not have a leading token to signify
that they are a program name.

The sign byte of a program name must be set to one of the program types.

Program names can be up to eight tokens in length. If less than eight tokens, the name
must be zero (0) terminated.

Example: Program Variable ABC

OP1 +1 +2 +3 +4 +5 +6 +7 +8

ProgObj
 05h

 tA
41h

 tB
42h

 TC
43h

00 ? ? ? ?

Chapter 2: TI-83 Plus Specific Information 33

TI-83 Plus Developer Guide Third Release May 28, 2002

User-Named AppVars

These variables must be type AppVarObj.

Like program names, these variables do not have leading tokens to signify that they are
AppVar names.

The sign byte of AppVar names must be set correctly.

AppVar names can be up to eight tokens in length. If less than eight tokens, the name
must be zero (0) terminated.

Example: AppVar Variable AppVar1

OP1 +1 +2 +3 +4 +5 +6 +7 +8

AppVarObj
 15h

 tA
41h

 tP
50h

 tP
50h

 tV
56h

 tA
41h

 tR
52h

 t1
31h

00

Accessing User Variables Stored In RAM — (Unarchived)
There are two ways to access variables.

• Use system routines that return pointers to them.

• Use system routines that recall the contents of variables.

This section addresses using system routines that return pointers.

Every variable that exists in the user data area has an entry in the variable Symbol
Table structure. To access the data for a particular variable, the Symbol Table is
searched for the variable’s entry.

Applications can use system routines to search the Symbol Table.

There are two main search routines that are used to find variables in the Symbol Table.
The routine you use depends on the type of variable being looked up. Program and
AppVar variables have separate search routines from all other data types.

Accessing Variables that Are Not Programs or AppVars
All of these variables have a type designator (e.g., tVarLst) as the first token in their
variable name. See the naming conventions section above.

The routine to search the Symbol Table for these variables is FindSym.

• Input: OP1 = name of variable to search for

The sign byte need not have the correct data type of the variable; the search is done
on the name alone.

For example, if an application looks up variable A, the data type cannot be known
before searching because A can be a real or a complex data type.

The same applies to lists, which can be either real or complex.

34 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

• Output: See Output from a variable search on the Symbol Table section below.

Accessing Programs and AppVar Variables
This type of variable does not have as part of its name a token that signifies its data
type.

The routine to search the Symbol Table for these variables is ChkFindSym.

• Input: OP1 = name of variable to search for

For this routine, the input name must have the data type in the sign byte set
correctly.

If the search is for a program variable having the data type in OP1 set to ProgObj,
the search also finds variables of the ProtProgObj data type.

For example, if an application wants to look up program ABC but does not know
whether it is a normal program, ProgObj, or a protected program, ProtProgObj,
using OP1 as indicated below finds program ABC if it exists and is set to either
program data type.

OP1 +1 +2 +3 +4 +5 +6 +7 +8
ProgObj
 05h

 tA
41h

 tB
42h

 tC
43h

00 ? ? ? ?

• Output: Output from a variable search on the Symbol Table section below.

Output from a Variable Search on the Symbol Table

The output is the same for both search routines above.

• Does the variable exist?
 The carry flag is set if the variable is not found.

 The carry flag is reset if the variable is found.

Example:
B_CALL FindSym ; look up variable in OP1
JR C,NotFound ; jump if it is not created

• What data type is the variable?
 When searching for some variables, the type is not always known.

 ACC (accumulator) = data type of the variable

OP1 object type is also set to the variable data type.

Note: Only the lower five bits of both the ACC and OP1 are set. The remaining bits are random and
must be masked off to get the correct data type when checking.

Chapter 2: TI-83 Plus Specific Information 35

TI-83 Plus Developer Guide Third Release May 28, 2002

Example: Search for list L1 to determine if it is a real or complex list.
LD HL,L1name
B_CALL Mov9ToOP1 ; OP1 = list L1 name

;
B_CALL FindSym ; look up list variable in OP1
JR C,NotFound ; jump if it is not created

;
AND 1Fh ; remove none data type bits
CP CListObj
JR Z,ComplexList ; jump if the list was complex

.

.

.
L1name:

DB ListObj, tVarLst, tL1, 0

• Is the variable’s data in RAM or archived in Flash ROM?
 This is important information since variables that are archived need to be unarchived

for use by nearly all system routines and also for easier direct access by
applications.

– B register = 0 if the variable resides in RAM.

DE register = address in RAM of the first byte of the variable data structure.

The address returned is valid as long as no memory is created or deleted by
archiving, unarchiving, creating, or deleting variables. If any of these actions are
taken, it is necessary to relook up the variable and get the new address of the
data structure.

– B register does not = 0 if the variable resides in archive.

Note: An archived variable may need to be unarchived to be used in certain system routines.

 Example: Look up program ABC. If it is archived, then unarchive it.
LD HL,ProgABC
B_CALL Mov9ToOP1 ; OP1 = program ABC name

;
B_CALL ChkFindSym ; look up program
JR C,NotFound ; jump if it is not created

;
LD A,B ; ACC = archived/unarchived info
OR A ; is it archived?
JR Z,NotArchived ; jump if not

;
B_CALL Arc_Unarc ; unarchive the var

NotArchived:

ProgABC:
DB ProgObj, ‘ABC’, 0

36 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Example: Search for list L1 and set DE = to the number of elements in the list.
Assume it is not archived.

LD HL,L1Name
B_CALL Mov9ToOP1 ; OP1 = list L1 name

;
B_CALL FindSym ; look up list variable in OP1
JR C,NotFound ; jump if it is not created

;
EX DE,HL ; HL = pointer to data structure
LD E,(HL) ; get the LSB of the number elements
INC HL ; move to MSB
LD D,(HL) ; DE = number elements in L1

.

.

.
L1Name:

DB ListObj, tVarLst, tL1, 0

• A pointer to the variable’s Symbol Table entry.
The HL register = address of the variable’s Symbol Table entry.

This is returned for both archived and unarchived variables. The Symbol Table
entries for all variables reside in RAM.

Creating Variables
There are two ways that variables can be created.

• Use system routines that create them directly.

• Use system routines that store a value to a variable, creating that variable if it does
not already exist.

This section addresses the first method, and the following section deals with the second
method.

• Variables can only be created in RAM. Once created, they can be archived to the
Flash ROM.

• A variable that already exists, even if archived, should not be recreated without first
deleting the current one. See Deleting Variables section below.

Routines that create variables do not check to see if a variable currently exists
before creating it. An application must check by searching the Symbol Table for the
variable. See routines FindSym and ChkFindSym. If this is not done, multiple
versions of the same variable exist leading to unpredictable side effects.

• The graphing equations always exist, and therefore must be deleted before
recreating them. Always create the equation immediately after deleting it to avoid
system crashes.

• Do not create variables with sizes outside of their specified limits. For example, do
not create a list with 1000 elements. The system does not check for these types of
errors when creating a variable.

Chapter 2: TI-83 Plus Specific Information 37

TI-83 Plus Developer Guide Third Release May 28, 2002

Some system routines will fail and may cause a lock-up condition if bad data is input
to them.

For more information see the Variable Data Structure section earlier in this chapter.

• If there is not enough free memory available to create a variable, a system memory
error is generated, and the system’s error context will take over execution.

This can be avoided in two ways.

– Use the routine MemChk to see if there is enough free memory available before
attempting to create the variable.

– Use an error exception handler to trap the memory error (if one is generated).

To use option one, the size of the Symbol Table entry and the data structure must
be computed by the application. Therefore, the easiest is option two.

See the Error Handlers section.

• When a variable is created, its data structure is not initialized. Only the two-byte
size field, if one is part of the structure, is initialized to the size the variable was
created at. For example, after creating a complex variable, the entire 18 bytes of the
data structure contain random values.

After creating a list with 23 elements, the first two bytes of the data structure are set
to the number of elements, 17h 00h, the number of elements in hex, with the LSB
followed by the MSB.

If created data structures are not initialized by applications before returning to
normal system operation, the potential for a lock-up condition is very high.

• Routines for creating variables:

Create0Equ CreateEqu CreatePair CreateStrng
CreateRList CreateCList CreateRMat
CreateReal CreateCplx CreatePict
CreateAppVar CreateProg CreateProtProg

– Inputs:

OP1 = variable name to create.
HL = Number of bytes, number of elements or a dimension for some.
See the System Routine Documentation for exact inputs for each routine.

– Outputs:

Possible memory error, see above.
OP4 = variable name created with its sign byte set to the correct data type
OP1 = random
DE = pointer to data structure
HL = pointer to Symbol Table entry

38 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

For example, create a real list CAT with one element and initialize that element
to a value of five. Return CA = 0 if the variable is created, else CA = 1 if there is
not enough memory.

Create_CAT:

LD HL,CatName
B_CALL Mov9ToOP1 ; OP1 = name

;
AppOnErr NoMem ; install error handler

;
LD HL,1 ; 1 element list
B_CALL CreateRList ; ret from call if no mem error
INC DE
INC DE ; DE = pointer to start of element 1
LD HL,FP_5
LD BC,9
LDIR ; set first element = 5

;
AppOffErr ; remove error handler

;
OR A ; CA = 0 if successful
RET

CatName:
DB ListObj, tVarLst, ‘CAT’, 0

FP_5:
DB 00h,80h,50h,00h,00,00,00,00,00

;
; control comes here if memory error during create
;
NoMem:

SCF ; CA = 1 if not successful
RET

Storing to Variables
There are system routines that can be used to store to the entire contents of a variable’s
data structure.

These routines store a real or complex variable to N, X, Y, R, T, θ.

StoN StoX StoY

StoR StoT StoTheta

StoAns stores any numeric, equation or string to Ans.

StoOther stores to any numeric, equation or string variable.

Attributes of these routines include:

• If the variable that is being stored to does not exist, it is created if enough free RAM
is available.

• The current contents of the variable are not deleted if the new data being stored to
the variable does not fit in memory.

Chapter 2: TI-83 Plus Specific Information 39

TI-83 Plus Developer Guide Third Release May 28, 2002

• Error checking is done to make sure that the data type being stored to the variable is
valid for that variable.

• If the variable being stored to is archived, a system error is generated.

• Since system errors can be generated by these routines, an error handler should be
placed around calls to them. See the Error Handlers section.

The details on inputs and outputs for these routines can be found in the System Routine
Documentation.

Note: The following example uses the routine PushRealO1. See the Floating Point Stack section for
details.

Example: Store a value of 1.5 to variable Z

return CA = 0 if successful
 CA = 1 if failed to store
Sto_Z:

B_CALL OP1Set1 ; OP1 = 1
LD A,15h
LD (OP1+2),A ; OP1 = 1.5

;
B_CALL PushRealO1 ; 1.5 -> FPST
B_CALL ZeroOP1 ; OP1 = 00000000000
LD A,’Z’
LD (OP1+1),A ; OP1 = Z VAR NAME

;
AppOnErr Fail ; install error handler

;
B_CALL StoOther ; attempt to store, RET if no error

;
AppOffErr ; remove error handler
OR A ; CA = 0 for store is good
RET

Fail:
SCF ; CA = 1 for no store
RET

Recalling Variables
There are system routines that can be used to recall the contents of real and complex
variables to OP1/OP2.

RclVarSym RclY RclN RclX RclAns

Attributes of these routines include:

• If the variable does not exist or if it is archived, a system error is generated.

• If the variable is real, OP1 = the value.

• If the variable is complex, OP1 = real part; OP2 = imaginary part.

Note: Since system errors can be generated by these routines, an error handler should be placed
around calls to them.

40 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

The details on inputs and outputs for these routines can be found in the System Routine
Documentation.

Example: Recall the contents of variable C, assume it is created and not archived, and
check if it is real.

B_CALL ZeroOP1 ; OP1 = 00000000000
LD A,’C’
LD (OP1+1),A ; OP1 = C var name

;
B_CALL RclVarSym ; OP1/OP2 = value
B_CALL CkOP1Real ; ACC = type, Z = 1 if real

Deleting Variables
• Any variable that has an entry in the Symbol Table can be deleted, even if the data

is archived.

• Preallocated system variables located in system RAM, such as Xmin, cannot be
deleted.

• There are some system variables that also reside in user RAM. They are created in
the same way as user variables and have Symbol Table entries. All of these system
variables are spelled with an illegal first character so that they are excluded from any
menus that show the current variables that exist.

Some of these variables include # and ! which are two program variables used for
home screen entry and the first level of last entry. None of these variables should be
deleted.

• The graph equations should not be deleted without immediately recreating them.
The TI-83 Plus system will crash if these equations are not created.

If an application wants to free the RAM used by a graph equation, it can delete the
equation and immediately recreate the equation with a size of 0 bytes. See the
Create0Equ routine for further information.

• When a variable is deleted, its Symbol Table entry and its data structure are
removed from RAM. If the data was archived, only the Symbol Table entry is
removed from RAM and the archive space made available. Deleting an archived
variable will not free much RAM space for other uses.

There are no holes left in RAM when a variable is deleted. Both the user memory
and Symbol Table are immediately compressed, and all of the freed RAM now
becomes part of the free RAM area.

• There are three routines for deleting variables — DelVar, DelVarArc, and
DelVarNoArc. The difference between them is how an archived variable is handled.

Common inputs:

HL = pointer to the variable’s Symbol Table entry

DE = pointer to the variable’s data structure

Chapter 2: TI-83 Plus Specific Information 41

TI-83 Plus Developer Guide Third Release May 28, 2002

Note: These inputs are output from a successful Symbol Table search, such as FindSym.

DelVar Error if the variable is archived. This routine checks the contents of
the b register to be non-zero. If the contents is non-zero, it
assumes the variable is archived and generates a system error.
Otherwise, delete it from RAM. The b register is set by any of the
Symbol Table search routines to reflect whether or not a variable is
archived.

DelVarArc Delete the variable if archived or unarchived. This routine checks
the contents of the b register to be non-zero. If the content is non-
zero, then it assumes the variable is archived and deletes it from
the archive. Otherwise, it deletes it from RAM. The b register is set
by any of the Symbol Table search routines to reflect whether or
not a variable is archived.

DelVarNoArc Assumes the variable is not archived and deletes it from RAM.
This routine does not check the contents of the b register and
assumes the pointers input are RAM pointers, not pointers into the
archive space. Only use this routine if you are absolutely sure that
the variable resides in RAM.

Note: OP1 through OP6 are kept intact.

For example, if matrix [A] exists and is not archived, delete it and recreate it with a
dimension of five rows and three columns.

return CA = 0 if successful, or
 CA = 1 if it was archived or there was not enough free RAM to create it.

42 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Create_MatA:
LD HL,MatAname
B_CALL Mov9ToOP1 ; OP1 = name
B_CALL FindSym ; look up
JR C,CreateIt ; jump if it does not exist

;
LD A,B
OR A ; archived?
JR NZ,Failed ; jump if it is archived

;
B_CALL DelVarNoArc ; delete it, it is not archived

CreateIt:
AppOnErr Failed ; install error handler

;
LD HL,5*256+3 ; dim wanted 5x3
B_CALL CreateRMat ; ret from call if no mem error

;
AppOffErr ; remove error handler

;
OR A ; CA = 0 if successful
RET

MatAName:
DB MatObj, tVarMat, tMatA, 0

;
; control comes here if memory error during create
;
Failed:

SCF ; CA = 1 if not successful
RET

Archiving and Unarchiving
Applications can use the Flash archive area in the same way as users do during normal
system operation. Variables can be archived - moved from RAM to the archive area.
They can also be unarchived - removed from the archive area and placed into RAM.
More information on the uses of archiving can be found in the TI-83 Plus Graphing
Calculator Guidebook.

Note: Most system routines are not designed to work with variables stored in the Archive area, and
many do not check for this condition. Be sure to check where variables are located, RAM or
Archive, before using them as inputs to system routines.

• What can be archived?

All user variables can be archived, except the following (listed by type):

RealObj / CplxObj: X, Y, T, θ
ListObj / CListObj: RESID, IDList
EquObj, NewEquObj: Any

• What cannot be unarchived?

The following can not be unarchived:

GroupObj

Chapter 2: TI-83 Plus Specific Information 43

TI-83 Plus Developer Guide Third Release May 28, 2002

AppObj

• Entry Point

Arc_Unarc If the variable in OP1 is archived, unarchive it, otherwise archive it.
See the System Routine Documentation for further information.

System errors can be generated. See the Error Handlers section for further
information.

A battery check should be done before attempting to archive a variable. There is a
risk of corrupting the archive if the attempt fails due to low batteries. Applications
should display a message informing users to replace the batteries if low batteries are
detected.

As an Archive example, archive the variable whose name is in OP1.
B_CALL Chk_Batt_Low ; check battery level
RET Z ; ret if low batteries

;
B_CALL ChkFindSym
RET C ; return if variable does not exist
LD A,B ; get archived status
OR A ; if non zero then it is archived

; already
RET NZ ; ret if archived
AppOnErr errorHand ; install error handler

;
B_CALL Arc_Unarc ; archives the variable

;
AppOffErr ; remove error handler

errorHand:
RET

Related Routines

ChkFindSym Searches the Symbol Table for a variable.

MemChk Returns the amount of free RAM available.

See the System Routine Documentation for further information.

44 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Accessing Archived Variables without Unarchiving

Variable data residing in the archive can be accessed without unarchiving the data to
RAM. This is a read-only operation, an application cannot write data directly to the
archive.

• Locating archived variables

Archived variables will have an entry in the Symbol Table that contains information
on where the data resides in the archive.

The Symbol Table search routines used to locate variables in RAM, FindSym and
ChkFindSym, are also used to locate variables in the archive. See the Accessing
User Variables Stored in RAM section for a detailed explanation of these routines.

If a variable is archived, the output from the Symbol Table search routine will return
two key pieces of information.

B register = ROM page of the start of the archived data.
DE register = the offset on the ROM page to the start of the archived data.

• How is variable data stored in the archive?

The actual data for a variable has the same structure as when it resides in RAM.
See Variable Data Structures section for further information.

In addition to the variable’s data structure, a copy of the variable’s Symbol Table
entry is also stored in the archive. Fig. 2.11 below shows the format used for each
variable stored in the archive.

Data
valid

Size of symbol
entry + Data

Size varies by the name
size and data type

Size computed the same
as variables in RAM

Flag LSB MSB Symbol Table Entry Variable Data Structure

Increasing addresses -------->

Table 2.11: Format of Archive Stored Variables

Archived data for a single variable can cross ROM page boundaries. System
routines to read from the archive are provided to make this cross boundary situation
transparent to applications.

• Reading bytes from the archive

There are two methods provided for reading data from the archive — direct and
cached.

– Direct

This method involves an application reading either one or two bytes at a time
from the archive — supplying both the ROM page and offset to the data to be
read.

Inputs: B register = ROM page of byte(s) to copy

Chapter 2: TI-83 Plus Specific Information 45

TI-83 Plus Developer Guide Third Release May 28, 2002

 HL register = offset on the ROM page to the byte(s) to copy

Routines:

� LoadCIndPaged Copies a byte from the archive to C
 C = byte from archive
 B, HL = intact

� LoadDEIndPaged Copies two bytes from the archive to DE
 E = first byte read
 D = second byte read
 B, HL = location of the second byte, crossing a ROM

page boundary is handled

� Recommended support routines that an application should include as part of
the application.
LoadCIndPaged_inc:

B_CALL LoadCIndPaged ; read byte from archive
;
; fall thru and INC pointer past byte read
;
inc_BHL:

INC HL ; increment offset in page
BIT 7,h ; cross page boundary?
RET Z ; no, B, HL = ROM page and

; offset
;

INC B ; increase ROM page number
RES 7,H

set 6,H ; adjust offset to be in
; 4000h to 7FFFh

RET
;
LoadDEIndPaged_inc:

B_CALL LoadDEIndPaged ; read 2 bytes from
; archive

JR inc_BHL ; move pointer to byte
; after 2 read

– Cached

This method provides management of the ROM page and offset of data in the
archive while reading multiple bytes. These values are stored in predefined
system RAM locations. A 16 byte RAM cache is used to queue up consecutive
data from the archive. There are two routines used.

� SetupPagedPtr Sets the initial value of the system RAM used to track
the current read location and the current amount of data
in the cache. This must be called before any data is
actually read.

Inputs: B register = ROM page of first byte to copy.
 HL register = offset on the ROM page to the first byte(s) to copy.

46 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

� PagedGet This routine has two functions. First is to fill the 16 byte cache
with mode data from the archive, whenever it has been
completely read. Second, is to return the next byte from the
cache to the caller. The first byte returned is at the location
input to SetupPagedPtr, followed by each consecutive byte
that follows.

Inputs: Initial inputs are set by SetupPagedPtr, and are updated after
each subsequent call to PagedGet.

Outputs: ACC = byte read.
 Cache pointers updated.
 Cache reloaded with next 16 bytes of archive if exhausted.

Note: Both of these methods, direct and cached, will force an application to read data
from the archive sequentially. This can be very inefficient if the eightieth byte of an
archived equation needed to be read. An application would have to read through the
first 79 bytes one at a time.

 In Ram, the solution would be to add 80 to the address of the start of the equation
and then do one read. In the archive, it is not as simple. An application has to be
wary of ROM page boundaries and offsets into a ROM page.

Applications can use the following code to add a two byte value to a ROM page
and offset archive address, so that page boundary crossing is adjusted for. This
routine will work for adding values up to 4000h (16K) maximum.
;
; Add DE to ROM page and offset: B, HL
;
BHL_Plus_DE:

ADD HL,DE ; add DE to the offset HL
BIT 7,H ; cross page boundary?
RET Z ; no, B, HL = ROM page and offset

;
INC B ; increase ROM page number
RES 7,H
SET 6,H ; adjust offset to be in 4000h

; to 7FFFh
RET

For example, look up archived AppVar MYAPPVAR, and read past its Symbol
Table entry in the archive to reach the data. Then read the two size bytes of the
AppVar.

Data
valid

Size of Symbol
entry + Data

Size varies by the name
size and data type

Size computed the same
as variables in RAM

Flag LSB MSB Symbol Table entry Variable Data Structure

Increasing addresses -------->

Table 2.12: Format of Archive Stored Variables

Chapter 2: TI-83 Plus Specific Information 47

TI-83 Plus Developer Guide Third Release May 28, 2002

LD HL,MyAppVar
RST rMov9ToOP1 ; OP1 = AppVar name
B_CALL ChkFindSym ; find Symbol Table entry,

; and get pointers
;
; B = ROM page and DE = offset, to start of data in the archive
;

EX DE,HL ; B, HL now points to the
; data of the variable

CALL LoadCIndPaged_inc ; skip data valid flag
CALL LoadDEIndPaged_inc ; skip data length, B, HL

; at symbol entry
;
; now the size of the Symbol Table entry needs to be computed so that
; it can be skipped over to get to the AppVar’s data structure
;

LD DE,5 ; DE = offset to name
; length of AppVar

CALL BHL_plus_DE ; add DE to B, HL:
; page, offset

;
CALL LoadCIndPaged_inc ; C = name length, B, HL

; advanced
LD E,C ; DE = offset to start of

; AppVars data
;

CALL BHL_plus_DE ; add DE to B, HL: page,
; offset

;
CALL LoadDEIndPaged_inc ; DE = size bytes of

; AppVar,
RET

MyAppVar:
.asciz AppVarObj, ‘MYAPPVAR’

BHL_Plus_DE:
ADD HL,DE ; add DE to the offset HL
BIT 7,H ; cross page boundary?
RET Z ; no, B, HL = ROM page and

; offset
;

INC B ; increase ROM page number
RES 7,H
SET 6,H ; adjust offset to be in

; 4000h to 7FFFh
RET

Manipulation Routines

List Element Routines

These routines are used for storing and recalling list element values and for changing
the dimension of a list.

AdrLEle Returns the RAM address of a list element.

48 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

GetLToOP1 Recalls an element of a list to OP1 if Real or OP1/OP2 if Cplx.

PutToL Stores OP1 if Real or OP1/OP2 if Cplx, to an element of a list.

IncLstSize Increments the size of an existing list by adding an element to the end
of the list.

InsertList Inserts one or more elements into an existing list.

DelListEl Deletes one or more elements from an existing list.

See the System Routine Documentation for details.

Matrix Element Routines

These routines are used for storing and recalling matrix element values and for
changing the dimension of a matrix.

AdrMEle Returns the RAM address of a matrix element.

GetMToOP1 Recalls an element of a matrix to OP1.

PutToMat Stores OP1 to an element of a matrix.

RedimMat Redimensions an existing matrix in RAM.

See the System Routine Documentation for details.

Chapter 2: TI-83 Plus Specific Information 49

TI-83 Plus Developer Guide Third Release May 28, 2002

Resizing AppVar, Program, and Equation Variables
These data types can be resized in place without having to make an additional copy of
the variable. Following are the two routines, with examples, used to increase the data
size and to decrease the data size.

• Increasing the data size.

InsertMem Increases the size of an existing variable by inserting space at a given
address.

For example, insert 10 bytes at the beginning of an existing AppVar. If there is not
enough free RAM, the AppVar does not exist, or if the AppVar is archived, CA = 1 is
returned.
Insert_10:

LD HL,10 ; number bytes to insert
B_CALL EnoughMem ; check for free RAM
RET C ; ret CA = 1 if not

;
LD HL,AppVarName
B_CALL Mov9ToOP1 ; OP1 = name of AppVar
B_CALL ChkFindSym ; DE = pointer to data if exists
RET C ; ret if not found
LD A,B ; archived status
ADD 0FFh ; if archived then CA = 1
RET C ; ret if archived

;
PUSH DE ; save pointer to size bytes of

; data
INC DE
INC DE ; move DE past size bytes

;
LD HL,10 ; number bytes to insert
B_CALL InsertMem ; insert the memory
POP HL ; HL = pointer to size bytes
PUSH HL ; save

;
B_CALL ldHLind ; HL = old size of AppVar,

; number bytes
LD BC,10
ADD HL,BC ; increase by 10, amount inserted
EX DE,HL ; DE = new size
POP HL ; pointer to size bytes location
LD (HL),E
INC HL
LD (HL),D ; write new size.
OR A ; CA = 0
RET

AppVarName:

DB AppVarObj,'AVAR',0

See the System Routine Documentation for details on InsertMem.

50 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

• Decreasing the data size

DelMem Decreases the size of an existing variable by removing data at a given
address.

For example, delete 10 bytes at the beginning of an existing AppVar. If the AppVar
does not exist or if it is archived, CA = 1 is returned.
Delete_10:

LD HL,AppVarName
B_CALL Mov9ToOP1 ; OP1 = name of AppVar
B_CALL ChkFindSym ; DE = pointer to data if exists
RET C ; ret if not found

;
LD A,B ; archived status
ADD 0FFh ; if archived then CA = 1
RET C ; ret if archived

;
PUSH DE ; save pointer to size bytes of

; data
INC DE
INC DE ; move DE past size bytes

;
LD HL,10 ; number bytes to insert
EX DE,HL ; HL = pointer to start of delete,

; DE = number bytes
B_CALL DelMem ; delete the memory
POP HL ; HL = pointer to size bytes
PUSH HL ; save

;
B_CALL ldHLind ; HL = old size of AppVar,

; number bytes
LD BC,10
OR A
SBC HL,BC ; decrease by 10, amount deleted
EX DE,HL ; DE = new size
POP HL ; pointer to size bytes location
LD (HL),E
INC HL
LD (HL),D ; write new size.
OR A ; CA = 0
RET

AppVarName:

DB AppVarObj,'AVAR',0

See the System Routine Documentation for details on DelMem.

Chapter 2: TI-83 Plus Specific Information 51

TI-83 Plus Developer Guide Third Release May 28, 2002

Symbol Table Structure
This structure contains an entry for each variable that is created. It contains information
about a variable’s type, name, and location in RAM or in the archive. The Symbol Table
begins in high memory at the end of the hardware stack and grows towards low memory
(backwards).

Symbol Table
(Grows Down)

User RAM
(Grows Up)

Temporary RAM
(Grows Up)

Floating Point Stack
(Grows Up)

Free RAM

Operator Stack
(Grows Down)

Hardware Stack
(Fixed Size)

Addr
8000h

FFFFh

Programs, Lists,
AppVars, Groups

Real, Complex, Matrix
Picture, Graph Database,
Equation

(Ptemp - 1)

(ProgPtr)

Symtable

System RAM
(Fixed Size)

Fig. 2.6: Symbol Table Structure

The Symbol Table is divided into two sections by data type.

The first byte of the Symbol Table for Real, Cplx, Mat, Pict, GDB, and EQU is at address
symTable and ends at address (progPtr-1).

The first byte of the Symbol Table for Prog’s, List AppVar and Group is at address
(progPtr) and ends at (pTemp-1).

symTable is a fixed address and never changes.

(progPtr) and (pTemp) are not fixed addresses.

For example, load the current start address of the Program/List/AppVar/Group Symbol
Table into register HL.

LD HL,(progPtr)

The Symbol Table is split by the structure of the entries.

Each entry is written from high memory to low memory (backwards).

52 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Program, AppVar, Group

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Variable Name
8 characters max

NL Page DAH DAL Ver T2 T

Table 2.13: Program, AppVar, Group

Lists

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

F Variable Name
5 characters max

tVarLst

5Dh

NL Page DAH DAL Ver T2 T

Table 2.14: Lists

Real, Cplx, Mat, EQU, GDB, Pict

-8 -7 -6 -5 -4 -3 -2 -1 0

00 Second token
of name

First token of
name

Page DAH DAL Ver T2 T

Table 2.15: Real, Cplx, Mat, EQU, GDB, Pict

Start of
Entry

Start of
Entry

Start of
Entry

Chapter 2: TI-83 Plus Specific Information 53

TI-83 Plus Developer Guide Third Release May 28, 2002

• T = object type where:

Bit Flag
0 – 4 Object Type

5 Graph equation selected

6 Variable used during graphing

7 Link transfer flag

Object Type Value Object Type Object Type Equate

00h Real RealObj

01h List ListObj

02h Matrix MatObj

03h Equation EquObj

04h String StrngObj

05h Program ProgObj

06h Protected Program ProtProgObj

07h Picture PictObj

08h Graph Database GDBObj

0Bh New EQU Obj NewEquObj

0Ch Complex Obj CplxObj

0Dh Complex List Obj CListObj

14h Application Obj AppObj

15h AppVar Obj AppVarObj

17h Group Obj GroupObj

• T2 = Reserved for future use.

• Ver = Version number.

– Each variable’s Symbol Table entry contains a byte field for its version.

– The version of a variable determines its scope of compatibility with future
upgrades of the TI-83 Plus.

– A future TI-83 Plus release may create a new data type that the earlier releases
do not know how to handle. This variable’s version number would be set higher
than the version number of the previous code released.

– If a new variable type is sent to an TI-83 Plus running an earlier version of
product code, the variable would not be accepted by the earlier product code
since the variable’s version number is higher than that of the product code.

• DAL = Data structure pointer’s low (LSB) byte.

54 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

• DAH = Data structure pointer’s high (MSB) byte.

• PAGE = ROM page the data structure resides on if archived, if it resides in RAM,
 unarchived, this byte is zero (0).

• NL = Name length of the variable.

Note: For lists include the byte tVarLst in the length.

• F = Formula number attached to a list.

– Lists can have a formula attached to them that is executed every time the list is
accessed. The result of the execution is stored into the lists data structure.

– If this value is 0, there is no formula.

– This value is used to generate a unique name for the formula attached to a
particular list variable.

– The Symbol Table entry for one of these formulas would be:

-8 -7 -6 -5 -4 -3 -2 -1 0

00 F # ?
3Fh

Page DAH DAL Ver T2 EquObj

Table 2.16: Formula Example

• Variable names — See Naming Conventions.

Chapter 2: TI-83 Plus Specific Information 55

TI-83 Plus Developer Guide Third Release May 28, 2002

Example: A routine that traverses both sections of the Symbol Table.
Traverse_symTable:

LD HL,symTable ; HL = pointer to first symbol entry
LD D,0
LD BC,(pTemp) ; BC = pointer to byte after the end

; of the Symbol Table
loop:

OR A
SBC HL,BC ; current - end, if CA then done with

; search
RET C ; return if no more syms to check
RET Z ; return if no more to check

;
ADD HL,BC ; restore current search pointer
LD A,(HL) ; get symbol entry type
AND 1Fh ; mask off variable type

;
LD E,6 ; DE = offset to NL or first byte of

; name
SBC HL,DE ; (HL) = NL or first byte of name

;
LD E,3 ; DE = offset to next entry if not a

; program/list/group/AppVar
CP AppVarObj ; current entry an AppVar
JR Z,movetonext ; yes, get NL to find next entry

;
CP ProgObj ; current entry a program
JR Z,movetonext ; yes, get NL to find next entry

;
CP ProtProgObj ; current entry a program
JR Z,movetonext ; yes, get NL to find next entry

;
CP TempProjObj ; current entry a program
JR Z,movetonext ; yes, get NL to find next entry

;
CP groupprogobj ; current entry a group var
JR Z,movetonext ; yes, get NL to find next entry

;
DEC HL ; (HL) = tVarLst if a list
LD A,(HL)
INC HL ; fix
CP tVarLst ; current entry a list
JR NZ,movetonext1 ; no

Movetonext:
LD E,(HL) ; DE = length of name
INC E ; DE = length of name + 1

;
; move HL to next symbol table entry sign digit
;
Movetonext1:

OR A
SBC HL,DE ; HL = next symbol table entry address
JR loop

56 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Floating Point Stack (FPS)
The Floating Point Stack (FPS) is a TI-83 Plus system RAM structure that begins at the
end of the variable data storage area and grows toward the Symbol Table storage area.

The stack grows and shrinks in size in multiples of nine bytes ONLY. This entry size is
the size of a floating-point number.

This does not mean that only floating-point numbers may be pushed onto the stack. The
content of the nine bytes, in most cases, can be random data. The only exception is
when system routines are used to manipulate the Floating Point Stack expecting data
type information to be stored in the entry to be placed on, removed from, copied to, or
copied from the FPS.

Many of the TI-83 Plus system routines will use the FPS for argument passing and
temporary storage during computations.

Fig. 2.7: TI-83 Plus System RAM

Chapter 2: TI-83 Plus Specific Information 57

TI-83 Plus Developer Guide Third Release May 28, 2002

Naming Convention
The following abbreviations are used when dealing with the Floating Point Stack.

FPS = Floating Point Stack

FPST = Floating Point Stack Top. This is the last nine bytes of the FPS.

FPS1 = Floating Point Stack minus 1 entry. This is the second to last nine bytes of the
FPS. Each previous nine bytes would continue this scheme FPS2,
FPS3 ... FPSn.

For example, assume the FPS is empty, (FPS) = (FPSBASE) and OP1 = floating-point
value 1, and OP2 = floating-point value 2.

B_CALL PushRealO1 ; pushed 9 bytes of OP1 -> FPST
;

B_CALL PushRealO2 ; OP2 -> FPST, FPST -> FPS1

RAM would look similar to this depending on fpBase value.

Address

(fpBase)-----> 9C00 80h 10h 00 00 00 00 00 00 00 (1.00000000) FPS1

 9C09 80h 20h 00 00 00 00 00 00 00 (2.00000000) FPST

(FPS)---------> 9C12

General Use Rules

The following are some general use rules when manipulating the FPS.

• The FPS can be used by applications at anytime.

• The only time that the FPS cannot be allocated or deallocated to is during a system
edit input session.

• Any allocations (pushes) to the FPS are the responsibility of the routine that made
the allocation. Some system routines will take arguments that have been put onto
the FPS and will remove them.

• Not cleaning the FPS properly could cause system lockups during application
execution or after the application is exited.

• If the system’s error context is invoked, (e.g., ERR:DOMAIN), the FPS will be reset.

• If an attempt is made to allocate space on the FPS with insufficient free RAM
available, a system error is generated.

These system errors can be avoided in the same manner as creating variables are, with
the use of an error handler invoked before the allocation is attempted. See the section
on Error Handlers later in Chapter 2.

58 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

FPS System Routines
The OP registers are used extensively by the system’s FPS routines for input and
output.

FPS Allocation Routines

These routines are separated by either the size of the allocation or by a Data Type of a
value, Real/Complex.

• Pushes nine bytes onto the FPS. For these routines, the word Real implies nine
bytes.

PushReal Pushes nine bytes pointed to by HL onto the FPS.

PushRealO1 Allocates nine bytes on FPS then OP1 is copied to FPST.

PushRealO2 Allocates nine bytes on FPS then OP2 is copied to FPST.

PushRealO3 Allocates nine bytes on FPS then OP3 is copied to FPST.

PushRealO4 Allocates nine bytes on FPS then OP4 is copied to FPST.

PushRealO5 Allocates nine bytes on FPS then OP5 is copied to FPST.

PushRealO6 Allocates nine bytes on FPS then OP6 is copied to FPST.

• Pushes a complex number from two consecutive OP registers onto the FPS.

For these routines, the REAL part of the complex number is in the OP register
specified and the IMAGINARY part is in the following OP register. Only nine bytes of
each of the registers are pushed onto the FPS.

PushMCplxO1 Pushes OP1 onto FPS then pushes OP2 onto FPS. FPS1 = OP1,
FPST = OP2.

PushMCplxO3 Pushes OP3 onto FPS then pushes OP4 onto FPS. FPS1 = OP3,
FPST = OP4.

• Checks the data type of a value in an OP register for either Real or Cplx, and
pushes the value onto the FPS.

These routines check the specified OP register’s data type byte, and if CplxObj, then
pushes a complex number from the OP registers in the same way as the
PushMCplx routines above. Otherwise, pushes nine bytes from the register
specified onto the FPS.

PushOP1 Pushes OP1 or OP1/OP2, checks OP1 = CplxObj.

PushOP3 Pushes OP3 or OP3/OP4, checks OP3 = CplxObj.

PushOP5 Pushes OP5 or OP5/OP6, checks OP5 = CplxObj.

Chapter 2: TI-83 Plus Specific Information 59

TI-83 Plus Developer Guide Third Release May 28, 2002

• Block allocates space on the FPS with no data transfer. This is done to preallocate
space needed on the FPS in one step. To set the values, the CopyToFPS routines
need to be used. They are described later in this section.

AllocFPS Allocates HL number of nine-byte entries.

AllocFPS1 Allocates HL number of bytes, which must be a multiple of nine.

FPS Deallocation Routines

• Pops nine bytes off of the FPS. For these routines, the word Real implies nine bytes.

PopReal Removes nine bytes off of the FPS and writes to RAM pointed to
by DE.

PopRealO1 Removes nine bytes from FPS then copies to OP1.

PopRealO2 Removes nine bytes from FPS then copies to OP2.

PopRealO3 Removes nine bytes from FPS then copies to OP3.

PopRealO4 Removes nine bytes from FPS then copies to OP4.

PopRealO5 Removes nine bytes from FPS then copies to OP5.

PopRealO6 Removes nine bytes from FPS then copies to OP6

• Pops a complex number, or two nine-byte entries, off of the FPS into two
consecutive OP registers.

For this routine, the first nine-bytes removed from the FPS are written to the OP
register following the one specified, and the preceding nine bytes are written to the
OP register.

PopMCplxO1 Removes nine bytes from FPS then copies to OP2 and removes
next nine bytes from FPS then copies to OP1.

• Checks the data type of a value in FPST for either Real or Cplx, and pops the value
into one or two OP registers.

These routines check FPST entry’s data type byte, and if CplxObj, then pops FPST
and FPS1 entries into the specified OP registers. Otherwise pops nine bytes FPST
into the specified OP register.

PopOP1 Removes nine or 18 bytes from the FPS placing them into OP1/OP2.

PopOP3 Removes nine or 18 bytes from the FPS placing them into OP3/OP4.

PopOP5 Removes nine or 18 bytes from the FPS placing them into OP5/OP6.

60 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

• Block deallocates entries from FPS with no data transfer.

These routines remove entries starting at FPST by modifying the value of the pointer
FPS.

DeallocFPS Removes HL number of nine byte entries from the FPS.

DeallocFPS1 Removes DE number of bytes from the FPS, this must be a
multiple of nine.

Copy Data To and From Existing FPS Entries

• Accesses entries on the FPS by using the RAM pointers FPS and FPSBASE, which
define the boundaries of the FPS.

• Copies nine bytes from RAM to an FPS entry.

CpyToStack If this routine is to be used, it is recommended that you create this
routine in your APP/ASM:

;
; input: C = offset from (FPS) to start of 9
; byte entry to write to. max = 252
;
; ex: C = 9 -> FPST
; 18 -> FPS1
;
; DE = pointer to 9 bytes of RAM to copy to FPS
;
;
CpyToFPS:

LD HL,(FPS)
B_CALL CpyToStack

CpyToFPST Copies nine bytes at DE to FPST.

CpyToFPS1 Copies nine bytes at DE to FPS1.

CpyToFPS2 Copies nine bytes at DE to FPS2.

CpyToFPS3 Copies nine bytes at DE to FPS3.

CpyO1ToFPST Copies nine bytes in OP1 to FPST.

CpyO1ToFPS1 Copies nine bytes in OP1 to FPS1.

CpyO1ToFPS2 Copies nine bytes in OP1 to FPS2.

CpyO1ToFPS3 Copies nine bytes in OP1 to FPS3.

CpyO1ToFPS4 Copies nine bytes in OP1 to FPS4.

CpyO1ToFPS5 Copies nine bytes in OP1 to FPS5.

CpyO1ToFPS6 Copies nine bytes in OP1 to FPS6.

CpyO1ToFPS7 Copies nine bytes in OP1 to FPS7.

Chapter 2: TI-83 Plus Specific Information 61

TI-83 Plus Developer Guide Third Release May 28, 2002

CpyO2ToFPST Copies nine bytes in OP2 to FPST.

CpyO2ToFPS1 Copies nine bytes in OP2 to FPS1.

CpyO2ToFPS2 Copies nine bytes in OP2 to FPS2.

CpyO2ToFPS3 Copies nine bytes in OP2 to FPS3.

CpyO2ToFPS4 Copies nine bytes in OP2 to FPS4.

CpyO3ToFPST Copies nine bytes in OP3 to FPST.

CpyO3ToFPS1 Copies nine bytes in OP3 to FPS1.

CpyO3ToFPS2 Copies nine bytes in OP3 to FPS2.

CpyO3ToFPS3 Copies nine bytes in OP3 to FPS3.

CpyO5ToFPS1 Copies nine bytes in OP5 to FPS1.

CpyO5ToFPS3 Copies nine bytes in OP5 to FPS3.

CpyO6ToFPST Copies nine bytes in OP6 to FPST.

CpyO6ToFPS2 Copies nine bytes in OP6 to FPS2.

• Copies nine bytes from a FPS entry to RAM.

CpyStack If this routine is to be used, it is recommended that you create this
routine in your APP/ASM.

;
; input: C = offset from (FPS) to start of 9
; byte entry to copy. max = 252
;
; ex: C = 9 -> FPST
; 18 -> FPS1
;
; DE = pointer to 9 bytes of RAM to copy to
;
;
CpyfrFPS:

LD HL,(FPS)
B_CALL CpyStack

CpyFPST Copies nine bytes from FPST to DE.

CpyFPS1 Copies nine bytes from FPS1 to DE.

CpyFPS2 Copies nine bytes from FPS2 to DE.

CpyFPS3 Copies nine bytes from FPS3 to DE.

CpyTo1FPST Copies FPST to OP1.

CpyTo1FPS1 Copies FPS1 to OP1.

62 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

CpyTo1FPS2 Copies FPS2 to OP1.

CpyTo1FPS3 Copies FPS3 to OP1.

CpyTo1FPS4 Copies FPS4 to OP1.

CpyTo1FPS5 Copies FPS5 to OP1.

CpyTo1FPS6 Copies FPS6 to OP1.

CpyTo1FPS7 Copies FPS7 to OP1.

CpyTo1FPS8 Copies FPS8 to OP1.

CpyTo1FPS9 Copies FPS9 to OP1.

CpyTo1FPS10 Copies FPS10 to OP1.

CpyTo1FPS11 Copies FPS11 to OP1.

CpyTo2FPST Copies FPST to OP2.

CpyTo2FPS1 Copies FPS1 to OP2.

CpyTo2FPS2 Copies FPS2 to OP2.

CpyTo2FPS3 Copies FPS3 to OP2.

CpyTo2FPS4 Copies FPS4 to OP2.

CpyTo2FPS5 Copies FPS5 to OP2.

CpyTo2FPS6 Copies FPS6 to OP2.

CpyTo2FPS7 Copies FPS7 to OP2.

CpyTo2FPS8 Copies FPS8 to OP2.

CpyTo3FPST Copies FPST to OP3.

CpyTo3FPS1 Copies FPS1 to OP3.

CpyTo3FPS2 Copies FPS2 to OP3.

CpyTo4FPST Copies FPST to OP4.

CpyTo5FPST Copies FPST to OP5.

CpyTo6FPST Copies FPST to OP6.

CpyTo6FPS2 Copies FPS2 to OP6.

CpyTo6FPS3 Copies FPS3 to OP6.

Chapter 2: TI-83 Plus Specific Information 63

TI-83 Plus Developer Guide Third Release May 28, 2002

DRIVERS LAYER
The Drivers layer of the TI-83 Plus system includes such areas as the keyboard, the
display, and the link port.

Keyboard
There are two ways to read key presses on the TI-83 Plus.

– Poll for scan codes directly.

– Use the system key read routine, GetKey.

• Poll for scan codes

This method is used in two different situations.

– When alpha or second functions located on the keyboard are not used in the
application.

– When keys need to be recognized as fast as possible, this is usually used for
game-type applications programming.

– See the Automatic Power Down (APD) section.

This method will allow an application to know what physical key is pressed only.

– This method will not support silent link activity. Any link activity started by
either another unit or a computer will not be detected by the system. Applications
must poll for link activity on their own. See the Link Port section later in this
chapter.

How it works:

– The system interrupt handler will look for key presses and when one is detected,
it will write the scan code for that key to a RAM location. An application will then
periodically check that RAM location for a scan code value.

– Interrupts must be enabled for the system to scan the keyboard in the
background. This system flag must be reset:

indicOnly, (IY + indicFlags)

If this flag is set, then the interrupt handler will not scan the keyboard. This flag
should only be set when the run indicator needs to be seen and no keyboard
inputs are expected. Setting this flag will cause the interrupt service time to be
shortened and overall execution faster.

64 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

– The É key does not have a scan code assigned to it, the interrupt handler
will set a flag if it is pressed. An application must check this flag to handle the
 É key press.

Flag: onInterrupt, (IY + onFlags)

This flag should be reset by an application after detecting an É key press. If it
is not reset, an application will assume that the É key had been pressed again.
The interrupt handler does not reset this flag.

– The scan code values are equated in the include file named TI83plus.inc.
Fig. 2.8 below shows the scan codes associated with their keys.

35 34 33 32 31

21 19 11 09

2A 22 1A 12 0A

2B 23 1B 13 0B

2C 24 1C 14 0C

2D 25 1D 15 0D

2E 26 1E 16 0E

2F 27 1F 17 0F

30 28 20

36 37 38

01

02 03
04

Fig. 2.8: Calculator Scan Code

Chapter 2: TI-83 Plus Specific Information 65

TI-83 Plus Developer Guide Third Release May 28, 2002

Example one: This example will use the Z80 halt instruction to enter into low power
mode, and upon waking up, will check:

– if a key had been pressed,

– check for the É key being pressed,

– turn off the run indicator while waiting for a key, and

– disable APD while waiting and re-enable it after.
anykey:

RES indicOnly,(IY+indicFlags) ; make sure keys are
; scanned

B_CALL RunIndicOff ; turn off run indicator
RES onInterrupt,(IY+onFlags) ; reset On key flag
RES apdAble,(IY+apdFlags) ; turn off APD

anykeylp:
EI ; turn on interrupts
HALT ; low power state
BIT onInterrupt,(IY+onFLags) ; On key pressed
JR NZ,foundkey ; return if yes

;
CALL GetCSC ; local routine to look

; for scan code
OR A ; if non zero then have

; a scan code
JR Z,anykeylp ; jump if no scan code

; present
foundkey:

SET apdAble,(IY+apdFlags) ; turn on APD
RES onInterrupt,(IY+onFlags) ; reset On key flag
RET

;
GetCSC:

LD HL,kbdScanCode
DI ; interrupts off
LD A,(HL) ; get possible scan code
LD (HL),0 ; clear out for next

; scan
RES kbdSCR,(IY+kbdFlags) ; needed for system

; key scan to work
EI ; interrupts on
RET

66 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Example two: This example will stay in a loop and make calls to read key, which will
return:

– Z = 1 if no key found, Z = 0 if a key is detected,

– ACC = scan code of key, 0 = É key

– run indicator will be running, and

– allow APD.
ex_2:

B_CALL RunIndicOn ; turn on run indicator
SET apdAble,(IY+apdFlags) ; turn on APD

KeyLoop:
RES onInterrupt,(IY+onFLags) ; reset On key flag

;
; this part of the loop could be modifying the screen with
; animation of some kind, or doing other work while waiting for a key to
; be input.
;

CALL readKey ; see if key pressed
JR Z,KeyLoop ; jump if no key found

;
; here we have a key press, ACC = scan code, 0 = on key
;

OR A ; is it the on key ?
JP Z,Handle_On_Key ; jump if yes

;
CP skEnter ; enter key scan code ?
JP Z,Handle_Enter_key

;
; check for rest of keys that matter . . .
;

;
;
readkey:

RES indicOnly,(IY+indicFlags) ; make sure keys are
; scanned

EI ; turn on interrupts
CALL GetCSC ; local routine to look

; for scan code
BIT onInterrupt,(IY+onFlags) ; On key pressed
JR Z,notOnkey

;
LD A,0 ; scan code for on key,

; Z = 0 from test
RET

notOnkey:
OR A ; any scan code found
RET ; Z = 1 if no key, else

; Z = 0

Chapter 2: TI-83 Plus Specific Information 67

TI-83 Plus Developer Guide Third Release May 28, 2002

• Use the system key read routine, GetKey.

This method is used when the alpha and second functions on the keyboard are valid
inputs to the applications.

– Unlike polling for scan codes which returns only one value for each key on the
keyboard, this routine could possibly return up to four different values for the
same key. Depending what key modifiers, alpha and second, may have been
activated.

– See the Automatic Power Down (APD) section.

– This method will support silent link activity. Any link activity started by either
another unit or a computer will be detected by the system. If the TI GRAPH
LINK or TI Connect™ attempts transfer a variable to/from the TI-83 Plus, the
application will be shut down. See the following example.

– The pull down menu system is not controlled by this routine — the key value of
the menu will be returned but the menu will not activate.

How it works:

– Interrupts must be enabled.

– The É key flag should be reset before calling.

onInterrupt, (IY + onFlags)

– This system flag must be reset:

indicOnly, (IY + indicFlags)

If this flag is set, the interrupt handler will not scan the keyboard. This flag should
only be set when the run indicator needs to be seen and no keyboard inputs are
expected. Setting this flag will cause the interrupt service time to be shortened
and overall execution faster.

– Make a B_CALL to GetKey.

– Control remains in GetKey until a returnable key entry is pressed, the unit is
turned off, or link activity has caused the application to be put away.

– The key presses that are not returned are [ALPHA] and [2nd].

– The key code is returned in the ACC.

68 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

– The É key has a key code of 0 and the flag indicating that it was pressed is
also set.

onInterrupt, (IY + onFlags)

– The key code returned can be either one or two bytes. The ACC is checked to
see if a one or two byte key code is returned.

There are two values returned that signal a two byte key code:

kExtendEcho and kExtendEcho2

There is a table for each of these keys that list the second byte key values
associated with them which can be found in the include file, TI83plus.inc.

If either of the above values are returned, the second byte of the key code is
located in the RAM location (keyExtend).

For example, the key code for DrawF are the two bytes kExtendEcho and
kDrawF. GetKey would return the ACC = kExtendEcho and (keyExtend) =
kDrawF.

– Lowercase Alpha keys

When the following flag is set, consecutive presses of the ƒ key will become
the mechanism for lowercase alpha key entry.

lwrCaseActive, (IY + appLwrCaseFlag)

This flag should be reset when lowercase is not needed. It should also be reset
before exiting the application.

The lowercase alpha keys are two byte key codes with the first byte being
kExtendEcho2.

Chapter 2: TI-83 Plus Specific Information 69

TI-83 Plus Developer Guide Third Release May 28, 2002

For example, use the GetKey routine to input only keys A-Z until either Í or É
is pressed.
Enter_Alphas:

B_CALL RunIndicOff ; no run indicator
RES indicOnly,(IY+indicFlags) ; make key reads are

; done
B_CALL DisableApd ; no auto power down

keyLoop:
RES onInterrupt,(IY+onFlags) ; clear on pressed
EI
B_CALL GetKey ; wait for a key

;
RES onInterrupt,(IY+onFlags) ; clear on pressed
OR A ; on key ?
JR Z,Return ; yes return

;
CP kEnter
JR Z,Return ; jump if Enter key

;
CP kCapZ+1 ; possible A-Z
JR NC,keyLoop ; no ignore

;
CP kCapA
CALL NC,StoreKey ; store it if A-Z
JR keyLoop ; look for more

;
Return:

B_CALL EnableApd ; auto power down is
; enabled

RET

70 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Display
There are two methods to access the TI-83 Plus display.

• Using system routines for displaying characters, points, lines, etc.

• Writing directly to the display driver that controls what is displayed (advanced).

Note: See the Graphing and Drawing section also.

Displaying Using System Routines
WARNING: Most of the TI-83 Plus system display routines will disable interrupts which results in no

keyboard scans, run indicator updates, APD, or cursor updates. Applications must re-enable
interrupts (EI), if needed.

Display Utility Routines
ClrLCD Clears the display. The split screen setting is checked to determine

how much of the display to clear.

ClrLCDFull Clears the entire display while ignoring the split screen setting.

ClrScrn Clears the display and the text shadow buffer. The split screen setting
is checked to determine how much of the display and buffer to clear.

ClrScrnFull Clears the display and the text shadow buffer while ignoring the split
screen setting.

ClrTxtShd Clears the entire text shadow buffer.

SaveScreen Copies a bit image of the current display to RAM.

DisplayImage Displays a bit map image.

RunIndicOff Disables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

RunIndicOn Enables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

Chapter 2: TI-83 Plus Specific Information 71

TI-83 Plus Developer Guide Third Release May 28, 2002

Displaying Text
The display is made up of 64 rows of 96 pixels. The TI-83 Plus has two sets of routines
that display text. The difference between the two sets of routines is how the text position
in the display is specified. The following are two distinct mappings of the display, home
screen and pen display.

• Home Screen Display Mapping

This mapping corresponds to the positioning of text that the home screen context
uses. The display is mapped out to eight rows of 16 characters.

Fig. 2.9: Home Screen Display Mapping

• Two bytes of RAM are used to position text written:

• (curRow) = row coordinate (0 – 7)

• (curCol) = column coordinate (0 – 15d)

• Font

• 5 (width) x 7 (height) (pixels) large characters

• Text formatting

• Reverse video:
Display all text written in reverse video:

textInverse, (IY + textFlags); default = 0

• Auto scroll:
If the bottom of the screen is reached:

appAutoScroll, (IY + appFlags); default = 0

72 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

• Echo characters to a RAM buffer:
textShadow is a RAM buffer of 128 bytes, one byte for each character
location. As characters are sent to the display, character font codes will be
written to corresponding locations in this buffer. This can be used to restore
display contents quickly when using Home Screen Display Mapping text
routines:

appTextSave, (IY + appFlags); default = 1

• Preclear character space before writing a character:
This option is used when text is written to the same location alternating
between reverse/normal video:

preClrForMode, (IY + newDispF); default = 0

• All of these settings remain until you change them. Applications need to
manage their state, if they are changed.

• Entry Points

PutMap Displays a single character without updated cursor position.

PutC Displays a single character and advances the cursor position.

PutS Displays a zero (0) terminated string stored in RAM and
updates the cursor position.

PutPS Displays a string stored in RAM with its length being the first
byte and updates the cursor position.

DispHL Displays the value stored in HL.

ClrTxtShd Clears the text shadow buffer.

EraseEOL Writes spaces from (curCol) to end of the line.

OutputExpr Positions the cursor and display a numeric value, a string, or
an equation.

PutTokString Displays a function token’s string.

Note: The PutS routine can be used without first copying strings to RAM by coding a local
version of the routine in the application. See the System Routine Documentation for the
source code to this routine.

See the Display Utility Routines section.
See the Formatting Numeric Values for Display section.
See the System Routine Documentation for more details.

Chapter 2: TI-83 Plus Specific Information 73

TI-83 Plus Developer Guide Third Release May 28, 2002

• Pen Display Mapping

This mapping is based on individual pixel locations. It is used mainly in the graph
context for displaying text on a graph, but is also used in the statistics edit context to
display list elements. The display is mapped out to 64 rows of 96 pixels.

0 1 2 3 4 5 90 91 92 93 94 95
0
1
2
.
.
.
62
63

pe
nR

ow

...

...

...

...
.
.
.
...
...

penCol

Fig. 2.10: Pen Display Mapping

– Two bytes of RAM are used to position text written:

• (penCol) = column coordinate (0 – 95d)

• (penRow) = row coordinate (0 – 63d)

The pen location specified represents the upper left most pixel of the character
being displayed.

– Fonts

• 5 (width) x 7 (height) (pixels) large characters.

• 6/7 pixel high by variable-width small characters.

• Application defined custom characters.

– Text formatting

• Reverse video:
Display all text written in reverse video:

textInverse, (IY + textFlags); default = 0

• Write to Graph backup buffer:
The output can be directed to either the display, or the graph backup buffer,
plotSScreen.

textWrite, (IY + sGrFlags) = 1 to write to buffer; default = 0

74 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

� Use 5x7 large font:
The default is to use the small variable width font. Set the below flag to use
the large 5x7 font.

fracDrawLFont, (IY + fontFlags); default = 0

� Erase the line below the character being displayed:
This applies to the small variable width font only. Do not set this flag if the
row of pixels below the character being displayed is off of the display.

textEraseBelow, (IY + textFlags); default = 0.

� Display an application defined custom character:
This option is only used with the UserPutMap routine.

customFont, (IY + fontFlags)

� All of these settings remain until you change them. Applications need to
manage their state, if they are changed.

– Entry Points

VPutMap Displays either a small variable width or large 5x7 character
at the current pen location and updates penCol.

VPutS Displays a zero (0) terminated string, using either small or
large characters and updates penCol.

VPutSN Displays a string whose length is the first byte using either
small or large characters and updates penCol.

VPutBlank Displays a space character at the current pen location using
the small or large font and updates penCol.

DispOP1A Rounds a floating-point number to the current fix setting and
display it at the current pen location. Uses either the small or
large characters and updates penCol.

SStringLength Returns the width in pixels of a string using the small font.

SFont_Len Returns the width in pixels of a character using the small
font.

UserPutMap Displays a character defined by an application at the current
pen location and updates penCol.

Note: The VPutS and VPutSN routines can be used without first copying strings to RAM by
coding a local version of the routines in the application. See the System Routine
Documentation for the source code to these routines.

Note: The space character for the small font is only one pixel wide. Applications may want to
use two space characters to separate words, in strings to be displayed using the small
font.

Chapter 2: TI-83 Plus Specific Information 75

TI-83 Plus Developer Guide Third Release May 28, 2002

See the Display Utility Routines section.
See the Formatting Numeric Values for Display section.
See the System Routine Documentation for more details.

Formatting Numeric Values for Display
The following routines are used to convert RealObj (single floating-point) and CplxObj
(pair of floating-points) values into displayable strings. These routines do not display the
string.

Entry Points
FormReal Converts a RealObj in OP1 into a displayable string and specify the

maximum width allowed for the string. If the current mode setting is SCI
or ENG, the output string will reflect the setting. The value will be
Rounded based on the maximum width entered and the current FIX
setting.

FormBase Converts a RealObj in OP1 into a displayable string. Uses the current
mode settings SCI, ENG, NORMAL, and FIX settings to format the
string. The output can also be formatted as a fraction, or a degrees-
minutes-seconds (DMS) number. If a value cannot be represented in
the desired format, it defaults back to decimal.

FormEReal Converts a RealObj in OP1 into a displayable string and specify the
maximum width allowed for the string. All mode settings are ignored.

FormDCplx Converts a CplxObj value in OP1/OP2 into a displayable string. Uses
the current mode settings SCI, ENG, NORMAL, FIX setting, and
complex output settings a + bi and re^θθθθi to format the string. The
output can also be formatted as a fraction or a degrees-minutes-
seconds (DMS) number. If a value cannot be represented in the
desired format, it defaults back to decimal.

See the System Routine Documentation for further information.

76 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Modifying Display Format Settings
Resetting the next two flags signifies NORMAL mode setting.

fmtExponent, (fmtFlags) = 1 for scientific display mode
fmtEng, (IY + fmtFlags) = 1 for engineering display mode

fmtRect, (IY + numMode) = 1 rectangular complex display mode
fmtPolar, (IY + numMode) = 1 polar complex display mode

Fix setting:

(fmtDigits) = 0FFh for FLOAT, no fix setting
 = 0 – 9 if a fix setting is specified

Writing Directly to the Display Driver
The display driver is a device that controls the display. The driver contains RAM that
represents what is currently being displayed. Commands are sent to the driver to
modify, or access what is displayed. The following is a brief description of the
commands that control the driver which is the Toshiba T6A04.

• Driver RAM

The RAM on the driver is mapped to a grid of 64 rows of 12 bytes. Each row
represents a row of pixels in the display with each byte representing eight pixels.

The addressing of the RAM is done by setting a row and column value to address a
particular byte. The addressing is built into the command used to set either a row or
column value. The figure below shows the command values used to set either a row
(X) or column (Y) value.
 20h 21h Y Direction 2Bh

80h
81h

X
Direction

BFh
Fig. 2.11: Command Values

The first byte — row 80h and column 20h — represents the eight pixels in the first
row of the display’s left edge. The most significant bit of the byte is the left most
pixel.

• Sending Commands

The following areas must be considered when sending commands.

– Interrupts should be disabled to send commands/data to the driver.

Chapter 2: TI-83 Plus Specific Information 77

TI-83 Plus Developer Guide Third Release May 28, 2002

– The LCD has a delay requirement of approximately 10us between operations.
The following routine should provide adequate delay on the TI-83 Plus (not Silver
Edition).
lcd_busy:

PUSH AF
INC HL
DEC HL
POP AF
RET

– If the application is run on the Silver Edition at fast speed, the above routine will
not provide a long enough delay. There are three options for solving this
problem.

• Triple or quadruple the delay time of the in-line code. This will solve the
problem, but it may reoccur if another faster version is produced.

• Do B_CALL LCD_BUSY. This is guaranteed to work, but may slow down a
display intensive application.

• Use a CALL LCD_BUSY_QUICK, where LCD_BUSY_QUICK is equated to
000Bh. This is a new entry point that does not require the system overhead
of a B_CALL. This call also works on earlier TI-83 Plus versions, but runs
slightly faster than the required 10us and modifies the z/nz status flag. To
use this on all versions, wrap it in another routine that saves and restores the
flag register.

lcd_busy_2:
PUSH AF
CALL LCD_BUSY_QUICK ; = 000Bh
POP AF
RET

This will ensure that the routine runs on both the TI-83 Plus and Silver Edition
with minimal additional time delays.

– Communication is done with the drive through two IO ports:

lcdinstport = 10h command port
lcddataport = 11h data port

– Addressing a byte of RAM

� Row (X) addressing

Commands 80h to BFh — sets the row address to 0 – 63 or top to bottom
rows.

Top Row
LD A,80h ; top row
CALL lcd_busy_2
OUT (lcdinstport),A

78 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Bottom Row
LD A,0BFh ; last row
CALL lcd_busy_2
OUT (lcdinstport),A

� Column (Y) addressing

Commands 20h to 2Bh — sets the column address to 0 – 0Ch.

First byte of row
LD A,20h ; first byte of row
CALL lcd_busy_2
OUT (lcdinstport),A

Last byte of row
LD A,2Bh ; last byte of row
CALL lcd_busy_2
OUT (lcdinstport),A

– Setting auto addressing modes. The driver can act in four different ways after a
read or write.

Command 05h — X Direction auto increment
Command 07h — Y Direction auto increment
Command 04h — X Direction auto decrement
Command 06h — Y Direction auto decrement

The TI-83 Plus system expects the driver to be in X-increment mode and must
be set to this mode before giving control to the system.

• Reading the Contents of the Display Driver RAM
CALL lcd_busy_2
IN A,(lcddataport) ; read disp byte that X and Y

; settings point to

Chapter 2: TI-83 Plus Specific Information 79

TI-83 Plus Developer Guide Third Release May 28, 2002

Reading the Display Driver After Setting X or Y Coordinates
A dummy read needs to be done after setting either the x or y coordinate of the driver if
one wants to read from the driver. For example, read nine bytes of data from the display
starting in LCD row 5, column 1, to OP1.

LD A,85h
CALL lcd_busy_2
OUT (lcdinstport),A ; set X to row 5

;
LD A,07h
CALL lcd_busy_2
OUT (lcdinstport),A ; set Y auto increment mode

;
CALL lcd_busy_2
LD A,21h
OUT (lcdinstport),A ; set Y to column 1

;
LD B,9 ; number of bytes to read
LD HL,OP1
CALL lcd_busy_2
IN A,(lcddataport) ; dummy read since we changed

; X, Y position
Loop:

CALL lcd_busy_2
IN A,(lcddataport) ; read byte, auto increment Y

;
LD (HL),A
INC HL
DJNZ Loop

;
LD A,05h
CALL Lcd_busy_2
OUT (lcdinstport),A ; set X auto increment mode

• Writing to the display driver RAM
CALL lcd_busy_2
OUT (lcddataport),A ; write byte to disp

80 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

For example, write the contents of the graph backup buffer, plotSScreen, to the
display.

DI
LD HL,plotSScreen
LD B,64
LD A,07h
CALL lcd_busy_2
OUT (lcdinstport),A ; set to y INC mode
LD A,7fh ; first row

;
; new row
;
loop1:

PUSH BC ; save number rows left to copy
INC A ; move to next row
LD (curXRow),A ; save new row
CALL lcd_busy_2
OUT (lcdinstport),A ; set new x
LD A,20h
CALL lcd_busy_2
OUT (lcdinstport),A ; set to first column
LD B,12 ; 12 columns

loop2:
LD A,(HL) ; get source
INC HL
CALL lcd_busy_2
OUT (lcddataport),A ; write to disp
DJNZ loop2 ;

;
; row done
;

POP BC ; get number rows left
LD A,(curXRow)
DJNZ loop1 ; decrease number left, jump if

; not done
;

LD A,05h
CALL lcd_busy_2
OUT (lcdinstport),A ; set to x INC mode
EI
RET

Chapter 2: TI-83 Plus Specific Information 81

TI-83 Plus Developer Guide Third Release May 28, 2002

Contrast Control
Adjusting the contrast setting of the display from an application can be done in two
ways.

• Executing the system GetKey routine will allow normal adjusting of the contrast by
the user, using the y } and † keyboard keys.

• The display driver controls the contrast level of the display. Applications can send a
new contrast setting to the display driver.

Below is an example of how to send a contrast setting command to the display
driver.
;
; accumulator = valid contrast value 18h to 3Fh
;
; let us set the contrast to its darkest

LD A,3Fh
OR 0C0h ; or in LCD contrast command
CALL lcd_busy_2 ; delay for LCD driver
OUT (lcdinstport),A ; set contrast
RET

Note: Adjusting the contrast in this manner will not affect the systems contrast RAM value. The new
contrast setting will only be in effect temporarily. In order to make the new setting permanent
the systems contrast value must be updated. The system’s contrast value ranges from 0 to
27h, and is stored in RAM location (contrast). Display driver setting minus 18h = (contrast).

Split Screen Modes
The TI-83 Plus has three mode settings that define the size of the display, Full screen,
Horizontal split and Graph-Table (vertical split). All of the system display writing and
graph utility routines adjust for the current split mode setting.

Applications need to be aware of the current split screen setting and take steps to
ensure that the current setting will not alter the intended output to the display.

Applications that do not intend to take advantage of a split screen have two ways to
avoid problems.

• Temporarily change the screen setting to full screen and then reset it. This option is
chosen if an application wants to retain the current split screen setting after
completion.

The current split screen settings are saved in some application defined RAM
locations (six bytes in length). Then the setting is changed to full screen mode. The
application must restore the original split screen settings back to the input state upon
completion. The following routines will save the current split screen setting and
restore it.

82 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

setTofull:
LD HL,YOffset ; address of split

; attributes
LD DE,savevals ; app defined RAM

; location to save
LD BC,5 ; save first 5 bytes
LDIR ; save split

; attributes
;

LD A,(IY+sGrFlags) ; split flags ->
; ACC

LD (DE),A ; save split flags
; in 6th byte

;
RES grfSplit,(IY+sGrFlags)
RES vertSplit,(IY+sGrFlags) ; set flags to

; Full screen
;

B_CALL SetNorm_Vals ; screen attributes
; to full

SET grfSplitOverride,(IY+sGrFlags)
RET

;

rstrYOffset:
RES grfSplitOverride,(IY+sGrFlags)
LD DE,YOffset
LD HL,savevals
LD BC,5
LDIR ; restore input

; screen attributes
LD A,(HL) ; get input split

; flags
LD (IY+sGrFlags),A ; restore
RET

• Change the split screen mode to full screen mode without restoring it back to the
input setting.

B_CALL ForceFullScreen

Note: The B_CALL routine was not used in the first option above so that the graph would not be
marked dirty. If the split screen mode is not temporarily changed, the graph needs to be
marked as dirty so it will reflect the new screen size. Example one restores the input setting,
so no regraph is necessary. It is entirely up to the application if causing the regraph is a
concern or not.

Chapter 2: TI-83 Plus Specific Information 83

TI-83 Plus Developer Guide Third Release May 28, 2002

Graphing and Drawing — What’s the difference?

Drawing
Routines include lines, circles, points, etc., which are defined by pixel coordinates.
Drawing routines cannot be defined with points outside of the physical display area.
Only pixel coordinates that exist can be used. The current WINDOW settings (Xmin,
Xmax, Ymin, Ymax) have no affect on the drawing routine’s output. Inputs to routines
are normally byte values.

Applications use drawing routines for general purpose drawing and animation. They are
easier to use and are more efficient than graphing routines that can generate the same
output. Drawing routines can also be used to annotate graphs generated by the systems
grapher.

Graphing
These routines include system grapher, lines, circles, points etc., which are all drawn
with respect to the current WINDOW settings, Xmin, Xmax, Ymin, and Ymax. These
settings define the boundaries of the display. Graphing routines can be defined with
points that reside outside of the current WINDOW settings.

Graphing routines would be used by applications that want to annotate in a way that is
determined by the current WINDOW settings.

Graphing and Drawing Utility Routines
These routines could be useful to applications in combination with some of the graphing
and drawing routines. Detailed information for each of these routines can be found in
the System Routine Documentation.

BufClr Clears a RAM display buffer representing a bit image of the
display. Similar to GrBufClr except the address of the RAM
display buffer is input.

BufCpy Displays a RAM display buffer representing a bit image of the
display. Similar to GrBufCpy except the address of the RAM
display buffer is input.

GrBufClr Clears the graph backup buffer, plotSScreen. The portion of the
buffer cleared is determined by the split mode setting.

GrBufCpy Displays the graph backup buffer, plotSScreen. The portion of the
buffer displayed is determined by the split mode setting.

ClrLCD Clears the display and the split screen setting is checked to
determine how much of the display to clear.

ClrLCDFull Clears the entire display ignoring the split screen setting.

84 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

SaveScreen Copies a bit image of the current display to RAM.

DisplayImage Display a bit map image.

RunIndicOff Disables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

RunIndicOn Enables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

AllEq Selects or deselects all graph equations in the current graph
mode

SetAllPlots Selects or deselects all stat plots.

SetTblGraphDraw Sets the graph to dirty, which causes a complete regraph the
next time the graph is brought to the display.

Stat Plots
Stat plots provide a way to display data stored in list variables. The SetAllPlots routine
will select or deselect all stat plots. Each stat plot has a portion of System RAM
allocated to store its settings. To select/deselect or change settings for an individual
stat plot, you must modify this RAM.

There are three bytes that determine if a plot is on or off:

P1FrqOnOff Plot 1, 0 = off; 1 = on

P2FrqOnOff Plot 2, 0 = off; 1 = on

P3FrqOnOff Plot 3, 0 = off; 1 = on

The high 4 bits of these bytes determine which axis the data will be plotted on if the plot
type is Normal Probability Plot. 0 = X axis, 1 = Y axis.

There are three bytes that determine the type of plot to be drawn:

P1Type Plot 1 type

P2Type Plot 2 type

P3Type Plot 3 type

0 = Scatter Plot

1 = XY Line

2 = Modified Box Plot

3 = Histogram

4 = Box Plot

5 = Normal Probability Plot

Chapter 2: TI-83 Plus Specific Information 85

TI-83 Plus Developer Guide Third Release May 28, 2002

Like the on/off bytes, the type bytes have a second purpose. The high four bits of the
type bytes determine the mark or icon used in the stat plot.

0 = Box icon

1 = Cross icon

2 = Dot icon

Each stat plot has three five-byte locations to store the names of lists used in the plot.
The list names do not include tVarLst, and must be zero-terminated if less than five
bytes.

SavX1List Plot 1 X list

SavY1List Plot 1 Y list

SavF1List Plot 1 Frequency List

SavX2List Plot 2 X list

SavY2List Plot 2 Y list

SavF2List Plot 2 Frequency List

SavX3List Plot 3 X list

SavY3List Plot 3 Y list

SavF3List Plot 3 Frequency List

Split screen settings will affect how plots are drawn. System errors will be generated if
the plots are not set up correctly.

Drawing Routine Specifics
The following sections cover drawing pixel coordinates, drawing to a split screen, and
drawing routines.

• Drawing pixel coordinates

The display is 96 pixels wide by 64 pixels high.

Fig. 2.12 shows the layout of the pixels along with the X and Y coordinate scheme
used by drawing routines.

86 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

0 1 2 92 93 94 95
63
62
61
.
.
.
2
1
0

Y
C

oo
rd

in
at

e

...

...

...

...
.
.
.
...
…

X Coordinate

Fig. 2.12: Pixel Coordinates

Coordinates are input to drawing routines mainly in a register pair such as BC, where
BC = (X,Y) drawing pixel coordinate.

For example, the upper top left pixel in the display is drawing pixel coordinates
(0,63); (X,Y).

Note: The drawing routines, by default, DO NOT use the last row of pixels, Y = 0 and the last column of
pixels, X = 95. This is done to allow for an odd number of pixels for both the X and Y axes. This
restriction can be overridden thus allowing for the drawing routines to make use of the entire
display.

• Drawing in a split screen

If either Horizontal or Vertical (G-T) split screen is the current mode, the output from
the drawing routines will be affected. Listed below are the effects of each split mode.

Horizontal Valid Y pixel range = 1 – 31, where Y-pixel row 1 is moved up
32 rows from its normal position.

Vertical (G-T) Valid Y pixel range = 1 – 51, where Y-pixel row 1 is moved up
12 rows from its normal position.

 Valid X pixel range = 0 – 31, with X-pixel column 0 in its original
position.

If split screen modes are not required by an application, it is recommended that all
drawing routines be performed with no split modes set. See the Split Screen section
for further information.

Chapter 2: TI-83 Plus Specific Information 87

TI-83 Plus Developer Guide Third Release May 28, 2002

• System flags associated with drawing routines

The following flags are input by most of the drawing routines. The table gives an
overview of some the options available to applications. The System Routine
Documentation contains further information.

fullScrnDraw, (IY + apiFlag4) 1 = allows draws to use column 95 and
row 0.

plotLoc, (IY + plotFlags) 0 = draws affect both the display and the
graph backup buffer plotSScreen.

1 = draws affect only the display.

bufferOnly, (IY + plotFlag3) 1 = draws affect the graph backup buffer
plotSScreen only.

• Drawing routines

The descriptions given below refer to affecting a pixel coordinate location in the
display, however the system flags above can be used to affect plotSScreen. The
System Routine Documentation contains further information.

Ipoint Performs one of the following operations to a pixel coordinate point:
darken, lighten, reverse, test, or copy from plotSScreen to display.

PointOn Darkens a pixel coordinate point.

Iline Darkens or lightens a line between two pixel coordinate points.

DarkLine Darkens a line between two pixel coordinate points.

PixelTest Tests a pixel coordinate in plotSScreen, to see if it is set.

GrphCirc Draws a circle, given the pixel coordinates, of the center and a point
on the circle.

Ibounds Tests if a pixel coordinate lies within the graph window defined by
the current mode settings.

IBoundsFull Tests if a pixel coordinate lies within the full pixel range of the
display.

Ioffset Given a pixel coordinate point, computes the offset to add to the
start address of the graph buffer to the byte in the buffer containing
that pixel.

Also returns the bit number in that byte for that pixel.

Additionally, computes the row and column commands to set the
LCD driver to the display byte for that pixel.

88 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Graphing Routine Specifics
The following section covers graph WINDOW settings, graphing in a split screen, and
graphing routines and system flags.

Graph WINDOW Settings
Fig. 2.13 below shows how the graph window is bounded by the current WINDOW
settings.

(Xmin, Ymax) (Xmax, Ymax)

(Xmin, Ymin) (Xmax, Ymin)
Fig. 2.13: Graph WINDOW Setting

Graphing routine parameters (points) can be defined outside of the WINDOW settings.
Those settings only define what is currently viewed in the display.

Graphing in a Split Screen
If either Horizontal or Vertical (G-T) split screen is the current mode, the graphing
routines will be limited to the section of the display designated for graphing by the mode
setting.

For more information about disabling any split screen, see the Split Screen section of
this document.

Graphing Routines and System Flags
The graphing routines are grouped by common attributes into four groups. See the
System Routine Documentation for further information.

• Routines that do not automatically display or redraw the current graph screen. These
routines will draw over the existing contents of the display.

Chapter 2: TI-83 Plus Specific Information 89

TI-83 Plus Developer Guide Third Release May 28, 2002

– System flags

plotLoc, (IY + plotFlags) 0 = draws affect both the display and the Graph
backup buffer, plotSScreen.

 1 = draws affect the display only.

bufferOnly, (IY +
plotFlag3)

1 = draws affect the graph backup buffer
plotSScreen only.

– Entry Points

Cpoint Darkens, lightens, or reverses a graph coordinate point defined in
OP1/OP2.

CpointS Darkens, lightens, or reverses a graph coordinate point defined in
FPS1/FPST.

Cline Darkens a line between two graph coordinate points defined in
OP1/OP2 and OP3/OP4.

ClineS Darkens a line between two graph coordinate points defined in
FPS3/FPS2 and FPS1/FPST.

UCLineS Erases a line between two graph coordinate points defined in
FPS3/FPS2 and FPS1/FPST.

DarkPnt Darkens a graph coordinate point defined in OP1/OP2.

DrawCirc2 Draws a circle given the center, a graph coordinate point in
FPS2/FPS1, and the radius in FPST.

• Routines that will automatically display or redraw the current graph screen before
executing. If the graph does not need to be redrawn, the contents of the graph
backup buffer, plotSScreen, are copied to the display.

– System flags

bufferOnly, (IY +
plotFlag3)

1 = draws affect the graph backup buffer
plotSScreen only.

– Entry Points

Regraph Graphs any selected equations in the current graph mode, and
also any selected statplots.

PDspGrph Tests if the graph of the current mode needs to be redrawn. If
so, call the Regraph routine, otherwise copies plotSScreen to
the display.

PointCmd Darkens, lightens, or reverses a graph coordinate point defined
in (FPS2, FPS1).

LineCmd Darkens a line between two graph coordinate points defined in
(FPS3, FPS2) and (FPS1, FPST).

90 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

UnLineCmd Erases a line between two graph coordinate points defined in
(FPS3, FPS2) and (FPS1, FPST).

DrawCmd Graphs an equation variable in FPST.

InvCmd Graphs an equation variable in FPST along the Y-axis instead
of the X-axis.

CircCmd Draws a circle given the center, a graph coordinate point in
(FPS2, FPS1), and the radius in FPST.

VertCmd Draws a vertical line at the X value in FPST.

HorizCmd Draws a horizontal line at the Y value in FPST.

• WINDOW zooming routines, which automatically display or redraw the current graph
screen, will not redraw after changing the window settings.

– Entry Points

Change the WINDOW settings such that:

ZooDefault The default settings are set, (-10,10) for both the X and Y
ranges.

ZmFit All selected functions are fully visible in the display.

ZmInt ∆X and ∆Y = 1.0 given a new center (OP1, OP5).

ZmPrev The settings that were set before the latest zoom.

ZmSquare ∆X = ∆Y, either the X ,or Y window settings are changed.

ZmStats All selected statplots are fully visible in the display.

ZmTrig Appropriate for graphing trig functions dependent upon the
current trig mode.

ZmUsr The settings that were saved by the last ZoomSto executed.

ZmDecml (0,0) is in the center and ∆X and ∆Y = .1.

• Routines that change the current graph mode.

– Entry Points

SetFuncM Switches to function mode.

SetParM Switches to parametric mode.

SetPolM Switches to polar mode.

SetSeqM Switches to sequence mode.

Chapter 2: TI-83 Plus Specific Information 91

TI-83 Plus Developer Guide Third Release May 28, 2002

Run (Busy) Indicator
The run indicator is used by the TI-83 Plus to indicate that the calculator is busy while
computing. It is normally turned off while waiting for input from a user. When an
application is first started, the run indicator will most likely be running.

Applications have the option of using the indicator or not.

The indicator is updated by the interrupt handler, so if it is to be used, interrupts need to
be enabled.

RunIndicOff Disables the run indicator located in the upper right corner of the
display.

RunIndicOn Enables the run indicator located in the upper right corner of the
display.

There are two choices for the appearance of the run indicator:

• A short solid line that circles around from top to bottom — this is the default
indicator.

• A long dashed line that circles around from top to bottom — this is the Pause
indicator for the TI-83 Plus.

To use the Pause indicator, execute the following code before turning the run indicator
on:

LD A,busyPause
LD (indicBusy),A

If the Pause indicator is used, an application needs to set the default indicator back:
LD A,busyNormal
LD (indicBusy),A

Example of common usage:
EI
B_CALL RunIndicOn ; indicator on
B_CALL GetKey ; wait for a key
B_CALL RunIndicOff ; indicator off

92 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

APD (Automatic Power Down)
Applications have the choice of allowing the APD feature of the TI-83 Plus to be active
or not. APD is implemented to preserve battery life by turning the calculator off after
about four minutes of inactivity. Unless an application’s functionality absolutely requires
that APD be disabled, it should be left active.

How does APD work?

Under normal system operation, the APD counter is reset after each key press. If no key
press is made in approximately four minutes, the calculator powers down.

Similar to the run indicator, the APD counter is updated by the interrupt handler;
therefore, interrupts must be enabled. When the APD counter is exhausted, the
calculator turns off. The interrupt handler routine is not exited.

The application is not notified that the calculator has been turned off. The contents of
the screen are saved in the 768 bytes of RAM located at saveSScreen, which is a bit
image representation of the screen.

When the calculator is turned back on, the screen is restored and the interrupt handler
is exited. Execution resumes at the location of the last interrupt before the calculator is
powered down. Applications should not be affected by this event in any way.

• Resetting the APD counter

This routine will reset the APD counter.
B_CALL ApdSetup

The GetKey routine will make a call to this routine upon entry.

• Disabling APD

There are two ways to disable APD and each have a specific situation in which they
should be used.

– Disable APD when calling the GetKey routine.
B_CALL DisableApd

This method of disabling the APD is a global, and will stay in effect after an
application exits. Applications need to re-enable the APD before exiting.

B_CALL EnableApd

– Disable APD while executing outside of the GetKey routine.
RES apdRunning,(IY+apdFlags)

APD will be disabled until this flag is set, or the GetKey routine is called.

Chapter 2: TI-83 Plus Specific Information 93

TI-83 Plus Developer Guide Third Release May 28, 2002

Link Port
Communications to and from the TI-83 Plus calculator is possible through the I/O port
using the unit-to-unit cable (included with the unit) or the graphic link cable (available as
an option).

Applications can use the link port for transferring data on two different levels.

• Using system routines that send/receive TI-83 Plus variables using the systems link
protocol. There are three system routines that are used:

AppGetCalc Retrieves a variable from a TI-83 Plus or TI-83 calculator.

AppGetCbl Retrieves a variable from a Calculator Based Laboratory (CBL)
or Calculator Based Ranger (CBR) device.

SendVarCmd Sends a variable to a CBL or CBR device.

The AppGetCalc and AppGetCbl routines will automatically replace existing
variable data if the variable received does exist already.

No error handler is needed to be placed around calls to these routines. If any error
occurs, a flag is returned to indicate that the link operation failed. Nothing more
specific about the error is known.

See the System Routine Documentation for more details.

94 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

For example, assume that L1 contains a list to set up the CBL to continuously poll
for data using one of its probes, sends the list to the CBL, and polls it for data.

CALL l1name ; L1
RES onInterrupt,(IY+onFlags) ; clear break
B_CALL SendVarCmd ; send L1 to start up

; CBL
BIT comFailed,(IY+getSendFlg) ; fail ?
RET NZ ; return if yes

;
; loop and read data into OP1
;
read_Loop:

CALL GetNewValue ; try to get another
; value

RET NZ ; ret if link failed
CALL StoreData ; store data somewhere
JR Read_Loop

;
; get from CBL into var L1 and recall to OP1
;
GetNewValue:

CALL l1name ; L1
B_CALL AppGetCbl ; get data
BIT comFailed,(IY+getSendFlg) ; fail ?
RET NZ ; yes

;
; RCL L1(1) -> OP1
; ACC = size of list, 1 = CBL, 2 = CBR
;
Rcl_new_val:

CALL l1name
RST rFindSym ; look up L1 in symbol

; table
;

INC DE
INC DE ; move past size bytes
EX DE,HL ; HL = pointer to

; element 1
RST rMov9ToOP1 ; OP1 = val
RET

;
L1name:

LD HL,L1name
RST rMov9ToOP1 ; OP1 = L1 name
RET

Chapter 2: TI-83 Plus Specific Information 95

TI-83 Plus Developer Guide Third Release May 28, 2002

• Send and receive bytes of data directly through the port.

This operation involves the application interpreting the data sent and received in a
custom format. This type of communication is for applications that either interacts
with another TI-83 Plus or computer without using the built-in messaging protocol,
which is not documented in this developer’s guide.

The TI-83 Plus link port uses two data lines, D0 and D1, for communicating. These
data lines are accessed through the B-port of the Z80.

– Bits 0 and 1 are for writing/reading data, D0 = bit 0, D1 = bit 1.

For example, the following code shows all of the values that can be written to the
B-port.

LD A,D0LD1L
OUT (bport),A ; is used for setting d0 low, d1 low

LD A,D0LD1H
OUT (bport),A ; is used for setting d0 low, d1 high

LD A,D0HD1L
OUT (bport),A ; is used for setting d0 high, d1 low

LD A,D0HD1H
OUT (bport),A ; is used for setting d0 high, d1 high

Note: Data lines are high when not in use.

For example, the code below will poll the B-port until it detects some activity and
then examine which line has the activity.

IN A,(bport) ; poll the b-port
CP D0D1_bits ; any data line go low ?
JR Z,no_activity ; jump if no activity detected

;
CP D0HD1L ; is d0 high ?
JR Z,d0_low ; yes,

;
; else d1 is high
;

96 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

The following systems routines are used for polling the link and sending/receiving a
byte of data.

Rec1stByte Polls the link port for activity until either a byte is received, the
É key is pressed, or an error occurs during communications.
The cursor will be turned on by this routine.

Rec1stByteNC Polls the link port for activity until either a byte is received, the
É key is pressed, or an error occurs during communications.
The cursor is not activated by this routine.

RecAByteIO Attempts to read a byte of data. If no activity is detected in about
1.1 seconds, an error occurs.

SendAByte Attempts to send a byte of data. If no activity is detected in about
1.1 seconds, an error occurs.

An error handler should be set when using these routines. Each of these routines
will generate system errors.

See the System Routine Documentation for more details.

Chapter 2: TI-83 Plus Specific Information 97

TI-83 Plus Developer Guide Third Release May 28, 2002

Example one:

The following routine is called to do a spot check of the link port for activity for a
single byte of data being sent.

– If no activity is detected or any error occurs during communication, then Z = 0 is
returned.

– If activity is detected, then the signal is debounced to make sure it is not random
noise.

– The byte is then read and returned in the ACC with Z = 1.
haveIOcmd:

IN A,(bport) ; poll the port
AND D0D1_bits
CP D0D1_bits
JR Z,..noio ; jump if no activity

;
DI ; for speed
LD HL,ioData
LD (HL),A ; save code
LD BC,15 ; debounce counter

dblp1:
IN A,(bport) ; poll again
AND D0D1_bits
CP (HL) ; still the same data?
JR NZ, noIO ; no, failed debounce

;
DEC BC ; dec counter
LD A, C
OR B
JR NZ, dblp1 ; jump if debounce not done

;
AppOnErr Linkfail ; set error handler
SET indicOnly,(IY+indicFlags) ; no key scan
B_CALL RecAByteIO

EndexIO:
RES indicOnly,(IY+indicFlags) ; read the byte
LD (ioData),A ; save data

;
AppOffErr ; remove error handler
LD A,D0HD1H
OUT (bport),A ; reset B-port
LD A,(ioData) ; get data byte
CP A ; Z = 1 for successful
EI
RET

linkfail:
LD A,D0HD1H
OUT (bport),A ; reset B-port

NoIO:
OR 1 ; Z = 0 for fail
EI
RET

98 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Example two:

In the following example, the routine in the above example is used to create a loop that
checks for key input and also for a one byte command to be sent over the link port.
IO_Key_Lp:

RES indicOnly,(IY+indicFlags) ; key scan turned on
EI
HALT ; low power sleep mode

;
B_CALL GetCSC ; check for Scan Code on

; wake up
;

CP SkEnter ; jump if enter key
JR Z,HaveEnterKey

;
CALL haveIOcmd ; check for link
JR NZ,keylp1st ; jump if no byte sent

;
JP LinkCmdSent ; link command received

;

Example three:

This sample routine will attempt to send the register pair HL over the link port. RET
Z = 1 if successful, else Z = 0.
sendHl:

LD A,H ; send H first
PUSH HL ; save L
CALL sendbyte ; send to other side
POP HL
RET NZ ; return if failed
LD A,L ; time to send L

;
sendbyte:

DI
PUSH AF
LD A,D0HD1H ; set both data lines to high,

; free
OUT (bport),A
POP AF
SET indicOnly,(IY+indicFlags)

;
AppOnErr linkfail ; See Example 1
B_CALL SendAByte ; system routine to send byte
JR endexio ; See Example 1

Chapter 2: TI-83 Plus Specific Information 99

TI-83 Plus Developer Guide Third Release May 28, 2002

TOOLS AND UTILITIES LAYER

Error Handlers
Error exception handlers can be set up to capture any system error that occurs while
executing a block of code that an error handler is placed around.

• A macro is used to install the error handler:

AppOnErr Label

If your assembler does not support macros, use the following code:
LD HL,Label
CALL APP_PUSH_ERRORH

– Label = Location that the Program Counter (PC) is set to if a system error
occurs.

– All registers are destroyed, except the Accumulator.

– Six pushes are made onto the stack. Make sure all the information that is
needed from the stack is removed before installing the error handler.

• A macro is also used to remove the error handler:

AppOffErr

If your assembler does not support macros, use the following code:
CALL APP_POP_ERRORH

The above is used when the error handler is no longer needed and no system error
has occurred.

The Stack Pointer (SP) must be at the level it was at immediately following the
AppOnErr. Do not call a routine to set the error handler and then remove it outside of
that routine.

• If an error occurs while the handler is place:

– The system restores the SP, the Floating Point Stack, and the Operator Stack
back to their levels when the handler was initiated.

– The error handler is removed from the stack.

– The PC is set to the Label specified when the handler was initiated and
execution begins there. The Accumulator contains the error code for the error
that tripped the handler.

– At this point, the Application can:

• Ignore the error.

• Display its own error message.

100 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

• Do some clean up and let the system report the error.

• Modify the error code to remove the GoTo option and have the system report
the error with only a Quit option.

Example one:

Do not allow the error to be reported by the TI-83 Plus. Compute 1/X and return CA = 0
if no error, otherwise return CA = 1.

AppOnErr My_Err_handle
;

B_CALL RclX ; OP1 = (X)
B_CALL FPRecip ; 1/OP1,

;
; If no error then returns from the call
;

AppOffErr ; remove the error handler
OR A ; CA = 0 for no error
RET

;
; control comes here if X = 0 and generates an error
;
My_Err_handle:

SCF ; CA = 1 for error
RET

Example two:

Allow the error to be reported by the TI-83 Plus, but remove the GoTo option.
Compute 1/X.

AppOnErr My_Err_handle
;

B_CALL RclX ; OP1 = (X)
B_CALL FPRecip ; 1/OP1,

;
; If no error then returns from the call
;

AppOffErr ; remove the error handler
RET

;
; control comes here if X = 0 and generates an error, ACC = error code
;
My_Err_handle:

RES 7,A ; bit 7 of error code controls GoTo
; option

B_JUMP JError ; trip the error with no GoTo option

Chapter 2: TI-83 Plus Specific Information 101

TI-83 Plus Developer Guide Third Release May 28, 2002

Nested Error Handlers
Error handlers can be nested inside of each other. The last error handler initiated will be
notified of any error that occurs. When the first handler is notified of the error, none of
the previous handlers initiated are notified. If the handler ignores the error or handles it
on its own, execution continues on with the other handlers still installed.

If that first error handler B_JUMPS back to the system error handler, (JError or
JErrorNo), the error handler that was initiated before the one that was just tripped is
now tripped itself.

Fig. 2.14 below shows the flow of the error with three nested error handlers initiated.

TI-83 Plus System Error Handler

1. The System Error Handler sends the error to Handler # 3
2. Handler # 3 sends the error back to the System Error Handler
3. The System Error Handler sends the error to Handler # 2
4. Handler # 2 sends the error to the System Error Handler
5. The System Error Handler sends the error to Handler # 1

An error occurs

Handler # 3 initiated last

Notified of error first

Sends error back to the
System Error Handler

Handler # 2 initiated last

Notified of error second

Sends error back to the
System Error Handler

Handler # 1 initiated last

Notified of error third

Handles the error on
its own

Step 1 Step 2 Step 4Step 3 Step 5

Fig. 2.14: Error Flow

See the System Routine Documentation for details on the JError and JErrorNo routines.

102 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Utility Routines
The following is information on the floating-point, complex number, and other math
routines.

Floating-Point Math
• All of the floating-point math routine arguments are input in OP1 or OP1/OP2, and

output in OP1, unless noted below.

• Errors can be generated by the math routines. See the Error Handlers section.

• All of the inputs to these routines are floating-point numbers.

• See the System Routine Documentation, entry points UnOPExec and BinOPExec
to access this functionality with arguments other than floating-point numbers.

Routine Function
FPAdd OP1 plus OP2

FPSub OP1 minus OP2

FPRecip 1 divided by OP1

FPMult OP1 times OP2

FPDiv OP1 divided by OP2

FPSquare OP1 times OP1

SqRoot Square (OP1)

Plus1 OP1 plus 1

Minus1 OP1 minus 1

InvSub OP2 minus OP1

Times2 OP1 plus OP1

TimesPt5 OP1 times .5

AbsO1PAbsO2 |OP1| plus |OP2|

Factorial (OP1)!

Table 2.17: Floating-Point Basic Math Functions

Chapter 2: TI-83 Plus Specific Information 103

TI-83 Plus Developer Guide Third Release May 28, 2002

Routine Function
Sin Sin(OP1)

Cos Cos(OP1)

Tan Tan(OP1)

SinCosRad OP1 = Sin(OP1) and OP2 = Cos(OP1) force radian mode on input

ASin inv Sin(OP1)

ACos inv Cos(OP1)

ATan inv Tan(OP1)

ASinRad inv Sin(OP1) force answer in radians

ATanRad inv Tan(OP1) force answer in radians

DToR OP1 degrees to radians

RToD OP1 radians to degrees

SinH SinH(OP1)

CosH CosH(OP1)

TanH TanH(OP1)

SinCosHRad OP1 = SinH(OP1) and OP2 = CosH(OP1)

ASinH inv SinH(OP1)

ACosH inv CosH(OP1)

ATanH inv TanH(OP1)

Table 2.18: Trigonometric and Hyperbolic Functions

Routine Function
YToX OP1^OP2

XRootY OP1^(1 divided by OP2)

Cube OP1^3

EToX e^OP1

TenX 10^OP1

LnX ln(OP1)

LogX log(OP1)

Table 2.19: Floating-Point Power and Logarithmic Math Functions

104 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Routine Function
Max Max(OP1, OP2)

Min Min(OP1, OP2)

Ceiling Intgr(negative OP1)

Int Int(OP1)

Intgr Intgr(OP1)

Trunc integer part(OP1)

Frac fractional part(OP1)

CpOP1OP2 non-destructive compare OP1 and OP2

Round generic Round(OP1)

RndGuard Round(OP1) to 10 digits

RnFx Round to current fix setting

Random generate random floating-point number

RandInt Generate a random integer between OP1 and OP2

Table 2.20: Floating-Point Miscellaneous Math Functions

Miscellaneous Math Functions

Floating-Point Math Functions that Output Complex Results
The TI-83 Plus has two complex math modes, a + bi (rectangular coordinates) and re^θI
(polar coordinates), that allow complex numbers to be generated by functions that take
RealObj data type (floating-point) as input. If neither of these modes is set, then these
functions will generate an error when the arguments input would produce a complex
result. These functions include LnX, LogX, SqRoot, YToX and XRootY.

To have these routines return complex results for real data type inputs:

• set one of the complex modes:

– fmtRect, (IY + numMode) rectangular complex

– fmtPolar, (IY + numMode) polar complex

• reset

– fmtReal, (IY + numMode) real output only

Chapter 2: TI-83 Plus Specific Information 105

TI-83 Plus Developer Guide Third Release May 28, 2002

• The floating-point math routines described in the previous sections will always return
an error when the result is a complex number. To have floating-point math routines
return the complex result, the routines described in Other Math Functions need to be
used.

Note: You do not need to change the mode to complex in order to use the complex functions with
complex inputs. This is only done to get complex results when inputs are of the RealObj type.

Complex Math
• Complex numbers are composed of pairs of floating-point numbers.

• Complex number math routine arguments are input in OP1/OP2 or OP1/OP2 and
FPS1/FPST, and the results are returned in OP1/OP2 or OP1. See Floating Point
Stack section.

• Errors can be generated by the math routines. See the Error Handlers section.

• See the System Routine Documentation, entry points UnOPExec and BinOPExec,
to access this functionality with arguments other than complex numbers only.

Routine Function
Cadd FPS1/FPST plus OP1/OP2

Csub FPS1/FPST minus OP1/OP2

CRecip (OP1/OP2)^ negative 1

Cmult FPS1/FPST times OP1/OP2

Cdiv FPS1/FPST divided by OP1/OP2

CSquare OP1/OP2 times OP1/OP2

CSqRoot SquareRoot (OP1/OP2)

CMltByReal OP1/OP2 times OP3

CDivByReal OP1/OP2 divided by OP3

Table 2.21: Complex Math Basic Math Functions

106 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Routine Function
CYtoX FPS1/FPST^OP1/OP2

CXrootY FPS1/FPST^((OP1/OP2)^ negative 1)

CEtoX e^(OP1/OP2)

CTenX 10^(OP1/OP2)

CLN LN(OP1/OP2)

CLog log(OP1/OP2)

Table 2.22: Complex Math Power and Logarithmic Math Functions

Routine Function
CAbs OP1 = abs(OP1/OP2)

Conj Conj(OP1/OP2)

Angle OP1 = Angle(OP1/OP2)

CIntgr Intgr(OP1/OP2)

CTrunc integer part(OP1/OP2)

CFrac fractional part(OP1/OP2)

RToP (OP1/OP2) rectangular to polar

PToR (OP1/OP2) polar to rectangular

ATan2 OP1 — ATan2(OP1/OP2) where OP1 = imaginary part,
OP2 = real part of complex

ATan2Rad Same as ATan2 except force results to radian mode

Table 2.23: Complex Math Miscellaneous Math Functions

Chapter 2: TI-83 Plus Specific Information 107

TI-83 Plus Developer Guide Third Release May 28, 2002

Other Math Functions
This section covers math functions with data types other than RealObj and CplxObj. It
also covers accessing math functions not listed in the above sections.

Many of the functions in the previous two sections can also be used with arguments
other than RealObj and CplxObj. For example

Sin(L1) Sine of list L1
4 * [A] 4 times matrix [A]
(1+2i) + L3 complex number (1,2) + list L3

The problem is the entry points that execute the above functions only use RealObj and
CplxObj arguments as inputs/outputs. There are two solutions to this problem:

• An application could use these entry points to produce results for arguments that are
lists or matrices by doing the element-by-element operations on the input. This
approach is not recommended.

• Execute these functions with mixed arguments using the system’s executor context.

The systems executor is used during parsing (see the next section for details) to
generate results. The executor is partitioned by the number of arguments that a
function takes as inputs. The routines used include:

UnOPExec Executes functions with one argument.

BinOPExec Executes functions with two arguments.

ThreeExec Executes functions with three arguments.

FourExec Executes functions with four arguments.

FiveExec Executes functions with five arguments.

Input to each of the above routines is a function to be executed along with the
argument(s) to be input to the function.

See the System Routine Documentation for a complete list of what functions can be
executed through the executor, and also for more details on the inputs/outputs
requirements.

Results from these routines may be stored in Temporary Variables. See to the
Temporary Variables Returned from the Parser section for additional details.

108 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Function Evaluation
Applications may need to evaluate (parse in TI-83 Plus terminology) functions
(equations). Using the TI-83 Plus, equations can only contain functions that return
values. Programming commands and other commands that do not return a result to Ans
are not valid in expressions, and therefore can only be executed from a program
variable. See the TI-83 Plus Graphing Calculator Guidebook for more information.

Parsing an equation is done to return the value of the equation with the current value of
the variables that are contained in it.

Equations can only be parsed if they are stored in an equation variable, an EquObj data
type — for example Y1, Xt1, or a temporary equation variable.

Errors can be generated during parsing. If this occurs, the system error context will take
over and in most cases, cause the application to be shut down. Applications should
install error handlers before parsing equations in order to stop the system error context
from activating.

See the Error Handling section in this chapter for further information.

Parse Routine
ParseInp — executes an equation or program stored in a variable.

• Inputs: OP1 equals the name of equation to parse

• Outputs: OP1 equals the result if no error was reported. The output can be any
numeric data type including strings. If the result returned from the parser is:

– RealObj then OP1 equals the result — a floating-point number.

– CplxObj then OP1/OP2 equals the result — two floating-points numbers.

– ListObj, CListObj, MatObj, or StrngObj then the name of a variable that contains
the result data is returned in OP1, a temporary system variable. Use of
temporary variables returned by the parser will be explained later in this section.

• The parser can create temporary variables even if a temporary variable is not
returned as the result.

Chapter 2: TI-83 Plus Specific Information 109

TI-83 Plus Developer Guide Third Release May 28, 2002

For example, parse the graph equation Y1 and store the answer in Y. Install an error
handler around the parsing and the storing routine to catch any errors. RET CA = 0 if
OK, else ret CA = 1.

LD HL,y1Name
RST rMov9ToOP1 ; OP1 = Y1 name

;
AppOnErr ErrorHan ; error handler installed

;
B_CALL ParseInp ; parse the equation

;
; returns if no error
;

B_CALL CkOP1Real ; check if RealObj
JR Z,storit ; if a RealObj, try to store to Y

;
AppOffErr ; remove the error handler

;
; come here if any error was detected
; error handler is removed when the error occurred
;
ErrorHan:

B_CALL CleanAll ; remove temps if any
SCF ; set CA flag to signal failure
RET

;
storit:
;

B_CALL StoY ; store to Y, ret if no error, else
; ErrorHan

;
AppOffErr ; remove error handler

;
B_CALL CleanAll ; remove temps if any
CP A ; CA = 0 for no error
RET

;
y1Name:

DB EquObj, tVarEqu, tY1, 0

110 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Temporary Variables
The parser can return results that cannot be fully contained in the OP registers due to
their size. In these cases, the parser needs to return the result stored in a temporary
variable. Temporary variables can also be created by parsing and not be returned as
results (see the CleanAll routine in the following section).

A temporary variable is like any other user variable that can be created. They reduce
free memory available and have Symbol Table entries. Temporary variables exist for the
following data types:

ListObj CListObj MatObj StrngObj EquObj

Temporary variables are assigned unique names at the time that they are created. The
first character of a temporary variable name is the $, followed by a two-byte counter,
Least Significant Byte (LSB), Most Significant Byte (MSB). The counter is used to create
the unique names. For example, if the fifth temporary variable is a list, it would be:

OP1 +1 +2 +3 +4 +5 +6 +7 +8

ListObj
 01h

 $
 24h

 04h

 00h

 ? ? ? ? ?

Table 2.24: Temporary Variables Example

(pTempCnt) is a two-byte counter in RAM that the system uses to generate the next
temporary variable. This allows for up to 64K unique temporary variables.

The (pTempCnt) counter is initialized to 0000h and is incremented after each new
temporary variable is created. This counter needs to be managed properly when using
temporary variable. It needs to be completely or partially reset periodically in order to
keep temporary variable usage available. The Managing Temporary Variables section
provides additional details.

Chapter 2: TI-83 Plus Specific Information 111

TI-83 Plus Developer Guide Third Release May 28, 2002

Fig. 2.15 illustrates the location in RAM the temporary information is stored.

The data area for temporary variables is
located between User Memory (user data
storage) and the Floating Point Stack. It is
deliberately separated from user data so
that all of the temporary data area can be
deleted with no effect on user data storage.
The first byte of temporary storage is at
address (TempMem) and the last byte is at
(FPbase) - 1.

The symbol table entries
for temporary variables
are separated from all of
the other entries. The first
byte of the temporary
symbol table is at (Ptemp)
and the last byte is at
(Opbase) + 1.

System RAM
(Fixed Size)

User RAM
(Grows Up)

Temporary RAM
(Grows Up)

Floating Point Stack
(Grows Up)

Free RAM

Operator Stack
(Grows Down)

Symbol Table
(Grows Down)

Hardware Stack
(Fixed Size)

Addr
8000h

FFFFh

Temporary Variable
Symbol Table

User Symbol Table

Fig. 2.15: TI-83 Plus System RAM

Using Temporary Variables
Temporary variables can be used the in the same manner as any user variable. They
can be modified, resized, used to store in to a user variable, and input to system
routines.

These variables are called temporary as they are not intended for long term use. Their
main purpose is to provide a way to hold onto intermediate results dynamically as the
results are needed. Temporary variables should be freed up as soon as they are no
longer needed. Some system routines will automatically free up temporary variables if
they are used as inputs (this information is noted in the System Routine
Documentation).

Managing Temporary Variables
The life span of a temporary variable is determined by the application. Once a
temporary variable is no longer needed, it can be marked dirty by the application.
Marking a temporary variable dirty identifies it for deletion. Deleting the temporary
variable frees the RAM space it occupied.

This marking scheme is used to save time while parsing an equation. The
parser/executor does not use time deleting temporary variable — it only marks the
temporary variable for deletion after the variable is no longer needed.

112 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Every time a temporary variable is needed, a check if made for available RAM. If there
is not enough free RAM, the temporary variables that are marked dirty are deleted one
at a time until enough RAM has been freed. If enough RAM were free at the start of
parsing, then in most cases, none of these deletions would take place.

A temporary variable is marked dirty by setting bit seven of the temporary variable’s sign
byte located in its Symbol Table entry. For example, if OP1 equals the name of a
temporary variable to mark dirty:
MarkTemp:

B_CALL ChkFindSym ; look up temp
;
; HL = pointer to Symbol Table entry
;

SET 7,(HL) ; mark dirty
RET

Deleting Temps and Setting (pTempCnt)
There are five different ways that temporary variables are deleted.

• Quitting the application and returning to the home screen — This will delete all
temporary variables and reset (pTempCnt) equal to 0000h

• System error context is started — This will delete all temporary variables and reset
(pTempCnt) equal to 0000h

• System routine EnoughMem — This routine is used to check if a certain amount of
RAM is free. If the requested amount is not free, this routine will delete dirty
temporary variables until either no more dirty temps exist, or the requested amount
of RAM is available due to temporary variable deletions. (pTempCnt) is not affected.

• System Routine FixTempCnt — This routine is used to delete all temporary
variables with a name that contains a counter value equal to DE.

 The parser uses this routine in its handling of temporary variables when parsing a
program or the home screen entry.

 Before each line of the program is parsed, the current value of (pTempCnt) is saved.
This value is used to create the next temporary variable needed.

 After parsing each line of the program, the resulting value, if one, is stored into the
Ans variable. Once the result is stored into Ans, there can be no other temporary
variable that may have been created during the parsing of the line that are still
needed.

 Calling FixTempCnt with DE equal to save pTempCnt, will delete all temporary
variables created by the last line parsed. The value (pTempCnt) is reset back to the
value saved before the line was parser, DE.

• System Routine CleanAll — This routine is used when the error context is started,
or control is returned to the home screen. This will delete all temporary variables and
reset (pTempCnt) equal to 0000h.

Chapter 2: TI-83 Plus Specific Information 113

TI-83 Plus Developer Guide Third Release May 28, 2002

What should applications do?

Most applications should be able to use the CleanAll routine to manage temporary
variables. Applications should make a call to the CleanAll routine as soon as all
temporary variables in use are no longer needed. This is especially important if
temporary variables are going to be created in a looping environment. If the temporary
variables are not cleaned before the loop is restarted, RAM will become full.

If some temporary variables are needed to be kept alive for extended periods of time,
make sure that any other temporary variables that may be created by the application, or
returned from the parser, are at least marked dirty when they are no longer needed.
That way, the RAM they take up can be reused if needed.

It is also good a good practice to try and use the Ans variable instead of temporary
variable. The StoAns routine can be used to store to the Ans variable.

114 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Working with TI Language Localization Applications
TI has made available applications that change the language used for functions
commands and strings, from English to an alternate language. Applications can take
advantage of the language setting by being able to modify their output to match the
current language setting, if desired. The language setting is stored in two bytes of RAM.
The table below matches each language with their corresponding values.

The values are store in RAM locations localLanguage and localLanguage+1.

Language Main language Sub Language

English LANG_ENGLISH SUBLANG_ENGLISH

Danish LANG_DANISH SUBLANG_NEUTRAL

Dutch LANG_DUTCH SUBLANG_DUTCH

Finnish LANG_FINNISH SUBLANG_NEUTRAL

French LANG_FRENCH SUBLANG_FRENCH

German LANG_GERMAN SUBLANG_GERMAN

Hungarian LANG_HUNGARIAN SUBLANG_NEUTRAL

Italian LANG_ITALIAN SUBLANG_ITALIAN

Norwegian LANG_NORWEGIAN SUBLANG_NEUTRAL

Polish LANG_POLISH SUBLANG_NEUTRAL

Portuguese LANG_PORTUGUESE SUBLANG_PORTUGUESE

Spanish LANG_SPANISH SUBLANG_SPANISH

Swedish LANG_SWEDISH SUBLANG_NEUTRAL

Table 2.25: Language Table

For example, check if the current language is Spanish:
LD HL,(localLanguage) ; H = sublang,

; L = main
LD DE,LANG_SPANISH + 256*SUBLANG_SPANISH

;
B_CALL CpHLDE ; compare, Z = 1

; if Spanish

Chapter 2: TI-83 Plus Specific Information 115

TI-83 Plus Developer Guide Third Release May 28, 2002

Entering and Exiting an Application Properly
The state monitor passes control to the TI-83 Plus application loader which sets the
monitor’s control vectors for key presses, partial put aways, full put aways, window
resizing, redisplay, and error.

TI-83
State Monitor

TI-83
Application

 Loader

Application

Fig. 2.16: Control Flow

The application now has three choices in which type of environment it will run in –
Stand-alone, Stand-alone with Put Away notification, and Monitor driven (not covered in
this release)

Stand-alone
The application handles all key inputs itself and does not need access to the TI-83 Plus
menu system.

The application will also not be notified if the user turns the unit off. This means that no
data, not already saved in a variable, will be lost when the unit turns off. The application
is terminated with no notice.

Note: Turning off can occur only if the GetKey routine is used directly by an application, or if a system
routine called by the application uses GetKey.

The application terminates without notice if link activity is detected while waiting for a
key.

Start-up Code
No special code is necessary at the start of execution.

116 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Exit Code
The application wants to terminate and return to normal TI-83 Plus operations. Some of
the calls in this sequence are not always needed — see the comments.

The following sequence exits the application cleanly even if the hardware stack is not at
the same level upon entry to the application. The stack is reset by the system.
ExitCode:

LD (IY+textFlags),0 ; reset text flags
;
; This next call is done only if application used the Graph Backup Buffer
;

B_CALL SetTblGraphDraw
;

B_CALL ReloadAppEntryVecs ; make sure Application Loader set
;

B_JUMP JForceCmdNoChar ; force to home screen

Fig. 2.27 shows the sequence of events once the application executes the B_JUMP to
JForceCmdNoChar instruction.

Application
 B_JUMP to ForceCmdNoChar

Monitor
Reset stack and informs monitor

to switch to home screen

Monitor
Informs Application Loader

to close

Application Loader
Cleans up

Monitor
Control to Home screen

Home screen
Starts up

Fig. 2.17: Event Sequence

Chapter 2: TI-83 Plus Specific Information 117

TI-83 Plus Developer Guide Third Release May 28, 2002

Stand-alone with Put Away Notification
An application can be notified when the monitor wants the application to terminate.
Terminating events include: turning off, a system error was generated and the user
chose the quit option, and silent link was activated and closed the application. All of
these events are detected while waiting for a key press in the GetKey routine.

An application would want to be notified for a variety of reasons.

• An application needs to save its state before being closed down so that the next time
it is run it can restore the state it was last in.

• An application may want to delete some variables it has created for temporary use
while executing.

• An application may have an edit open that it needs to take care of.

• An application may want to inform the user of some options that are available when
being shut down.

• An application may have modified some system flags that need to be set back to
their normal state such as disabling APD or enabling lower case alpha entry.

Note: The Put Away cannot be stopped by the application. Once notified by the monitor, the application
must terminate.

How is the application notified?

If an application needs to be notified when it is being closed down by the system, it must
change the system monitor vectors.

Only applications that are extensively integrated with the TI-83 Plus system need to use
the monitor. These types of applications are currently not fully supported by this
document. However, the level of support provided allows the application to receive
notification of the application being shut down.

The monitor vectors control the flow of information to the context that is in control at a
given time. A context loads the monitor vectors with pointers to its handling routines.
Information that is sent out by the system monitor include key presses, partial put
aways, full put aways, window size changes, and error recovery. Normally there is a
separate handler for each of these events.

118 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

When an application is executing, the current context in control is the Application Loader
as noted in the figure below.

The application to be executed is
chosen by the user from the
calculator APPS menu.

The State Monitor initiates the
Application Loader context.

The Application Loader loads the
State Monitor vectors to receive all
information from the state monitor.

The Application Loader jumps to the
application for execution. The
application is ready for stand-alone
execution.

At this point the application is
executing under the stand-alone
situation described in the previous
section. No notification of
termination will be received.

Fig. 2.18: Application Loader Process

An application must change the monitor vectors so that any information sent by the
monitor, is sent directly to the application.

Start-up Code
These lines of code must be at the beginning of the application.
;

LD HL,AppVectors
B_CALL AppInit ; Apps monitor control vectors written

;
; all of the vectors are set to a ‘RET’ instruction in the App except
; for the ‘Put Away’ vector which is set to the routine to handle the
; Put Away in the App.
;
;

Chapter 2: TI-83 Plus Specific Information 119

TI-83 Plus Developer Guide Third Release May 28, 2002

This is the rest of the application code.
Dummy:

RET
;
; Table of vectors loaded into monitor control vectors
;
AppVectors:

DW Dummy ; set this vector to a ‘RET’ instruction
DW Dummy ; set this vector to a ‘RET’ instruction
DW AppPutaway ; set this vector to Apps Put Away

; routine
DW Dummy ; set this vector to a ‘RET’ instruction
DW Dummy ; set this vector to a ‘RET’ instruction
DW Dummy ; set this vector to a ‘RET’ instruction
DB appTextSaveF ; system flag, this is a normal setting

Now the application is connected to the system monitor through the system monitor
vectors. If the monitor were allowed to be in control then all of the information it sends to
the system would come to the application.

Since the monitor is not in control, information will be sent to the application under three
circumstances.

• While GetKey is executing the TI-83 Plus is turned off.

• While GetKey link activity is detected.

• If a system error is generated and allowed to be displayed, the Quit option is chosen
by the user.

In all three circumstances, the system monitor will jump to the application at the label
AppPutAway, or whatever label is used in the AppVectors table.

Sample code to handle the apps termination is given. The turning off situation is handled
differently than the other two.

120 Chapter 2: TI-83 Plus Specific Information

TI-83 Plus Developer Guide Third Release May 28, 2002

Put Away Code
This code should not be used when the application terminates on its own. An application
should follow the Stand-alone example to exit without the monitor initiating the
termination.
AppPutAway:
;
;
; Application gets itself ready for terminating by cleaning any system flags
; or saving any information it needs to.
;

RES plotLoc, (IY+plotFlags) ; draw to display & buffer
RES textWrite, (IY+sGrFlags) ; small font written to

; display
; This next call resets the monitor control vectors back to the App Loader
;

B_CALL ReloadAppEntryVecs ; App Loader in control of
; monitor

;
LD (IY+textFlags),0 ; reset text flags

;
; This next call is done only if application used the Graph Backup Buffer
;

B_CALL SetTblGraphDraw
;
; Need to check if turning off or not, the following flag is set when
; turning off:
;

BIT MonAbandon,(IY+monFlags) ; turning off ?
JR NZ, TurningOff ; jump if yes

;
; if not turning off then force control back to the home screen
;
; note: this will terminate the link activity that caused the application
; to be terminated.
;

LD A, iall ; all interrupts on
OUT (intrptEnPort), A
B_CALL LCD_DRIVERON ; turn on LCD
SET onRunning, (IY+onFlags) ; on interrupt running
EI ; enable interrupts

B_JUMP JForceCmdNoChar ; force to home screen
;
TurningOff:

B_JUMP Putaway ; force App loader to do its
; put away

TI-83 Plus Developer Guide Third Release May 28, 2002

Application Development
Process

The following chart provides an overview of the steps necessary to create a TI-83 Plus
application. A simple application is used to walk you through the detailed steps. Use the
chart as a general guide. This process assumes that you are running Windows 95
operating system and that you have access to a text editor such as Notepad.

Text Editor
 (Notepad, etc.)

Source
File (.asm) Certificate

Source Object
file (.obj)

Signed Applet
 (.app)

Link
Description

Develop Key
(.key)

Signed Applet
 (.app)

Scripting
 Utilities

Header
Utility

Assembler

Linker

Texas
 Instruments

Application
 Sign

Simulator/
 Debug

Site Testing?
 Distribution?

 Debug?

Good to Go?

Library
Header Files

Library
Object Files

B

B

A

A

YESNO

Debug

Dev
 Calc

TI
 Calc

Prod
Calc

TI
 Calc

Site Testing
 .hex Distribution

Fig. 3.1: Application Development Flow

120 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

PROGRAMMING LAYER
Chapter 2 covered the Hardware layer, the Driver layer, and the Tools and Utilities layer.
The final layer in the TI-83 Plus architecture is the Programming layer.

There are three kinds of programs that can be created for the TI-83 Plus: TI BASIC
programs, ASM programs, and Applications. This chapter is primarily concerned with
applications. In the following discussion, Z80 refers to the type of microprocessor used
by the TI-83 and TI-83 Plus.

TI-BASIC Programs
These programs were available on the TI-83 and may be known as scripts or keystroke
programs. These programs are created using the PC program TI GRAPH LINK for TI-
83 Plus or directly on the calculator using the [PRGM] New [1:Create New] options. The
details for creating this kind of program are provided in the TI-83 Plus Guidebook.
These programs consist of commands that mimic the calculator keystroke commands,
plus some additional keywords for control-flow logic. These programs are loaded into,
and run from, the calculator RAM. There must be sufficient free RAM available in order
to be able to load a TI BASIC program. This language is interpreted, so these programs
do not have to be assembled or compiled before you run them on the calculator.
Interpreting the programs, however, causes them to be relatively slow. When these
programs execute, if they contain an illegal statement or perform an illegal operation,
the interpreter stops the program and displays an error message. The calculator
functions normally after such an error.

ASM Programs
ASM programs were available on the TI-83 and may be known as assembly programs
or ASAPs. These programs are written in Z80 assembly language and then adapted to
use the calculator’s pre-existing ability to run TI BASIC programs. After the ASM
program is assembled, it is converted to a readable text format that can then be
downloaded to the calculator in the same way as a TI BASIC program. A special
keyword at the start of the program tells the calculator interpreter that it is an ASM
program instead of a normal TI BASIC program. The interpreter then converts the
program into Z80 machine language and gives it control of the processor. Since these
programs have total control over the calculator, they are fast, but any programming
errors can be serious, causing the calculator to become unusable until reset. These
programs are able to call built-in calculator routines. They run in RAM and are limited in
size to 8K.

Chapter 3: Application Development Process 121

TI-83 Plus Developer Guide Third Release May 28, 2002

Applications
Applications, or apps, are assembly language programs. These programs are different
from ASM programs primarily in that they are stored in and run from the Flash ROM,
where they are not likely to be erased, and they take no RAM space. Applications only
need RAM for any variables they might create. Apps have access to all the same
system routines as ASM programs and they can be much larger than ASM programs.
Apps must be created on a PC. They have special requirements on content and linking.
They must be digitally signed if they are to be distributed. Additionally, a user calculator
must have an internal digital certificate in order for the app to run. This is not true if the
app is freeware or shareware.

ASM versus Applications
Assembly programs written to be ASM programs must be modified in order to function
correctly as Applications. The major difference is that ASM programs run from RAM, but
Applications run from Flash ROM. Therefore, applications cannot be self-modifying,
whereas ASMs can. Applications also need additional identification code at the start of
the program. They need additional code to handle errors and exceptional events. And,
they must be digitally signed if they are to be distributed.

DEVELOPMENT SYSTEM
The simulator is for general development use and the steps for setting it up, getting
started, and creating a sample application are presented in the following sections.

Using the Simulator System — Requirements for
Getting Started

The following are the requirements to be able to develop TI-83 Plus applications using
TI’s simulator development system. The Zilog Developer Studio and TI-83 Plus
Simulator/Debugger installation and operations are covered in Chapter 4.

• IBM PC compatible computer.

• Windows 95 operating system

• The Zilog Developer Studio

• The TI Simulator/Debugger

With the above environment up and running, let us look at creating a sample
application.

122 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

Creating an Application for Debugging — One-Page
and Multi-Page Apps

In the section that discusses memory maps, you saw that there are up to ten 16K
Flash ROM pages available for storing applications. This storage area is also used for
archived calculator variables, so as the archive grows, fewer pages are actually
available for apps. In theory it is possible to create an app that takes up all 10 pages
and is 160K in size. However, most apps will surely be smaller and this is desirable to
conserve memory and download time.

Apps are always allocated in whole pages. It is not possible for an app to share a page
with another app or archived variables. If an app only uses 40 bytes it is still allocated
the whole 16K Flash ROM page. And if an app requires 16K+1 bytes, it is allocated
exactly two 16K Flash ROM pages. For this reason we say that apps are a 1-Page App
or a Multi-Page App. Creating multi-page is a little more complicated than 1-page apps,
so we will begin with 1-page apps.

A Brief Overview of Certificates and Application
Signing

In normal calculator usage, an application is installed in a calculator by downloading it
from a PC or another calculator via the link cable. When the app is received, it is
examined by the operating system loader for a valid digital signature. All Flash apps to
be distributed must be digitally signed before they will be accepted by the operating
system. Applications can be signed as freeware or authenticated applications.
Freeware applications can run on any TI-83 Plus or Silver Edition calculator. The
0104.key file and Wappsign utility are provided with the SDK and can be used to sign
applications as freeware. Authenticated applications require a certificate on the
calculator and must be signed by TI.

Creating Applications that Fit On One Page
Applications are written in Z80 Assembly language. While there are C to Z80 cross
compilers, TI recommends the use of assembly language for efficiency and memory
space reasons. The format of the source code depends on the assembler/linker
package that you use. With the package TI recommends (ZDS), App source code is
plain ASCII text. There is no special editor required. You can use any editor (such as
Notepad) that can save the file as plain ASCII. The required source code syntax also
varies by assembler. The examples and discussions provided by TI conform to the
requirements of the Zilog Developer Studio (ZDS) assembler and linker.

ZDS uses a file naming convention of *.asm for all source files containing executable
statements and *.inc for all include files.

Chapter 3: Application Development Process 123

TI-83 Plus Developer Guide Third Release May 28, 2002

The Hello Application
TI has provided a sample application called Hello. The source for this application is in
the file hello.asm. Open this file in a text editor and look at it to get a general idea of the
main structural elements. The following sections address these elements.

Accessing System Resources
The program begins by including the TI83plus.inc file. This file is provided by TI. This file
includes constant definitions, macros, and system routine entry point definition needed
to use system resources.

Application Headers
The most unique thing about the TI-83 Plus application source code is the long set of
data that begins the file. This data is known as the application header. The application
header contains information used by the calculator operating system when the user tries
to run the application. The operating system uses this information to determine the app
name and whether a user is permitted to use it. A valid header must be present as the
first data in the source file, prior to any executable statement, in order for the app to run
properly.

Header Creation
The header in the hello.asm file can be used for any single page application.

Calling System Routines
On the TI-83 Plus there are a number of built-in system routines available for an
application to use. These routines can not be called directly using the standard Z80 call
instruction. In order to call a system routine, you must use a statement of the form:

B_CALL routine

In this example, routine is the name of any system routine. B_CALL is a macro defined
in the system include file.

Accessing System Variables
Certain fixed locations in RAM are defined for system code usage. The contents of
these locations typically affect some standard system behavior. System routines
sometimes use the variables, so they are in effect parameters to the system calls. To
access one of these variables, you use its symbolic name (e.g., curRow). The variable
names are defined in the system include file, TI83plus.inc.

124 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

Defining a String
Many system routines operate on null-terminated strings, which are a series of
characters followed by the byte 00h. The assembler supports null-terminated string
creation through use of the directive .asciz. This permits you to type the string in
readable text instead of defining each byte separately. Each character of the string is
translated to its ASCII code and stored at the current location and a null character is
then appended. In our example, we define a label that points to the first character of the
string so that we can point to the string in our system calls.

Erasing the Screen
To erase the screen, the example does the system call.

B_CALL ClrLCDFull ; Clear the screen

Printing Text to the Screen
To print text to the screen, the example uses the system call.

B_CALL PutS ; Print the hello string from RAM

This routine prints a null-terminated string in large text to the screen. It expects you to
have already set up the screen row and column where it should start printing the string.
The screen rows range from 0 (Top) to 7 (Bottom), and the columns range from 0 (Left)
to 15 (Right). You set these values in the system variable curRow and curCol prior to the
call. The PutS routine expects Z80 register HL to contain the address of the first
character of the string. It requires that this string be in RAM.

Copying the String
To copy a string from Flash ROM, where it is defined in your program, into RAM, where
the system routine PutS can use it, you can use the system routine StrCopy. This
routine expects the address of the source string to be in HL and the address of the first
RAM destination character to be in DE. It expects a null-terminated string. The example
copies the string Hello into the OP1 area in RAM (see next paragraph).

System RAM Registers
The calculator system code performs many operations on floating-point values. It uses a
floating-point format that requires up to 11 bytes in certain situations. Since floating-
point operations are so common, it defines six 11-byte areas that it uses frequently for
storing such numbers. It gives these RAM areas the name OP1, OP2, OP3, OP4, OP5,
and OP6. In our example, the system routines StrCopy and PutS do not use or modify
these areas, so we use six of the eleven OP1 RAM bytes to temporarily store our string
in RAM. In this case, we are just using OP1, since changing those locations is harmless;
the fact that OP1 may be used at some later time to pass floating-point data does not
matter.

Chapter 3: Application Development Process 125

TI-83 Plus Developer Guide Third Release May 28, 2002

Reading a Key Press
The system routine GetKey waits for a user to press a key on the calculator keypad.
The example (found in the hello.asm file) uses this fact to implement a pause so that
you can read the string it printed.

Exiting an Application
When an application is ready to quit and return control back to the calculator operating
system so that normal calculator features will again be available, it must perform the
following system call:

B_JUMP JForceCmdNoChar ; Exit the application

Creating a Multiple Page Application
The fundamental change in moving from a one-page application to a multi-page
application is the addition of the branch table. The branch table is used by system code
to perform the correct paging of physical Flash ROM pages into the logical address
space when a call or jump is made to a routine that exists on a page that is not currently
mapped.

Branch Table Entries
The branch table exists only on the first application page, immediately after the header.
It is a table of three-byte entries. Each entry is a pointer to a routine that is either called
or jumped to from a page of the application other than the page where it exists. A
routine that is called or jumped to only from locations on the same page does not need
an entry in the table. Each entry has the form:

DW Address

DB Relative App Page

The Address is the address of the routine on its page. To obtain the address where the
routine is defined, make the label public. You will need to refer to your assembler for
instructions on how to make and reference a public routine.

The Relative Application Page is the page of the application where the routine resides.
In this case, page numbers are relative to the first application page: the first application
page is 0, the second is 1, and so on.

126 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

Branch Table Placement
Application execution begins at the address immediately following the header. The
branch table is not part of the header, but must be placed immediately after the header.
To resolve this conflict, a jump instruction to the start of the application needs to be
placed between the end of the header and the start of the table.

Also, the first entry in the branch table must be located at an address which is a multiple
of three bytes from the beginning of the page. You may need to add padding bytes
before the branch table to ensure this.

Branch Table Equate File
Whenever a branch table exists, an include file must also be generated that contains
equates for the branch table entries. Each equate in the file is the name of the routine in
the branch table with an underscore character prefixed to it. The associated value is the
byte offset where the routine’s table entry begins.

For example, the routine showGoodByeP2 exists on the second application page but
must be called from the first application page, so it needs an entry in the branch table.
The branch table entry for this routine happened to be located at a position 41 times
three-bytes from the start of the first application page.
; Byte offset 41 * 3

DW showGoodByeP2 ; Address
DB 1 ; Second app page

So in the include file the following equate is created.
_showGoodByeP2 equ 41*3

This include file must be included in any source code that calls or jumps to a routine on
another page.

Making Off-Page Calls and Jumps
When code calls or jumps to a routine on an application page different from the point of
the call, this is known as an off-page call or jump. The B_CALL and B_JUMP macros
must be used when making off-page calls and jumps. For example, when the routine
showHelloP2, which is on the second page, is called from the first page, the call must be
made as follow:

B_CALL showHelloP2

A call of the form
CALL showHelloP2

will not work at all.

When an on-page call, a call to a routine that exists on the same application page as the
point of the call, is made, the normal call opcode should be used. B_CALL and B_JUMP
should not be used in this case.

Chapter 3: Application Development Process 127

TI-83 Plus Developer Guide Third Release May 28, 2002

Texas Instruments has provide the AppHeader utility to aid in the creation of multiple
page applications. You can download the AppHeader utility and User’s Guide from
http://education.ti.com/developers.

CREATING A ZILOG DEVELOPER STUDIO PROJECT
Let us go through the use of the Zilog Developer Studio software to build the Hello
application presented earlier in this chapter.

Creating the Project
1. Copy the files from <install directory\Demo to C:\mydemo directory

2. Start Zilog Developer Studio

3. Select File, and then New Project

4. In the New Project dialog box, set the following fields to the specified values:

Selection by = Family

Master = Z180

Project Target = Z80180

Project Name = C:\mydemo\mydemo.zws

Adding Files to the Project
1. Select Project, then Add to project, and then Files…

2. In the Insert files into project dialog box double click on hello.asm.

Project Settings
1. Select Project, then Settings, and then Linker.

2. In the Linker Options dialog box select the Ranges tab.

3. Click on the New… button.

4. In the New Section Range dialog box set the following fields to the specified values:

Bounds = Length

Radix = Hexadecimal

Section Name = .text

Start Address = 4000

Length = 4000

5. Click OK then click Apply then click OK.

128 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

Building the Application
1. Select Build, and then Rebuild All.

2. The following text should appear in the output window:

Building…

hello.asm

hello.o — 0 error(s), 0 warning(s)

Linking…

mydemo.ld — 0 error(s), 0 warning(s)

Chapter 3: Application Development Process 129

TI-83 Plus Developer Guide Third Release May 28, 2002

Loading the Application into the Simulator
1. Start the TI Flash Debugger.

2. Select File, and then New, then TI-83 Plus.

3. Select Debug, and then Go. The TI-83 Plus calculator will be displayed.

4. Click on the Œ key of the calculator.

130 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

Next:

1. Click the ‘ button on the calculator.

2. On the Debugger menu select Debug, and then Stop.

3. Select Load, and then Application.

4. In the Load Application dialog box, double click on the file C:\mydemo\mydemo.hex.

5. Select Debug, and then Go.

6. Click on the Œ key on the calculator. Application three will be titled Hello.

Next:

1. Click the 2 key on the calculator to run the Hello application. Hello will appear on the
screen.

2. Click on any key of the calculator to quit the Hello application.

Chapter 3: Application Development Process 131

TI-83 Plus Developer Guide Third Release May 28, 2002

Debugging the Application
In the following steps we will demonstrate some of the debug capabilities. We will set a
breakpoint at the start of our application and after the Hello string is copied to RAM. We
will then modify the RAM copy of the string to HOWDY.

1. Select Debug, and then Stop.

2. Select View, and then Memory Map.

This view shows us that the Hello application is on page 0x15 of Flash.

1. Select Debug, and then Breakpoints.

2. Update the Edit Breakpoints dialog box so that it looks like the following:

Note: If we look at the hello.lst file we will see that StartApp: is located 0x80 bytes from the start of
the page (at x4080).

132 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

Next:

1. Click OK to exit the Edit Breakpoints dialog.

2. Select Debug, and then Go.

3. Click on the Œ key of the calculator. Note that the Status of the Debugger is
Running.

4. Click on the 2 key of the calculator. The status of the Debugger will change to Halted
when the breakpoint is reached.

Now:

1. Right Click on address line 4098 to bring up the breakpoints pop-up menu.

2. Select Set Breakpoint.

3. Select Debug, and then Go. The calculator display will be cleared and the
disassembly view will be updated to indicate that it is stopped at address 4098.

4. Select View, and then RAM to bring up the RAM view. In the Start Address field
enter OP1.

Chapter 3: Application Development Process 133

TI-83 Plus Developer Guide Third Release May 28, 2002

Finally:

1. Change byte 18479 from 45 E to 4F O, 18480 from 4C L to 57 W, 18481 from 4C L
to 44 D and 18482 from 4F O to 59 Y.

2. Select Debug, and then Go. The calculator will display HOWDY.

3. Click any key on the calculator to quit the application.

4. Select Debug, and then Stop.

5. Select Debug, and then Breakpoints to bring up the Edit Breakpoints dialog box.
Disable the breakpoints by clicking on each of the check boxes in the breakpoint list.

6. Select Debug, and then Go.

7. Click the Œ key on the calculator.

8. Click the 2 key on the calculator. The Hello application will run and display Hello
again.

9. Click any key on the calculator to quit the application.

134 Chapter 3: Application Development Process

TI-83 Plus Developer Guide Third Release May 28, 2002

Now we will modify Flash to change the original Hello string so that the change will
persist between each execution of the application.

1. Select Debug, and then Stop.

2. Select View, and then Flash.

3. In the Start Address field enter 1540A3. The application is on page 0x15. If we look
at the hello.lst file, we will see that the Hello string begins at offset 40A3.

4. Change the byte at address 1540A3 to 0x53, 1540A4 to 0x54, 1540A5 to 0x41,
1540A6 to 0x52 and 1540A7 to 0x53.

5. Select Debug, and then Go.

6. Click the Œ key on the calculator.

7. Click the 2 key on the calculator.

8. The calculator will display STARS (as in the Dallas Stars, the 1999 Stanley Cup
Champions) each time the application runs.

9. Select File, and then Close to close the debug session. A dialog box will appear
asking if you want to save changes.

10. Click the Yes button.

11. The Save As dialog box will appear. Save debug session to
C:\Mydemo\mydemo.83d.

12. Select File, and then Exit to exit the Debugger.

Signing the Application
Texas Instruments has provided the Wappsign (Windows appsign) utility to allow you to
easily sign your applications. Please refer to the Wappsign User’s Guide for more
information.

Downloading the Application
You can use the TI GRAPH LINK™ program or TI Connect™ to download the app to
the calculators.

TI-83 Plus Developer Guide Third Release May 28, 2002

Development Tools

DEVELOPMENT ARCHITECTURE
The TI development architecture is based on the TI simulator/debugger using the Zilog
Developer Studio software. In the following sections, we will address the TI
simulator/debugger and the related tools used to develop applications for the TI-83 Plus
calculator.

Z80 DEVELOPMENT SYSTEM
Zilog Developer Studio is a programming suite made by Zilog to compile assembly code
for its microprocessors, including the Z80 used in many Texas Instruments graphing
calculators. ZDS may have several advantages in that it is graphical, has a built-in
editor, and most importantly, it is free. You may wish to consult Zilog’s web site at
http://www.zilog.com for more information. This documentation is currently written for
version 3.62 of ZDS.

INSTALLATION
ZDS is easily obtained for free from Zilog’s web site. A link to download the current
version is present on their software downloads page at
http://www.zilog.com/support/sd.html. Download the installer and run it. Follow the
instructions to install the ZDS suite. This will install the software on your computer and
place a link to it in your Start menu. Now lets look at the simulator/debugger.

TI SOFTWARE SIMULATOR AND DEBUGGER

Introduction
The TI-83 Plus simulator provides the capability to simulate the TI-83 Plus calculator to
allow debugging of applications. The following is a detailed description of the various
menu options, screens, and operations.

Chapter 4: Development Tools 137

TI-83 Plus Developer Guide Third Release May 28, 2002

Installation
To install the TI Flash Debugger, run the installation file that has been furnished with the
SDK package.

Getting Started
Click on Start, then Programs, then TI-83 Plus Flash Debugger. The simulator/debugger
application presents the following screen.

This window is the home screen for the application. Various other windows with selected
views are presented which are explained below. The menu selections available from the
home screen include:

File

New Ctrl + N

Open Ctrl + O

Open Selection Dialog box

Recent File (grayed out)

Exit

138 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

View

Tool Bar (selected)

Status Bar (selected)

Help

About TI Flash Debugger

The tool bar icons, which are defined by hovering the cursor over the applicable icon,
has selections for New (File), Open (File), Save (File).

The status bar at the bottom of the window indicates the status of the debugger and
simulator. The left side of the status bar indicates the status of the debugger
(i.e., Ready). The first box on the right side of the status bar indicates the status of the
simulator. In this case, the status of the simulator is halted.

The simulator/debugger uses two files:

<xyz>.83d which contains debug information (breakpoints).

<xyz>.clc which contains the calculator memory contents, where <xyz> is the file name.

The next step is either to create a new debug file or open an existing one. For example
purposes, we will create a new debug file. Upon selecting File/New, you must select the
calculator model (TI-73, TI-83 Plus, or TI-83 Plus Silver Edition) you wish to simulate.
Once you have selected a calculator model, the following CPU view is presented with
additional selections on the menu bar and tool bar as noted below.

File
New Ctrl + N

Chapter 4: Development Tools 139

TI-83 Plus Developer Guide Third Release May 28, 2002

Open Ctrl + O

Open Selection Dialog Box

Close

Save Ctrl + S

Save As...
Save As Selection Dialog Box

Recent File (grayed out)

Exit

Debug

Go F5 Starts the debugger

Stop (grayed out) Stops the debugger

Step F11 Allows single instruction stepping

Step Over F10 Steps over CALL and B_CALL instructions.

Breakpoints... Alt+F9

Edit Breakpoints Dialog Box

Address Watch Points… Alt+F8

Address Watch Points Dialog Box

Trace Options... Alt+F7

Trace Option Dialog Box

Enable IO Trace
IO Trace Option Dialog Box

View

CPU Alt+0

Disassembly Alt+1

Flash Alt+2

RAM Alt+3
Flash Monitor Alt+4
RAM Monitor Alt+5
Memory Map Alt+6
Calculator Alt+7
Symbol Table Alt+8
GateArray IO Ports Alt+C

140 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

Display Alt+9
Trace Log Alt+A
IO Buffer Alt+B

OP Table Alt+C
Toolbar (selected)

Status bar (selected)

Calc On Top
Clear Flash Monitor
Clear RAM Monitor

Window
Cascade
Tile
1 CPU

Load

Application... Ctrl+F

Load Application (Hex) File Dialog Box

RAM File... Ctrl+R

Load RAM File Dialog Box

Link
Setting Ctrl+L

Link Settings Dialog Box

Tools
Key Press Recording Setup…
Start Key Press Recording
End Key Press Recording (grayed out)

Key Press Playing Setup…
Start Key Press Playing
End Key Press Playing (grayed out)

Mouse Cursor Tracking Enable

Save Current Calculator Screen
Display a Calculator Screen
Compare Two Calculator Screen

Help

About TI Flash Debugger

Chapter 4: Development Tools 141

TI-83 Plus Developer Guide Third Release May 28, 2002

Breakpoints
Setting breakpoints is available via the manual setup dialog box from the
(Debug/Breakpoint drop down menu). To remove breakpoints, select the breakpoint and
press the Remove button.

Address Watch Points
Address watch points will notify you if an address in RAM or Flash has been read from,
written to, or accessed.

142 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

Trace Options
This dialog box presents options to be considered in performing a trace such as page,
and address ranges.

Let us now look at the CPU View first, then we will present each of other views with
details of each.

Chapter 4: Development Tools 143

TI-83 Plus Developer Guide Third Release May 28, 2002

CPU View Window

The CPU View displays several items of processor information.

IX index register

IY index register

SP stack pointer

PC program counter

AF accumulator/Flag register

BC register

DE register

HL register

A’F’ alternative register

B’C’ alternative register

D’E’ alternative register

H’L’ alternative register

Sign Sign — flags

Zero Zero — flags

Parity/Overflow Parity/Overflow flag

144 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

Half Carry Half Carry

Carry Carry

Add/Sub Flag set if a subtraction operation occurred, otherwise is reset for
any other operation.

Tstate Time State — counts the number of time periods.

Reset Z80 registers and gate array output ports.

Stack List the values currently pushed onto the stack.

Interrupts Indicates if interrupts are enabled.

Disassembly View Window
Contains the address, byte code, and instructions of the disassembled code.
Breakpoints can be set and cleared from this screen by use of the right mouse click.
This window is automatically invoked when the Debugger STOP key is pressed.

Chapter 4: Development Tools 145

TI-83 Plus Developer Guide Third Release May 28, 2002

Flash View Window
Displays the entire contents of Flash memory. This is the Edit/View screen. The ASCII
representation of data is in a column on the right. The Start Address edit box is used to
view addresses by entering the desired page/address and pressing enter. Right clicking
in the window allows you to toggle between physical addressing and logical addressing
modes.

Flash Monitor Window
The Flash monitor notifies you if a location in Flash ROM has been read from, written to, or
both. The Start Address edit box is used to view addresses by entering the desired
page/address and pressing enter. Right clicking in the window allows you to toggle between
physical addressing and logical addressing modes, and to clear the monitor. If a location has
not been accessed, it will contain 00. When the location has been read from, it will contain 11.
If the location has been written to, it will contain 99. If the location has been both read from,
and written to since the monitor was cleared, then it will contain FF. Selecting View, then Clear
Flash Monitor resets all locations to 00.

146 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

RAM View Window
Displays the entire contents of RAM. This is the Edit/View screen. The ASCII
representation of data is in a column on the right. The Start Address edit box is used to
view addresses by entering the desired page/address and pressing enter. Right clicking
in the window allows you to toggle between physical addressing and logical addressing
modes.

Chapter 4: Development Tools 147

TI-83 Plus Developer Guide Third Release May 28, 2002

RAM Monitor Window
The RAM monitor notifies you if a location in RAM has been read from, written to, or both. The
Start Address edit box is used to view addresses by entering the desired page/address and
pressing enter. Right clicking in the window allows you to toggle between physical addressing
and logical addressing modes, and to clear the monitor. If a location has not been accessed, it
will contain 00. When the location has been read from, it will contain 11. If the location has
been written to, it will contain 99. If the location has been both read from, and written to since
the monitor was cleared, then it will contain FF. Selecting View, then Clear RAM Monitor resets
all locations to 00.

148 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

Memory Map Window
Shows which pages of Flash and RAM are currently mapped in the Z80 address space.

Calculator Simulator Window
The following screen shot contains an active simulated TI-83 Plus calculator. The latest
operating system is included during the installation of the simulator. Selecting Go from
the Debug menu activates the calculator simulator with the operating system
operational. When a new release of the operating system is produced, it will be available
from the TI web site for download and installation.

Chapter 4: Development Tools 149

TI-83 Plus Developer Guide Third Release May 28, 2002

The input to the TI-83 Plus calculator window can be done in two ways:

• Pressing the simulated keys with the mouse cursor and seeing the results on the
screen.

• Using the computer keyboard keys and seeing the results on the screen. This
method is provided via three configuration files that are included in the SDK —
83pkeymap.cfg, 83pkeys.cfg, and pckeys.cfg.

The 83pkeymap.cfg file contains the mappings from the PC keys to the TI-83 Plus
keys.

The 83pkeys.cfg file. contains the TI-83 Plus keyboard keys with their values.

The pckeys.cfg file contains the PC keyboard keys with their hex values.

While all three files are viewable and editable in various editors including Notepad,
the only file that should be edited by the developer is the 83pkeymap.cfg file.

150 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

Note: Shift key mapping is not supported.

Symbol Table
Displays information about all variables in the symbol table. The symbol table window shows
the variable type, version, data area start address, page the variable is located on (0x00 if the
variable resides in RAM), and the name of the variable. Double-clicking on an entry will bring
you to that entry’s data storage area.

Trace Log Window
Displays the output of a trace — the execution of instructions within a developer
definable address space.

Chapter 4: Development Tools 151

TI-83 Plus Developer Guide Third Release May 28, 2002

The Trace Options dialog box is used to define this address space as indicated earlier:

Enable Tracing If checked, tracing is enabled.

Page The page of Flash or RAM that should be traced

Address Range Start The start of the address space to trace.

 End The end of the address space to trace.

Here is how it works:

If tracing is enabled, the value of the PC is between the Start and End address and the
current page equals the Page specified, the current instruction is added to the trace log
buffer.

152 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

The developer can view the contents of the trace buffer by bringing up the Trace Log
dialog box. The trace log buffer is a circular buffer and can hold up to 4K of instructions.
From the Trace Log dialog box, the developer can save [Save As..] the contents of the
trace buffer. Using the [Clear] button, the buffer is cleared.

IO Buffer Window
Displays all data sent or received through the input/output port.

From the IO Buffer dialog box, the developer can save [Save As..] the contents of the
trace buffer. Using the [Clear] button, the buffer is cleared.

OP Table Window
Displays the contents of the OP1 – OP6 RAM registers. If a register contains a floating point
number or variable name, the data type is shown and the register’s contents are decoded and
displayed.

Chapter 4: Development Tools 153

TI-83 Plus Developer Guide Third Release May 28, 2002

Loading Applications and RAM Files
Selecting the Load/Application... menu item allows you to load an Application.

Selecting the Load/RAM File… menu item allows you to load a RAM file.

154 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

Link Settings
The Link Settings dialog box allows you to configure communications settings. Selecting
Enable simulator to calculator link will allow you to send and receive data to an external device
(calculator, CBL, CBL2, CBR, etc.) through the TI-GRAPH LINK cable.

Troubleshooting link errors:

1. Make sure that the cable is firmly connected to both the serial port and the external
device.

2. Make sure that the serial port is enabled, and that the COM port is not in use by
another device.

3. Close any conflicting software programs (TI-GRAPH LINK™, TI Connect™ software,
some personal organizer software, etc.).

For more information, refer to the TI-GRAPH LINK™ or TI Connect™ documentation.

Chapter 4: Development Tools 155

TI-83 Plus Developer Guide Third Release May 28, 2002

Key Press Recording and Playback
This option allows you to record a series of key presses and play them back at a specified rate.
Select Tools, then Start Key Press Recording to start recording. All key presses will be saved
into a file named Keypress.txt. Select Tools, then End Key Press Recording to stop recording.
Selecting Tools, then Key Press Recording Setup... allows you to save the key presses into a
different file.

 Selecting Tools, then Key Press Playing Setup… will bring up the Key Press Playing Setup
dialog box. You can select between Automatic and Manual playback, choose a different
keypress file, and select the time between key presses (Automatic mode).

Select Tools, then Start Key Press Playing to start playing the key presses. When the end of
the key press file is reached, a message will prompt you to either play the key presses again or
stop.

Selecting the Mouse Cursor Tracking Enable option will put the mouse cursor on the keys as
they are being played back.

156 Chapter 4: Development Tools

TI-83 Plus Developer Guide Third Release May 28, 2002

Save/Display/Compare Calculator Screens
Select Tools, then Save Current Calculator Screen to save the current calculator screen into a
file (*.dat). Select Tools, then Display a Calculator Screen to display a saved calculator screen.
Select Tools, then Compare Two Calculator Screen to compare two saved calculator screens.

Note: The Tools menu is also available by right-clicking on the calculator window.

Terminating a Session
Selecting Close from the File menu allows you to save the current debugging session.

Note: The default extension is .83d. This action also saves the <xyz>.clc file.

Support in Writing Applications
There are various sources for help in writing TI-83 Plus applications. A few of these
resources include:

TI-83 Plus Developer’s Guide (this book).

TI-83 Plus Graphing Calculator Guidebook

TI-83 Plus Tutorials @ http://education.ti.com/developer/deselect.html

TI−83 Plus Developer Guide Third Release May 28, 2002

G Glossary

ACC stands for accumulator.

A number given to a location in memory. You can access the location by
using that number, like accessing a variable by using its name.

Automatic Power Down .

Application Programmer’s Interface the set of software services available
to an application and the interface for using them.

A stand-alone application, usually in Flash ROM, with the associated
security mechanisms in place. See ASAP.

Part of Flash ROM. You can store data, programs, or other variables to the
user data archive, which cannot be edited or deleted inadvertently.

Assembly Application Program a RAM-resident application.

American Standard Code for Information Interchange a convention for
encoding characters, numerals in a seven or eight-bit binary number. ASCII
stands for.

A program that converts source code into machine language that the
processor can understand, similar to compilers used with high-level
languages.

A low-level language used to program microprocessors directly. Z80
assembly language can be used on the TI−83 Plus to write programs that
execute faster than programs written in TI−BASIC. See Chapter 3 for
advantages and disadvantages.

A system of counting using 0’s and 1’s. The first seven digits and the
decimal equivalents are:

0 0

1 1

10 2

11 3

100 4

101 5

110 6

111 7

See also Hexadecimal.

ACC

Address

APD

API

Applet

Archive
memory

ASAP

ASCII

Assembler

Assembly
language

Binary

152 Glossary

TI−83 Plus Developer Guide Third Release May 14, 2002

Short for binary digit — either 1 or 0. In computer processing and storage, a
bit is the smallest unit of information handled by a computer and is
represented physically by an element such as a single pulse sent through a
circuit or a small spot on a magnetic disk capable of storing either a 1 or a 0.
Considered singly, bits convey little information a human would consider
meaningful. In groups of eight, however, bits become the familiar bytes used
to represent all types of information, including the letters of the alphabet and
the digits 0 through 9. (Microsoft Encarta ‘97)

A small amount of software that resides in ROM; therefore, it cannot be
overwritten or erased. Boot code is required for the calculator to manage the
installation of new base code.

A unit of information consisting of 8 bits, the equivalent of a single character,
such as a letter. 8 bits equal {0-255} and there are 256 letters in the
extended ASCII character set. Standard ASCII uses a 7-bit value (0-127),
thus there are 128 characters.

An electronic serial number that resides in a calculator’s Flash memory. It is
used to uniquely identify that calculator.

A single letter, digit, or symbol. Q is a character. 4 is a character. % is a
character. 123 and yo are not characters.

A language that must be compiled before you can run the program.
Examples include C/C++ and Pascal.

A compiler translates high-level language source code into machine code.

A proprietary communication bus used between calculators, the
Calculator-Based Laboratory (CBL) System, the Calculator-Based
Ranger (CBR) and personal computers.

The standard (base 10) system of counting, as opposed to binary (base 2)
or hexadecimal (base 16).

Enhanced D-Bus.

Callable locations in the base code corresponding to pieces of code that
exhibit some coherent functionality.

To run a program or carry out a command.

A PC program that is the integration of a PC downloader application with a
calculator application. When the Flash-D program is executed on the PC,
the calculator application is transferred to the calculator via a
TI-GRAPH LINK cable.

Programs or databases that an individual may use without payment of
money to the author. Commonly, the author will copyright the work as a way
of legally insisting that no one change it prior to getting approval. Commonly,
the author will issue a license defining the terms under which the
copyrighted program may be used. With freeware, there is no charge for the
license.

Bit

Boot (code)

Byte

Calculator
serial number

Character

Compiled
language

Compiler

D-Bus

Decimal

E-Bus

Entry points

Execute

Flash-D

Freeware

Glossary 153

TI−83 Plus Developer Guide Third Release May 28, 2002

A procedure that automatically determines what memory a program is no
longer using and recycles it for other use. This is also known as automatic
storage (or memory) reclamation.

An optional accessory that links a calculator to a personal computer to
enable communication.

Used to identify several calculators as a single unit. This allows the group of
calculators, or unit, to be assigned a new program license using only one
certificate (instead of requiring a new unique unit certificate for each
calculator in the group). The group certificate must be used in conjunction
with the unit certificate.

Base 16 system, which is often used in computing. Counting is as follows:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.

Any programming language that resembles English. This makes it easier for
humans to understand. Unfortunately, a computer cannot understand it
unless it is compiled into machine language. See also low-level language.
Examples of high-level languages are C/C++, Pascal, FORTRAN, COBOL,
Ada, etc.

Integrated Development Environment.

An addressing mode where the data value is contained within the instruction
instead of being loaded from somewhere else. For example, in LD A, 17, 17
is an immediate value. In LD A, B, the value in B is not immediate, because
it is not written into the code.

A language that is changed from source code to machine language in real-
time. Examples are BASIC (for the PC and the TI version, TI−BASIC) and
JavaScript. Interpreted languages are often much simpler, which helps
beginners get started and allows experienced programmers to write code
quickly. Interpreted languages, however, are restricted in their capability,
and they run slower.

A command that tells the processor to do something, for example, add two
numbers or get some data from the memory.

An input/output interface from the calculator to the external world. It allows
communication with other units, CBL and CBR , and personal computers.

An output port that drives LCD display device for use on overhead
projectors. Available on the teacher’s ViewScreen calculator only.

Any programming language that does not look like English but is still to be
understandable by people. It uses words like add to replace machine
language instructions like 110100. See also high-level language.

Any programming language that consists of 1’s and 0’s (called binary),
which represents instructions. A typical machine instruction could be
110100, which means add two numbers together.

MacIntosh resident link software that can communicate with the calculator.

Garbage
collection

TI.GRAPH
LINK

Group
certificate

Hexadecimal

High-level
language

IDE

Immediate

Interpreted
language

Instruction

I/O port

LCD port

Low-level
language

Machine
language

Mac Link

154 Glossary

TI−83 Plus Developer Guide Third Release May 28, 2002

The graph is marked as needing to be updated. The next system routine
that will affect the graph contents will cause the system to regraph all of the
equations selected thereby making the graph clean.

Memory is where data is stored. On the TI−83 Plus, the main memory is the
built-in 32K of RAM. This memory is composed of one-byte sections, each
with a unique address.

See processor.

The software included with every new calculator. OS contains the features
that are of interest to customers, as well as behind-the-scenes functionality
that allows the calculator to operate and communicate. In our newer
calculators, the OS is in Flash ROM, so the user can electronically upgrade
it with OS.

A large computer chip that does most of the work in a computer or
calculator. The processor in the TI−83 Plus is the Zilog Z80 chip.

A program is a list of instructions written in sequential order for the
processor to execute.

An ID number assigned to a particular software program. It is used during
the program authentication process to match the program licenses in a
unit/group certificate to the program being downloaded into the calculator.

A digital license purchased by a customer allowing the customer to authorize
the download/execution of a particular software program to a specific
calculator. The program licenses are assigned to and listed in the calculator
unit/group certificates.

A register is high-speed memory typically located directly on the processor.
It is used to store data while the processor manipulates it. On the TI−83 Plus
there are 14 registers.

Two registers being used as if they were one, creating a 16-bit register.
Larger numbers can be used in registered pairs than in single registers. The
register pairs are AF, BC, DE, and HL. Register pairs are often used to hold
addresses.

When the TI−83 Plus is calculating or graphing, a vertical moving line is
displayed as a busy indicator in the top-right corner of the screen. When you
pause a graph or a program, the busy indicator becomes a vertical moving
dotted line.

Software Development Kit a set of tools that allow developers to write
software for specific platforms.

Sometimes called User Supported or Try Before You Buy software.
Shareware is not a particular kind of software, it is a way of marketing
software. Users are permitted to try the software on their own computer
systems (generally for a limited period of time) without any cost of obligation.
Payment is required if the user has found the software to be useful or if the
user wishes to continue using the software beyond the evaluation (trial)
period.

Marked Dirty

Memory

Microprocessor

Operating
System (OS)

Processor

Program

Program ID
number

Program
license

Register

Register pair

Run (Busy)
Indicator

SDK

Shareware

Glossary 155

TI−83 Plus Developer Guide Third Release May 28, 2002

Payment of the registration fee to the author will bring the user a license to
continue using the software. Most authors will include other materials in
return for the registration fee like printed manuals, technical support,
bonus or additional software, or upgrades.

Shareware is commercial software, fully protected by copyright laws. Like
other business owners, shareware authors expect to earn money from
making their software available. In addition, by paying, the user may then be
entitled to additional functions, removal of time limiting or limits on use,
removal of so-called nag screens, and other things as defined in the
documentation provided by the program’s author.

An application that has been digitally signed by TI.

Computer-initiated request protocol version of communications between
the computer and the calculator.

An account set-up in the TI database listing all of the program licenses
owned by a particular customer or group. The account also allows the
software owner to assign a particular program to a specific calculator.

A text file containing the code, usually in a high-level or low-level
programming language.

Table Assembler—a PC program that assembles source code for the Z80
and other processors. This has been one of the more popular tools for
developing calculator ASM programs.

The programming language commonly used on the TI−83 Plus. It is the
language that is used for PROGRAM variables. Its main drawback is that
these programs run slower, since it is an interpreted language, rather than a
compiled language.

A digital signature placed on secured documents/files such as unit and
group certificates, as well as software program images.

Storage for user data in the Flash ROM. In some cases, the user can
choose between the amount of Flash for applets versus user data.

An alphanumeric ID assigned to the owner of a software owner’s account as
a way of authorizing access to this account. Examples of the ID are mother’s
maiden name, social security number, birth date, etc.

A digital certificate signed by TI that lists all of the program and group
licenses issued to a specific calculator. The unit certificate also includes
owner ID information and the calculator serial number.

This processor is used in the TI−83 Plus. Z80 assembler is the language
used to program the Z80 chip.

Zilog Development Studio a tool used by developers to write software for
Zilog products. This tool can be used to develop TI−83 Plus calculator
applications and ASM programs.

Signed
application

Silent link

Software
owner’s
account

Source code

TASM

TI−BASIC

TI signature

User Data
Archive

Unique
owner ID

Unit
certificate

Z80

ZDS

TI−83 Plus Developer Guide Third Release May 28, 2002

Appendix
A

TI-83 Plus “Large”
Character Fonts

The font map below shows each character code, the symbolic name, and the character map.

00h 01h 02h 03h 04h 05h 06h 07h

NOT USED LrecurN LrecurU LrecurV LrecurW Lconvert LsqUp LsqDown

08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh

Lintegral Lcross LboxIcon LcrossIcon LdotIcon LsubT LcubeR LhexF

10h 11h 12h 13h 14h 15h 16h 17h

Lroot Linverse Lsquare Langle Ldegree Lradian Ltranspose LLE

18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh

LNE LGE Lneg Lexponent Lstore Lten LupArrow LdownArrow

157 Appendix A: TI−83 Plus “Large” Character Fonts

TI−83 Plus Developer Guide Third Release May 28, 2002

20h 21h 22h 23h 24h 25h 26h 27h

Lspace Lexclam Lquote Lpound Lfourth Lpercent Lampersand Lapostrophe

28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh

LlParen LrParen Lasterisk LplusSign Lcomma Ldash Lperiod Lslash

30h 31h 32h 33H 34H 35H 36H 37H

L0 L1 L2 L3 L4 L5 L6 L7

38H 39H 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh

L8 L9 Lcolon Lsemicolon LLT LEQ LGT Lquestion

40h 41h 42h 43h 44h 45h 46h 47h

LatSign LcapA LcapB LcapC LcapD LcapE LcapF LcapG

Appendix A: TI−83 Plus “Large” Character Fonts 158

TI−83 Plus Developer Guide Third Release May 28, 2002

48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh
LcapH

LcapI LcapJ LcapK LcapL LcapM LcapN LcapO

50h 51h 52h 53h 54h 55h 56h 57h

LcapP LcapQ LcapR LcapS LcapT LcapU LcapV LcapW

58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh

LcapX LcapY LcapZ Ltheta Lbackslash LrBrack Lcaret Lunderscore

60h 61h 62h 63h 64h 65h 66h 67h

Lbackquote La Lb Lc Ld Le Lf Lg

68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh

Lh Li Lj Lk Ll Lm Ln Lo

159 Appendix A: TI−83 Plus “Large” Character Fonts

TI−83 Plus Developer Guide Third Release May 28, 2002

70h 71h 72h 73h 74h 75h 76h 77h

Lp Lq Lr Ls Lt Lu Lv Lw

78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh

Lx Ly Lz LlBrace Lbar LrBrace Ltilde LinvEQ

80h 81h 82h 83h 84h 85h 86h 87h

Lsub0 Lsub1 Lsub2 Lsub3 Lsub4 Lsub5 Lsub6 Lsub7

88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh

Lsub8 Lsub9 LcapAAcute LcapAGrave LcapACaret LcapADier LaAcute LaGrave

90h 91h 92h 93h 94h 95h 96h 97h

LaCaret LaDier LcapEAcute LcapEGrave LcapECaret LcapEDier LeAcute LeGrave

Appendix A: TI−83 Plus “Large” Character Fonts 160

TI−83 Plus Developer Guide Second Release November 14, 2001

98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh

LeCaret LeDier LcapIAcute LcapIGrave LcapICaret LcapIDier LiAcute LiGrave

A0h A1h A2h A3h A4h A5h A6h A7h

LiCaret LiDier LcapOAcute LcapOGrave LcapOCaret LcapODier LoAcute LoGrave

A8h A9h AAh ABh ACh ADh AEh AFh

LoCaret LoDier LcapUAcute LcapUGrave LcapUCaret LcapUDier LuAcute LuGrave

B0h B1h B2h B3h B4h B5h B6h B7h

LuCaret LuDier LcapCCed LcCed LcapNTilde LnTilde Laccent Lgrave

B8h B9h BAh BBh BCh BDh BEh BFh

Ldieresis LquesDown LexclamDown Lalpha Lbeta Lgamma LcapDelta Ldelta

161 Appendix A: TI−83 Plus “Large” Character Fonts

TI−83 Plus Developer Guide Third Release May 28, 2002

C0h C1h C2h C3h C4h C5h C6h C7h

Lepsilon LlBrack Llambda Lmu Lpi Lrho LcapSigma Lsigma

C8h C9h CAh CBh CCh CDh CEh CFh

Ltau Lphi LcapOmega LxMean LyMean LsupX Lellipsis Lleft

D0h D1h D2h D3h D4h D5h D6h D7h

Lblock Lper Lhyphen Larea Ltemp Lcube Lenter LimagI

D8h D9h DAh DBh DCh DDh DEh DFh

Lphat Lchi LstatF Llne LlistL LfinanN L2_r_paren LblockArrow

E0h E1h E2h E3h E4h E5h E6h E7h

LcurO LcurO2 LcurOcapA LcurOa LcurI LcurI2 LcurIcapA LcurIa

Appendix A: TI−83 Plus “Large” Character Fonts 162

TI−83 Plus Developer Guide Third Release May 28, 2002

E8h E9h EAh EBh ECh EDh EEh EFh

LGline LGthick LGabove LGbelow LGpath LGanimate LGdot LUpBlk

F0h F1h

LDnBlk LcurFull

TI−83 Plus Developer Guide Third Release May 28, 2002

Appendix
B

TI−83 Plus “Small”
Character Fonts

The font map below shows each character code, the symbolic name, and the character map.
Most characters are five pixels high, but a few are longer. The character widths are variable,
e.g. a space has a width of one pixel whereas an asterisk has width of five pixels. Character
maps usually include one blank pixel column on the right side to ensure spacing when printing
strings.

00h 01h 02h 03h 04h 05h 06h 07h

NOT USED SrecurN SrecurU SrecurV SrecurW Sconvert SFourSpaces SsqDown

08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh

Sintegral Scross SboxIcon ScrossIcon SdotIcon SsubT ScubeR ShexF

10h 11h 12h 13h 14h 15h 16h 17h

Sroot Sinverse Ssquare Sangle Sdegree Sradian Stranspose SLE

18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh

SNE SGE Sneg Sexponent Sstore Sten SupArrow SdownArrow

Appendix B: TI−83 Plus “Small” Character Fonts 164

TI−83 Plus Developer Guide Third Release May 28, 2002

20h 21h 22h 23h 24h 25h 26h 27h

Sspace Sexclam Squote Spound Sdollar Spercent Sampersand Sapostrophe

28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh

SlParen SrParen Sasterisk SplusSign Scomma Sdash Speriod Sslash

30h 31h 32h 33h 34h 35h 36h 37h

S0 S1 S2 S3 S4 S5 S6 S7

38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh

S8 S9 Scolon Ssemicolon SLT SEQ SGT Squestion

165 Appendix B: TI−83 Plus “Small” Character Fonts

TI−83 Plus Developer Guide Third Release May 28, 2002

40h 41h 42h 43h 44h 45h 46h 47h

SatSign ScapA ScapB ScapC ScapD ScapE ScapF ScapG

48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh

ScapH ScapI ScapJ ScapK ScapL ScapM ScapN ScapO

50h 51h 52h 53h 54h 55h 56h 57h

ScapP ScapQ ScapR ScapS ScapT ScapU ScapV ScapW

58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh

ScapX ScapY ScapZ Stheta Sbackslash SrBrack Scaret Sunderscore

Appendix B: TI−83 Plus “Small” Character Fonts 166

TI−83 Plus Developer Guide Third Release May 28, 2002

60h 61h 62h 63h 64h 65h 66h 67h

Sbackquote SmallA SmallB SmallC SmallD SmallE SmallF SmallG

68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh

SmallH SmallI SmallJ SmallK SmallL SmallM SmallN SmallO

70h 71h 72h 73h 74h 75h 76h 77h

SmallP SmallQ SmallR SmallS SmallT SmallU SmallV SmallW

78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh

SmallX SmallY SmallZ SlBrace Sbar SrBrace Stilde SinvEQ

167 Appendix B: TI-83 Plus “Small” Character Fonts

TI−83 Plus Developer Guide Third Release May 28, 2002

80h 81h 82h 83h 84h 85h 86h 87h

Ssub0 Ssub1 Ssub2 Ssub3 Ssub4 Ssub5 Ssub6 Ssub7

88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh

Ssub8 Ssub9 ScapAAcute ScapAGrave ScapACaret ScapADier SaAcute SaGrave

90h 91h 92h 93h 94h 95h 96h 97h

SaCaret SaDier ScapEGrave ScapEAcute ScapECaret ScapEDier SeAcute SeGrave

98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh

SeCaret SeDier ScapIAcute ScapIGrave ScapICaret ScapIDier SiAcute SiGrave

Appendix B: TI−83 Plus “Small” Character Fonts 168

TI−83 Plus Developer Guide Third Release May 28, 2002

A0h A1h A2h A3h A4h A5h A6h A7h

SiCaret SiDier ScapOAcute ScapOGrave ScapOCaret ScapODier SoAcute SoGrave

A8h A9h AAh ABh ACh ADh AEh AFh

SoCaret SoDier ScapUAcute ScapUGrave ScapUCaret ScapUDier SuAcute SuGrave

B0h B1h B2h B3h B4h B5h B6h B7h

SuCaret SuDier ScapCCed ScCed ScapNTilde SnTilde Saccent Sgrave

B8h B9h BAh BBh BCh BDh BEh BFh

Sdieresis SquesDown SexclamDown Salpha Sbeta Sgamma ScapDelta Sdelta

169 Appendix B: TI−83 Plus “Small” Character Fonts

TI−83 Plus Developer Guide Third Release May 28, 2002

C0h C1h C2h C3h C4h C5h C6h C7h

Sepsilon SlBrack Slambda Smu Spi Srho ScapSigma Ssigma

C8h C9h CAh CBh CCh CDh CEh CFh

Stau Sphi ScapOmega SxMean SyMean SsupX Sellipsis Sleft

D0h D1h D2h D3h D4h D5h D6h D7h

Sblock Sper Shyphen Sarea Stemp Scube Senter SimagI

D8h D9h DAh DBh DCh DDh DEh DFh

Sphat Schi SstatF Slne SlistL SfinanN S2_r_paren SnarrowCapE

Appendix B: TI−83 Plus “Small” Character Fonts 170

TI−83 Plus Developer Guide Third Release May 28, 2002

E0h E1h E2h E3h E4h E5h E6h E7h

SListLock Sscatter1 Sscatter2 Sxyline1 Sxyline2 Sboxplot1 Sboxplot2 Shist1

E8h E9h EAh EBh ECh

Shist2 SmodBox1 SmodBox2 Snormal1 Snormal2

Texas Instruments U.S.A.
7800 Banner Dr.
Dallas, TX 75251

Texas Instruments Holland B.V. 
Rutherfordweg 102
3542CG Utrecht-The Netherlands

Printed by:

 t i - c a r e s @ t i . c o m ENG

© 2001, 2002 Texas Instruments h t t p : / / e d u c a t i o n . t i . c o m 83PL/OM/1L30/A

	Table of Contents
	Table of Contents
	Figures
	Tables

	Introduction
	TI-83 Plus Developer Guide
	Conventions Used in this Guide
	Purpose of this Guide
	Structure of this Guide

	TI-83 Plus Specific Information
	Architecture
	Hardware Layer
	Z80 CPU and Memory
	Z80 RAM Structure
	System RAM
	User RAM
	Temporary RAM
	Floating Point Stack
	Free RAM
	Operator Stack
	Symbol Table
	Hardware Stack

	Flash ROM Structure
	Boot (Code) Area
	Certification Area
	Operating System (OS) Area
	Certificate List Area
	User Apps/Data Area
	Swap Area/User Apps/Data Area

	System Development Environment
	System Routines
	RST Routines
	System RAM Areas
	User RAM
	Symbol Table Structure
	Floating Point Stack (FPS)

	Drivers Layer
	Keyboard
	Display
	Displaying Using System Routines
	Formatting Numeric Values for Display
	Modifying Display Format Settings
	Writing Directly to the Display Driver
	Contrast Control
	Split Screen Modes

	Graphing and Drawing
	Drawing
	Graphing
	Graphing and Drawing Utility Routines
	Drawing Routine Specifics
	Graphing Routine Specifics

	Run (busy) Indicator
	APD™ (Automatic Power Down)
	Link Port

	Tools and Utilities Layer
	Error Handlers
	Nested Error Handlers
	Utility Routines
	Floating Point Math
	Miscellaneous Math Functions
	Complex Math
	Other Math Functions
	Function Evaluation
	Temporary Variables

	Working with TI Language Localization Applications
	Entering and Exiting an Application Properly
	Stand-Alone
	Stand-Alone with PutAway Notification

	Application Development Process
	Programming Layer
	TI BASIC Programs
	ASM Programs
	Applications
	ASM versus Applications

	Development System
	Using the Simulator System - Requirements for Getting Started
	Creating an application for debugging - One page and Multi-page Apps
	A Brief Overview of Certificate and Application Signing
	Creating applications that fit on one page
	The Hello Application

	Creating a Multi-page Application
	Branch Table Entries
	Branch Table Placement
	Branch Table Equate File
	Making Off Page calls and jumps

	Creating a Zilog Developer Studio Project
	Creating the Project
	Adding Files to the Project
	Project Settings

	Building the Application
	Loading the Application into the Simulator
	Debugging the Application
	Signing the Application
	Downloading the Application

	Development Tools
	Development Architecture
	Z80 Development System
	Installation
	TI Software Simulator/Debugger
	Introduction
	Installation
	Getting Started
	Breakpoints
	Address Watch Points
	Trace Options
	CPU View Window
	Disassembly View Window
	Flash View Window
	Flash Monitor Window
	RAM View Window
	RAM Monitor Window
	Memory Map Window
	Calculator Simulator Window
	Symbol Table
	Trace Log Window
	IO Log Window
	OP Table Window
	Loading Applications and RAM files
	Link Settings
	Key Press Recording and Playback
	Save/Display/Compare Calculator Screens
	Terminating a Session
	Support in Writing Applications

	Glossary
	Appendix A - TI-83 Plus Large Character Fonts
	Appendix B - TI-83 Plus Small Character Fonts

